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Abstract: Temporal lobe epilepsy, a neurological disease that causes seizures as a result of excessive
neural activities in the brain, is the most common type of focal seizure, accounting for 30–35% of all
epilepsies. Detection of epilepsy and localization of epileptic focus are essential for treatment planning
and epilepsy surgery. Currently, epileptic focus is decided by expert physician by examining the EEG
records and determining EEG channel where epileptic patterns begins and continues intensely during
seizure. Examination of long EEG recordings is very time-consuming process, requires attention and
decision can vary depending on physician. In this study, to assist physicians in detecting epileptic
focus side from EEG recordings, a novel deep learning-based computer-aided diagnosis system is
presented. In the proposed framework, ictal epochs are detected using long short-term memory
network fed with EEG subband features obtained by discrete wavelet transform, and then, epileptic
focus identification is realized by using asymmetry score. This algorithm was tested on EEG database
obtained from the Ankara University hospital. Experimental results showed ictal and interictal
epochs were classified with accuracy of 86.84%, sensitivity of 86.96% and specificity of 89.68% on
Ankara University hospital dataset, and 96.67% success rate was obtained on Bonn EEG dataset.
In addition, epileptic focus was identified with accuracy of 96.10%, sensitivity of 100% and specificity
of 93.80% by using the proposed deep learning-based algorithm and university hospital dataset.
These results showed that proposed method can be used properly in clinical applications, epilepsy
treatment and surgical planning as a medical decision support system.

Keywords: EEG; temporal lobe epilepsy; deep learning; epileptic focus detection

1. Introduction

Temporal lobe epilepsy is the most common type of epilepsy, characterized by high-
amplitude and rhythmic EEG signal patterns suddenly arise from a specific brain area,
defined as epileptic focus, and then mostly generalized to whole brain. Considering
that EEG signal patterns of epilepsy patients are different from healthy individuals and,
diagnosis of epilepsy can be conducted by an expert examining long-term EEG recordings
together with clinical findings. Drug-resistant TLE cases can be treated with surgery, so
TLE focus localization is crucial for treatment planning.

In the literature, some approaches exist about epilepsy detection from EEG signals.
Current studies mainly focused on classifying ictal and interictal epochs by using various
machine learning [1–15] and deep learning methods [16–29].

As mentioned in [30], SVM is faster training phase speed than deep learning-based
algorithms, and it is one of the preferred classifiers among others like KNN and LDA.
Most of the studies with SVM classifier in the literature used Bonn EEG dataset [31],
which includes intracranial cleared EEG recordings with higher classification accuracies.
Bhattacharyya et al. [1] classify EEG signals in order to detect epilepsy by using tunable-Q

Diagnostics 2023, 13, 2261. https://doi.org/10.3390/diagnostics13132261 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13132261
https://doi.org/10.3390/diagnostics13132261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-8240-4046
https://orcid.org/0000-0002-4640-6570
https://doi.org/10.3390/diagnostics13132261
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13132261?type=check_update&version=1


Diagnostics 2023, 13, 2261 2 of 12

wavelet transform-based multiscale entropy measure. They used Bonn University database
that have cleared five EEG sets from a single channel and reported that they achieved
accuracy of 98.60% in discriminating seizure and non-seizure classes. Ficici et al. [2]
classified seizure from Bonn University EEG dataset by using SVM method with accuracy
of 99.00%. Zarei et al. [3] introduced a method with DWT and OMP techniques to detect
epileptic seizures by using SVM. Khan et al. [4] classified EEG signals as epileptic and non-
epileptic by examining discriminant analysis based on local binary pattern and statistical
features of DWT with accuracy of 99.60% on CHB-MIT dataset. Raghu et al. [5] examined a
method detecting epilepsy by using SVM with sigmoid entropy of EEG subbands. They
obtained 100% and 94.21% sensitivities on Bonn University and CHB-MIT databases,
respectively. Chen et al. [6] employed SVM with RBF method to discriminate ictal and
interictal EEG segments using DWT-based statistical signal features from Bonn University
dataset with accuracy of 99.30%. Richhariya et al. [7] introduced a method for distinguishing
seizure and seizure-free intervals by using USVM from Bonn University dataset with
accuracy of 99.00%. Sharma et al. [8] detected ictal EEG signals by using SVM applying on
TUH-EEG dataset, and they obtained 79.34% success rate.

Qureshi et al. [9] used KNN and FRNN methods for classification of epileptic seizure from
EEG signals. They applied their algorithms to Bonn and CHB-MIT databases and obtained
99.81% and 92.79% accuracies, respectively. Mursalin et al. [10] presented an automated
epileptic seizure detection method using random forest classifier. They obtained highest
accuracy of 99.00% on Bonn dataset. Omidvar et al. [11] proposed epilepsy seizure detection
approach using five-level Daubechies (Db4) DWT and ANN-SVM classifiers. They obtained
accuracies of 100% for two-class classification and 98.70% for three-class classification on
Bonn dataset. Acharya et al. [12] detected epileptic seizure by attempting GMM, WPD
and PCA. They achieved 99.00% success rate in three-class classification on Bonn dataset.
Ficici et al. [13] proposed a machine learning-based method to discriminate TLE patient,
PNES patient and healthy subjects. They obtained interictal and ictal classification accuracy of
98.00% on Bonn and CHB-MIT databases using single channel EEG. Li et al. [14] performed
three-class classification on Bonn dataset by using neural network ensemble method with
accuracy of 98.80%. Slimen et al. [15] conducted interictal and ictal epoch classification by
using SVM, KNN and LDA on CHB-MIT dataset with accuracy of 100%.

Recently, the following noticeable advantages have been achieved with deep learning-
based algorithms applied on biomedical signals in comparison with the SVM-based clas-
sifiers: (1) Deep learning has potential for multi-class identification and may achieve
more accurate results in comparison with SVM when it modified as a multi-classifier;
(2) Deep learning has higher potential for handling large-scale data classification than the
SVM-based algorithms [30].

Qiu et al. [16] presented a method for epileptic seizure detection by examining ResNet
LSTM network on Bonn University dataset, and they achieved accuracy of 99.78% for interictal
and ictal classification. Fraiwan et al. [17] classified the EEG data from single channel EEG
as focal and non-focal by attempting LSTM with accuracy of 99.20%. Poorani et al. [18]
proposed a deep learning-based epilepsy detection method from EEG signals. They applied
CNN and LSTM methods on CHB-MIT database and obtained a classification accuracy of
94.83%. They obtained 100% and 97.10% success rates on Bonn University and CHB-MIT
databases, respectively. Varlı et al. [19] proposed an approach to classify multiple EEG signals
by applying CWT, STFT and LSTM. They performed their algorithms on three different
publicly available datasets which are CHB-MIT, Bern-Barcelona and Bonn University EEG
records and obtained highest accuracy of 99.62% in interictal and ictal discrimination on Bonn
University dataset. Daoud et al. [20] proposed a deep learning approach for epileptic focus
localization and implemented on FPGA. They obtained accuracies of 93.21% and 96.00% on
Bern-Barcelona and Bonn datasets, respectively. Mir et al. [21] presented deep learning-based
framework with LSTM for diagnosis of epileptic seizure from EEG and achieved 99.80%
accuracy on CHB-MIT dataset. Singh et al. [22] predicted epileptic seizures by using LSTM on
CHB-MIT dataset with classification accuracy of 98.14%.
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Yildiz et al. [23] applied CNN classifier to classify three-class dataset of Bonn University
and achieved 100% success rate. Türk et al. [24] proposed scalogram-based CNN to detect
epilepsy from EEG signals. They obtained success rate of 98.50% in interictal and ictal
classification, and 80.00% in epileptic focus detection by using Bonn University cleared EEG
database. Lebal et al. [25] used CNN and RNN for epilepsy detection using one-channel
and multichannel EEG signals applied on Bonn and CHB-MIT datasets and achieved 100%
and 98.22% success rates, respectively. Ilias et al. [26] classify EEG signals to detect epilepsy
by using STFT and CNN methods. They obtained 97.00% success rate in separating based
on three-class the Bonn dataset. Gao et al. [27] introduced a deep CNN method to classify
ictal and interictal intervals obtained from CHB-MIT database with accuracy of 92.60%.
Farooq et al. [28] proposed a survey showing the taxonomy studies about epilepsy detection
in the literature. Islam et al. [29] introduced a seizure detection survey from EEG.

This paper introduces a retrospective study using multichannel EEG signals recorded
from TLE patients. In the proposed approach, an LSTM network was applied to detect
seizure first, and then localization of epileptic focus region, in left or right brain hemi-
spheres, and was examined by handling EEG channel energy asymmetry. Although, there
are lots of study on epilepsy in the literature, most of them focused on only ictal and inter-
ictal classification instead of epileptic focus localization using known cleared databases.
Novelty of this study is given as detecting seizure intervals and identifying epileptic fo-
cus sequentially by using EEG signals. The proposed method can also be used properly
in clinical applications, epilepsy treatment and surgical planning as a medical decision
support system.

Rest of the paper is organized as follows: In Section 2, datasets and methods used in
this study are described in detail. In Section 3, experimental results and comparison with
previous studies are reported. Analysis and discussions are presented in Section 4. Also,
limitations, future works and conclusions of the proposed study are reported in Section 4.

2. Materials and Methods

In this study, multichannel EEG recordings of TLE patients obtained from the Ankara
University hospital and Bonn University dataset were used. Scalp EEG signals of AU
dataset were sampled at 500 Hz and recorded using 18 channels obtained by bipolar 10–20
electrode placement. EEG signals recorded from Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-F8,
F8-T4, T4-T6, T6-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4, C4-P4, P4-O2, FZ-CZ,
CZ-PZ channels. This database includes EEG recordings of 27 TLE patients. Figures 1 and 2
are the sample intervals of original recordings pointing out interictal and ictal periods.
These figures were plotted by using Matlab [32]. Ictal and interictal EEG intervals were
labeled retrospectively by the expert. In addition, whole EEG recordings of patients were
labeled as left TLE or right TLE by the expert. Rhythmic theta and beta activities, repetitive
spikes, sharp waves and low-voltage rapid activity were the ictal period indicators of TLE
for the neurologist marking on EEG recordings. So, the labelling by expert was regarded
as gold standard for the performance evaluation of this study. This algorithm was imple-
mented with MATLAB 2021a [33] via the computer, Intel Core i7, 2.60 GHz processor with
16.0 GB RAM.
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Figure 2. EEG recording sample of ictal interval.

In the proposed algorithm, initially ictal EEG intervals are detected for identification
of epileptic focus from ictal EEG signals. On the other hand, the method is composed of
two main parts; first one is detection of ictal epochs and second one is identification of
epileptic focus. A whole flowchart indicating the proposed epileptic focus localization
algorithm is shown in Figure 3. In ictal epoch detection part, firstly, EEG recordings
of TLE patients are filtered by Butterworth-type low-pass filter with cutoff frequency of
64 Hz to obtain desired frequency range for DWT and 50 Hz notch filter to remove power
line noise. Secondly, EEG signals are segmented into periods of 4096 samples called as
epoch. Thirdly, DWT decomposition method is applied to obtain EEG signal subbands.
Fourthly, EEG signal features, as the inputs of deep learning network, are extracted by
calculating subband epoch energies of each EEG channel. Fifthly, ictal and interictal epochs
are classified by using LSTM network. In the epileptic focus identification part, initially,
energies of ictal EEG signals, detected in the first part, are calculated for each channel.
Then, asymmetry coefficients are calculated from left and right symmetric EEG channels
mentioned in Section 2.1.
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2.1. Feature Extraction

In this study, LSTM classifier was fed with extracted signal features obtained from
raw EEG data. To obtain signal subbands, nine-level discrete wavelet decomposition was
used with fourth-order Daubechies (db4) wavelet function. Thus, 10 signal subbands that
are D1 (32–64 Hz), D2 (16–32 Hz), D3 (8–16 Hz), D4 (4–8 Hz), D5 (2–4 Hz), D6 (1–2 Hz),
D7 (0.5–1 Hz), D8 (0.25–0.5 Hz), D9 (0.125–0.25 Hz) and A9 (0–0.125 Hz) were obtained.
Then, single-level DWT was applied to D2 subband to extract beta (16–24 Hz) and gamma
(24–32 Hz) bands. D3, D4 and A4 represent alpha (8–16 Hz), theta (4–8 Hz) and delta
(0–4 Hz) band, respectively. D6, D7, D8, D9 and A9 are subbands with lower frequencies in
delta band, while D1 is subband with higher frequency than gamma band. Subbands used
to extract signal features are given in Table 1. The epoch energies of these subbands in each
EEG channel were calculated; then, this feature vector was used as input of LSTM classifier.
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Table 1. Subbands used in the proposed study.

Subband No Subband Name Frequency Range (Hz)

1 Delta 0–4
2 Theta 4–8
3 Alpha 8–16
4 Beta 16–28
5 Gamma 28–32
6 D1 32–64
7 D2 16–32
8 D5 2–4
9 D6 1–2
10 D7 0.5–1
11 D8 0.25–0.5
12 D9 0.125–0.25
13 A9 0–0.125

2.2. Classification with LSTM Network

In this study, LSTM network, which is a type of RNN, was used to train a deep neural
network to classify EEG data as interictal and ictal. LSTM network was created by using
deep network designer in MATLAB deep learning toolbox [33]. LSTM was first introduced
by Hochreiter and Schmidhuber [34]. This network was defined in [34] by Equations (1)–(6).
In these equations, the summation indices u represents input units, gate units, memory cells
or conventional hidden units. The j-th memory cell is denoted by cj. outj and inj represent
the output and input gates, respectively. Their activations at time t are denoted by yinj(t) and
youtj(t), respectively. scj(t) represents internal state. w stands for the updating weight.

youtj(t) = foutj

(
netoutj(t)

)
; yinj(t) = finj

(
netinj(t)

)
; (1)

netoutj(t) = ∑u woutju yu(t− 1) (2)

netinj(t) = ∑u winju yu(t− 1) (3)

netcj(t) = ∑u wcju yu(t− 1) (4)

ycj(t) = youtj(t)h
(

scj(t)
)

(5)

scj(0) = 0; scj(t) = scj(t− 1) + yinj(t)g
(

netcj(t)
)

f or t > 0 (6)

LSTM network generally used in analysis and classification of sequences by revealing
dependencies between time steps of a sequence [35]. However, training LSTM network with
raw data results in a low classification accuracy. On the other hand, classification accuracy
can be increased by using features of data as an input for training process of LSTM [36].
Thus, in this study, training LSTM model was realized by using extracted features of EEG
signals instead of using raw EEG data. LSTM network used in the proposed method is
shown in Figure 4.
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2.3. Asymmetry Score Calculation

Asymmetry score was calculated from the energy ratios of these symmetrical left and
right bipolar EEG channels. Asymmetry score represented by A is given in (7), where xle f t
and xright represent symmetric left and right EEG channel signals of one epoch length,
respectively. By using (7), asymmetry score is calculated for each symmetrical EEG channel
pair listed in Table 2. Considering that there is an increase in signal energy on epileptic
focus side because of excessive neural activity, if calculated asymmetry score is greater
than 1, that EEG channel pair of the patient is labeled as “1”, and if asymmetry score is less
than 1, it is labeled as”−1”. Then, the label numbers assigned to the eight channel pairs are
summed. If the total number is greater than zero, it is determined that epileptic focus is on
the left side for that EEG recording of the patient, else the epileptic focus is on the right side.
Asymmetry coefficient is calculated and then labeled for each recording of each patient. If
the seizure recordings labeled as left focus exceed the number of seizure recordings labeled
as right focus, then patient is labeled as left TLE patient, otherwise the patient is labeled as
right TLE patient.

A =
∑ xle f t(n)

2

∑ xright(n)
2 (7)
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Table 2. Symmetrical bipolar EEG channels.

Left Brain Hemisphere Right Brain Hemisphere

1 Fp1-F7 Fp2-F8
2 F7-T3 F8-T4
3 T3-T5 T4-T6
4 T5-O1 T6-O2
5 Fp1-F3 Fp2-F4
6 F3-C3 F4-C4
7 C3-P3 C4-P4
8 P3-O1 P4-O2

3. Results

In the proposed epileptic focus identification method, 76 EEG recordings of 26 TLE
patients were used. As a gold standard, epileptic focuses of 48 of the 76 EEG recordings
were labeled as right-sided TLE, and the epileptic focus of 28 of them was labeled as
left-sided TLE by the physician. The EEG signal dataset was split into 75% training set
(7452 epochs) to train deep learning algorithm, 15% validation set (1596 epochs) to tune
classifier parameters and 15% testing set (1596 epochs) to evaluate the performance of
the proposed algorithm. In AU dataset, the ratio of ictal epochs to interictal epochs is
926:10,652, or approximately 1:12. Data augmentation was conducted by duplicating ictal
EEG signals to balance the size of ictal and interictal data. Otherwise, classifier can classify
all signals as interictal to obtain high accuracy.

Before training, the data was randomly shuffled so that the same labeled data would
not be trained consecutively. Input size was set to 16 to match the feature dimension
(energies of 16 channels) in feature input layer. In LSTM layer, number of hidden units was
set to 128. In fully connected layer, output size was set to two, representing the number of
classes. Training options were specified by assigning minimum batch size as 150, maximum
epochs as 100 and initial learning rate as 0.001 and gradient threshold as two. In addition,
ADAM method was selected as an optimizer.

Results of the proposed epilepsy detection method are given in Table 3. As can be seen
from this table, the highest classification accuracy was achieved by using energy feature
of beta band, while the lowest one was obtained by using D9 band. Parameters of LSTM
network were selected experimentally by comparing the success rates as reported in Table 4.
According to this table, the highest test classification accuracy was obtained for 16-channel
beta band with 150 minimum batch size. Finally, results of the proposed epileptic focus
identification algorithm is given in Table 5. As can be seen in Table 5, accuracy of 96.10%,
sensitivity of 100% and specificity of 93.80% were achieved in epileptic focus identification.
Comparison table of proposed epileptic focus identification algorithm and related methods
in the literature is given in Table 6. As seen in this comparison table, proposed algorithm
obtained the highest accuracy in epileptic focus identification by comparing the existing
methods [20,24].

The main purpose of this study is to identify epileptic focus by examining the asym-
metries in left and right hemispheres. Success rate of 86.84% for ictal and interictal classifi-
cation (Task-1), and 96.10% for epileptic focus identification (Task-2) were obtained in AU
database. By applying the same algorithm, 96.67% accuracy for ictal and interictal classifi-
cation (Task-1) on Bonn dataset was achieved. When compared to the studies in [16,21], a
higher accuracy was achieved in the proposed study for Task-2. Accuracy of 80.00% and
96.00% for Task-2 were obtained in [20,24] on Bonn dataset, respectively, while accuracy of
96.10% was obtained in AU dataset for Task-2, which is higher than the literature results.
Again, Task-1 was applied both on Bonn and AU database, and Task-2 was applied only on
AU database because AU dataset was labeled according to epileptic focus besides ictal and
interictal labeling by the expert. However, Bonn and CHB-MIT databases were not used in
Task-2 because they do not include epileptic focus labels.



Diagnostics 2023, 13, 2261 9 of 12

Table 3. Ictal and interictal classification results of proposed algorithm.

Subband
No

Subband Used for
Energy Feature

Validation
Accuracy Test Accuracy Training

Accuracy
Execution

Time

1 Delta (0–4 Hz) 0.5229 0.5520 0.5481 2 min 4 s
2 Theta (4–8 Hz) 0.8227 0.7504 0.8368 2 min 7 s
3 Alpha (8–16 Hz) 0.8029 0.8066 0.8394 2 min 6 s
4 Beta (16–28 Hz) 0.8747 0.8684 0.9415 2 min 7 s
5 Gamma (28–32 Hz) 0.8365 0.7971 0.8760 2 min 9 s
6 D1 (32–64 Hz) 0.8499 0.8499 0.9302 2 min 1 s
7 D2 (16–32 Hz) 0.8493 0.7983 0.9036 5 min 48 s
8 D5 (2–4 Hz) 0.7776 0.7979 0.8372 2 min 10 s
9 D6 (1–2 Hz) 0.6685 0.6753 0.6910 2 min 6 s
10 D7 (0.5–1 Hz) 0.6638 0.5962 0.6243 2 min 5 s
11 D8 (0.25–0.5 Hz) 0.6169 0.5694 0.6310 2 min 4 s
12 D9 (0.125–0.25 Hz) 0.4981 0.4008 0.5153 1 min 58 s
13 A9 (0–0.125 Hz) 0.5116 0.4476 0.5254 2 min 1 s

Table 4. Ictal and interictal classification accuracies obtained by using energy of beta band in LSTM
network by changing some parameters.

Feature Parameters Validation Results Test Results Training Results Execution
Time

Energy of Beta
band (16–28 Hz)

Minimum batch size = 27
Total number of channel = 18

Accuracy = 0.8656
Sensitivity = 0.7895
Specificity = 0.9417

Accuracy = 0.8239
Sensitivity = 0.7519
Specificity = 0.9328

Accuracy = 0.9187 ± 0.0593
Sensitivity = 0.9758
Specificity = 0.9522

10 min 40 s

Minimum batch size = 27
Total number of channel = 16

Accuracy = 0.8333
Sensitivity = 0.7444
Specificity = 0.9223

Accuracy = 0.8480
Sensitivity = 0.7895
Specificity = 0.9366

Accuracy = 0.9889 ± 0.0620
Sensitivity = 0.9726
Specificity = 0.9478

11 min 8 s

Minimum batch size = 150
Total number of channel = 18

Accuracy = 0.8769
Sensitivity = 0.8270
Specificity = 0.9267

Accuracy = 0.7979
Sensitivity = 0.7143
Specificity = 0.9242

Accuracy = 0.8992 ± 0.0408
Sensitivity = 0.9597
Specificity = 0.9525

2 min 9 s

Minimum batch size = 150
Total number of channel = 16

Accuracy = 0.8747
Sensitivity = 0.8421
Specificity = 0.9073

Accuracy = 0.8684
Sensitivity = 0.8496
Specificity = 0.8968

Accuracy = 0.8938 ± 0.0396
Sensitivity = 0.9630
Specificity = 0.9200

2 min 7 s

Table 5. Results of the proposed epileptic focus identification algorithm.

Number of EEG Recordings Result

76 (48 Right TLE, 28 Left TLE)
Accuracy = 96.10%
Sensitivity = 100%

Specificity = 93.80%

Table 6. Comparison of proposed epileptic focus identification algorithm and related methods.

Author Dataset Method
Task 1: Interictal
and Ictal Epoch
Classification

Task 2: Epileptic
Focus Identification Accuracy (%)

Türk et al. [24] Bonn University CNN
√ √

98.50 (Task1) 80.00 (Task2)

Daoud et al. [20] Bern-Barcelona
and Bonn

Deep convolutional
autoencoder X

√ 93.21 (Bern-Barcelona)
96.00 (Bonn)

Qureshi et al. [9] Bonn and CHB-
MIT KNN and FRNN X X 99.81 (Bonn) 92.79 (CHB-MIT)

Poorani et al. [18] CHB-MIT CNN and LSTM
√

X 94.83

Varlı et al. [19]
Bern-Barcelona,

Bonn and
CHB-MIT

CWT, STFT
and LSTM

√
X 99.62 (Bonn)

Mir et al. [21] CHB-MIT LSTM
√

X 99.80

Singh et al. [22] CHB-MIT LSTM
√

X 98.14

Proposed method
√ √ 86.84 (Task1—AU dataset)

96.67 (Task1—Bonn data)
96.10 (Task2—AU dataset)

√
: The given task was performed by the related study. X: The given task was not performed by the related study.
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4. Discussion

The algorithm proposed in this study is applied on multichannel EEG recordings
obtained from Ankara University hospital and Bonn database. In order to realize epilepsy
classification and focus identification facts, a deep learning-based LSTM method is estab-
lished and applied to multichannel EEG data to discriminate ictal periods and then to
identify the region of epileptic focus. Deep learning-based algorithms have more advan-
tages than classical classifiers like SVM, KNN, etc. Therefore, deep learning has potential for
multi-class identification and may achieve more accurate results and has higher potential
for handling large-scale data classification than other classical approaches [30].

All subbands of EEG signals were tested by the proposed algorithm individually.
Highest classification accuracy was obtained by using energy feature of beta band (Table 3).
Test classification accuracies of 79.79% and 86.84% were obtained for 18-channel and 16-
channel beta band with 150 minimum batch size, respectively (Table 4). Also, epilepsy
detection was realized on Bonn dataset, and 96.67% success rate was obtained. Epileptic
focus identification was conducted with accuracy of 96.10%, sensitivity of 100% and speci-
ficity of 93.80% (Table 5). As can be seen from the comparison table (Table 6), while most of
the studies in the literature focused on epilepsy detection (ictal and interictal classification),
proposed algorithm determines epileptic focus in addition to epilepsy detection. So, results
of the epileptic focus identification algorithm can only be compared with the studies cited
in the references [20,24]. As can be seen in Table 6, proposed algorithm achieved the highest
accuracy for epileptic focus identification by comparing the existing methods [20,24].

The epilepsy detection results given in comparison table (Table 6) were obtained by
using cleared (Bonn and CHB-MIT) and also intracranial (Bonn) EEG records, so they
achieved higher accuracies as expected. In fact, we also achieved high accuracy (96.67%)
in ictal epoch detection task on Bonn dataset. EEG signals recorded from Ankara Univer-
sity hospital are raw data (without preprocessing) and has been obtained using surface
electrodes. Although accuracies of epilepsy detection by using the raw EEG signals seem
lower than the accuracy of the studies tested with publicly available databases, results in
this study are reasonable to be applicable in clinics for treatment and surgical operation.

The study is limited to only temporal lobe epilepsy among other epilepsy types. Future
studies on epilepsy detection and focus identification from EEG recordings can be extended
to other types of epilepsies, such as frontal lobe epilepsies, idiopathic generalized epilepsies,
to obtain more comprehensive diagnostic medical tools. Another limitation of the proposed
study may be the execution time. In current study, total execution time is 127 s, including
recordings of all patients in AU database, for computer specifications mentioned in Section 2.
More powerful CPU for a computer may provide fast execution close to real-time epilepsy
detection and focus identification and also for real-time applications in clinics.
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Nomenclature

ADAM Adaptive Moment Estimation
ANN Artificial Neural Network
AU Ankara University
CHB-MIT Children’s Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT)
CNN Convolutional Neural Network
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
EEG Electroencephalography
FRNN Fuzzy Rough Nearest Neighbor
GMM Gaussian Mixture Model
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LSTM Long Short-Term Memory
OMP Orthogonal Matching Pursuit
PCA Principal Component Analysis
PNES Psychogenic Non-Epileptic Seizure
RBF radial basis function
ResNet Residual Networks
RNN Recurrent Neural Network
STFT Short Time Fourier Transform
SVM Support Vector Machine
TLE Temporal Lobe Epilepsy
TUH Temple University Hospital
USVM Universum Support Vector Machine
WPD Wavelet Packet Decomposition
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