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A B S T R A C T

This study aims to present a complete Hopf bifurcation analysis of a model describing the relationship between
prey and predator. A ratio-dependent reaction–diffusion system with two discrete time delays operating under
Neumann boundary conditions governs the model that represents this competition. The bifurcation parameter
for the analysis is a delay parameter that reflects the amount of time needed for the predator to be able to hunt.
Bilazeroğlu and Merdan’s algorithm (Bilazeroğlu et al., 2021), which is developed by using the center manifold
theorem and normal form theory, is used to establish the existence of Hopf bifurcations and also the stability of
the bifurcating periodic solutions. The same procedure is used to illustrate some specific bifurcation properties,
such as direction, stability, and period. Furthermore, by examining a model with constant coefficients, we also
analyze how diffusion and the amount of time needed for prey to mature impact the model’s dynamics. To
support the obtained analytical results, we also run some numerical simulations. The results indicate that the
dynamic of the mathematical model is significantly influenced by diffusion, the amount of time needed for
the predator to gain the capacity to hunt, and the amount of time required for prey to reach maturity that
the predator can hunt.
1. Introduction

Differential equations, which represent time continuously, are fre-
quently used to describe the dynamics of predator–prey systems. For
such a model, the following is a typical framework:
𝑑𝑌
𝑑𝑡

= 𝑓 (𝑌 )𝑌 − 𝑔(𝑌 ,𝑍)𝑍, (1.1a)
𝑑𝑍
𝑑𝑡

= 𝑏𝑔(𝑌 ,𝑍)𝑍 − 𝜇𝑍. (1.1b)

Here, 𝑌 and 𝑍 express the number of prey and the number of predators
at time 𝑡, respectively. Also, 𝑏 is trophic efficiency and 𝜇 is predator
death rate [1]. Prey per capita growth rate which decreases with 𝑌 in
most models is represented by the function 𝑓 [2]. The trophic func-
tion 𝑔, also known as the ‘‘functional response’’ in the prey equation
(Eq. (1.1a)) and the ‘‘numerical response’’ in the predator equation
(Eq. (1.1b)), describes the relationship between the dynamics of the
prey and predator in prey–predator models [1]. The function 𝑔(𝑌 ,𝑍)
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in Eq. (1.1a) describes the quantity of prey biomass devoured by each
predator per unit of time, whereas 𝑏𝑔(𝑌 ,𝑍) in Eq. (1.1b) reflects the
per capita production rate of predators [3].

Akçakaya et al. [1] express that there are various ways to formu-
late the trophic function, including dependence on prey density alone
(Lotka–Volterra type models), on the ratio of prey to predator densi-
ties (Abrams and Ginzburg [2]), and on prey and predator densities
separately (see Table 1).

Akçakaya et al. [1] also discussed why ratio-dependent predator–
prey models should be preferred. In this study, it is concluded that
the majority of natural systems are closer to ratio dependence than
prey dependency in light of the empirical evidence. Moreover, it is also
stated in this study that a realistic simulation of prey–predator interac-
tions ought to be able to forecast the full spectrum of dynamics seen in
real-world prey–predator systems. The dynamics seen in the predator–
prey relationship are contained in a ratio-dependent model because it
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Table 1
Some trophic function 𝑔(𝑌 ,𝑍) examples [1].

Type Equation Source

Prey dependent
𝑔(𝑌 ,𝑍) = 𝑎𝑌 Lotka (1920) [6] - Volterra (1926) [7]
𝑔(𝑌 ,𝑍) = 𝑎𝑌 ∕(𝑏 + 𝑌 ) Holling (1959) [8]
𝑔(𝑌 ,𝑍) = 𝑔(𝑌 ) Rosenzweig and MacArthur (1963) [9]

Intermediate 𝑔(𝑌 ,𝑍) = 𝑎𝑌 𝑍−𝑚 Hassel and Varley (1969) [10]
𝑔(𝑌 ,𝑍) = 𝑎𝑌 ∕(𝑏 + 𝑌 + 𝑐𝑍) DeAngelis et al. (1975) [11]

Ratio dependent 𝑔(𝑌 ,𝑍) = 𝑎𝑌 ∕(𝑌 + 𝑐𝑍) Getz (1984) [12]
𝑔(𝑌 ,𝑍) = 𝑔(𝑌 ∕𝑍) Arditi and Ginzburg (1989) [13]

can feature stable equilibria, limit cycles, and the extinction of both
species as a result of overexploitation [1]. As an example, Akçakaya
[4] shows that a lynx-hare model lead to extinction for some parameter
combinations. When the model is modified by adding a small prey
refuge, dynamics changes extinction to limit cycles with period close
to the observed period of lynx-hare cycles in Canada, with parameters
estimated from field studies [4]. Akçakaya et al. [1] indicate that this
type of prediction was never made by a Lotka–Volterra model for the
lynx-hare system. Another reason emphasized by Akçakaya et al. [1] is
that predators have to share preys. Modeling the functional response
with a ratio (i.e., with ‘‘available resources per consumer’’) is a result
of a direct sharing mechanism [1]. As a result, ratio-dependent models
give a more realistic approach than prey-dependent models in many
aspects.

2. Mathematical model

The Lotka–Volterra model, also known as the simplest predator–
prey model, is

⎧

⎪

⎨

⎪

⎩

𝑑𝑌 (𝑡)
𝑑𝑡

= 𝛼𝑌 (𝑡) − 𝛽𝑌 (𝑡)𝑍(𝑡)

𝑑𝑍(𝑡)
𝑑𝑡

= −𝛾𝑍(𝑡) + 𝛿𝑌 (𝑡)𝑍(𝑡),
(2.1)

where 𝛼, 𝛽, 𝛾 and 𝛿 are positive. The population densities of prey
and predator at time 𝑡 are represented by 𝑌 (𝑡) and 𝑍(𝑡), respectively.
According to this model, the number of prey changes based on their
natural growth minus the rate at which they are hunted, while the num-
ber of predators changes based on growth caused by food availability
minus natural mortality [5].

Leslie [14] changes the second equation in the model (2.1) as
follows:

⎧

⎪

⎨

⎪

⎩

𝑑𝑌 (𝑡)
𝑑𝑡

= 𝑟1𝑌 (𝑡) − 𝜀𝑌 (𝑡)𝑍(𝑡)

𝑑𝑍(𝑡)
𝑑𝑡

= 𝑍(𝑡)
(

𝑟2 − 𝜃
𝑍(𝑡)
𝑌 (𝑡)

)

,
(2.2)

where 𝑟1, 𝑟2, 𝜀 and 𝜃 are positive parameters. The system (2.2) differs
from the classical Lotka–Volterra model (2.1). According to Leslie [14],
the results of the author’s analysis (unpublished observations) of some
data provided by Gause [15] for the growth in numbers of Paramecium
caudatum and Paramecium aurelia cultures, in which the food supply
consisted of a suspension of Bacillus pyocyaneus in a buffered medium,
has offered the form of the second equation originally in the system
(2.2).

The first equation in the system expresses the change in prey
population density as the difference between the natural growth of
the population at the rate of 𝑟1 and the amount that is hunted at
he rate of 𝜀. The second equation states that the predator population
as grown logistically. In this logistic growth, the carrying capacity
s not constant and It relates to the density of the prey population
roportionally. That is, the predator population gets smaller as the
umber of predators per prey increases and grows as it decreases. This
ituation distinguishes the model (2.2) from the Lotka–Volterra model
2.1). In addition, since the increase in the numbers of individuals in
2

predator population depends on the number of predator per prey, this
model is ratio-dependent.

Now we will address the studies on the model (2.2) in the litera-
ture. Zhou et al. [16] analyze the local stability of the unique positive
equilibrium point 𝑃⋆ = ( 𝜃𝑟1𝜀𝑟2

, 𝑟1𝜀 ) of the system (2.2) and they look into
how the Allee effects affect both the dynamics of the prey and the
predator populations.

In nature, an individual belonging to the predator population may
not be capable of hunting at birth. That is, the predator often needs
a certain maturity to be able to hunt. Hence, to analyze the impact
of past population members on the current predator population, Çelik
[17] studied the following system

⎧

⎪

⎨

⎪

⎩

𝑑𝑌 (𝑡)
𝑑𝑡

= 𝑟1𝑌 (𝑡) − 𝜀𝑌 (𝑡)𝑍(𝑡)

𝑑𝑍(𝑡)
𝑑𝑡

= 𝑍(𝑡)
(

𝑟2 − 𝜃
𝑍(𝑡 − 𝜏)
𝑌 (𝑡)

) (2.3)

y adding the delay term to the predator variable in the predator–
rey interaction term in the second equation of the system (2.2). In
ontrast, a predator can select its prey from population members who
ave attained a certain level of maturity. In other words, prey needs a
ertain amount of time to be hunted by predators. To include this fact
n the model, Çelik [18] next considered the system below

⎧

⎪

⎨

⎪

⎩

𝑑𝑌 (𝑡)
𝑑𝑡

= 𝑟1𝑌 (𝑡) − 𝜀𝑌 (𝑡)𝑍(𝑡)

𝑑𝑍(𝑡)
𝑑𝑡

= 𝑍(𝑡)
(

𝑟2 − 𝜃
𝑍(𝑡)

𝑌 (𝑡 − 𝜏)

) (2.4)

by adding the lag term to the prey variable in the predator–predator
interaction term in the second equation of the system (2.2).

Karaoğlu and Merdan [19] obtained the system

⎧

⎪

⎨

⎪

⎩

𝑑𝑌 (𝑡)
𝑑𝑡

= 𝑟1𝑌 (𝑡) − 𝜀𝑌 (𝑡)𝑍(𝑡)

𝑑𝑍(𝑡)
𝑑𝑡

= 𝑍(𝑡)
(

𝑟2 − 𝜃
𝑍(𝑡 − 𝜏2)
𝑌 (𝑡 − 𝜏1)

) (2.5)

by including these two delay conditions into the one model. Karaoğlu
and Merdan [20] took the delay term 𝜏 as the bifurcation parameter
when 𝜏1 = 𝜏2 = 𝜏, and showed that the system (2.5) has periodic
solutions by performing Hopf bifurcation analysis. In [19], it was
investigated that Hopf bifurcation occurred in the system (2.5) when 𝜏2
varies, so the system (2.5) had periodic solutions. In addition, Karaoğlu
and Merdan, in both studies, calculated the Poincaré normal form co-
efficient 𝑐1(0) of the system that enables to establish the characteristics
of periodic solutions by using the calculation method for n-dimensional
delayed differential equation systems given by Hassard et al. [21].

All these models ignore the spatial aspects of the predator–prey
dynamics. According to Malchow et al. [22], there could be two reasons
for this. First, the results of the non-spatial analysis apply to the
case of spatially homogeneous, ‘‘well-mixed’’ populations. This usually
represents situations where the relevant habitat is sufficiently small.
Alternatively, the impact of spatial dimension(s) can be ignored in an
unusual situation when the individuals of a given species remain fixed
in space at any time and in any generation. Although these assumptions
are acceptable to some populations, they are not always valid in the
real world. According to Malchow et al. [22], populations of ecological
species are not stable in space; their distribution is constantly changing
as a result of environmental influences like wind in the case of airborne
species, and/or individual motion.

A widely accepted and theoretically most developed approach for
small-scale individual motion is the process called random walks. One
of the main characteristics of this process is that the direction of the
motion is chosen randomly at each step, and this feature has been a
reason for discussion and criticism. Indeed, it is difficult to imagine a
mammal or a bird or even an insect moving randomly. However, the
random walk is just an abstract technique, meaning there is actually no

necessity to associate each step in this theoretical procedure with the
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real-life steps or movement of a living being. For example, consider the
motion of a flying insect. Each of its short flights is highly motivated
to search for food or avoid predators or look for mating partner or
something else, and is not at all random. However, a range of factors
unavoidably have an impact on any new flight or walk selection. There-
fore, the direction of the next flight may only be slightly correlated with
the direction of the previous flight. Moreover, under the assumption
that external environmental conditions do not create any preference in
the direction of movement, this loss of information accumulates with
each new flight, and thus after a certain number of steps the correlation
between flights will be completely lost. This heuristic estimation is
compatible with some field observation data (see Root and Kareiva
[23]). According to these data, a very close approach can be made to
the motion of insects at an appropriate spatial scale with random walk.
Obviously, this randomization of the motion is not restricted to insects
and should be applicable to almost all other species. Moreover, Brock-
mann et al. [24] has shown that a very good approach to the movement
of people can be obtained with random walks if it is considered on a
relevant spatiotemporal scale (Malchow et al. [22]). Partial differential
equation systems modeling population growth with random walk are
generally referred to as reaction–diffusion systems (Allen [25]). Up
until now, the study of diffusive predator–prey systems has been the
focus of research in fields like ecology and mathematical biology (see,
for example, [26–28], and references there in).

In the light of this information, to make the system (2.5) which dis-
cuss the predator–prey population dynamics more realistic, we consider
the random walk procedure and obtain the following reaction–diffusion
system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑌 (𝑥, 𝑡)
𝜕𝑡

= 𝑑1
𝜕2𝑌 (𝑥, 𝑡)
𝜕𝑥2

+ 𝑟1𝑌 (𝑥, 𝑡) − 𝜀𝑌 (𝑥, 𝑡)𝑍(𝑥, 𝑡)

𝜕𝑍(𝑥, 𝑡)
𝜕𝑡

= 𝑑2
𝜕2𝑍(𝑥, 𝑡)
𝜕𝑥2

+𝑍(𝑥, 𝑡)
(

𝑟2 − 𝜃
𝑍(𝑥, 𝑡 − 𝜏2)
𝑌 (𝑥, 𝑡 − 𝜏1)

) (2.6)

with the following Neumann boundary conditions and initial condi-
tions:
𝜕𝑌 (𝑥, 𝑡)
𝜕𝑥

=
𝜕𝑍(𝑥, 𝑡)
𝜕𝑥

= 0, 𝑥 ∈ {0, 𝜋} , 𝑡 ≥ 0,

𝑌 (𝑥, 𝑡) = 𝑌0(𝑥, 𝑡) ≥ 0, 𝑥 ∈ [0, 𝜋] , 𝑡 ∈
[

−𝜏1, 0
]

,

𝑍(𝑥, 𝑡) = 𝑍0(𝑥, 𝑡) ≥ 0, 𝑥 ∈ [0, 𝜋] , 𝑡 ∈
[

−𝜏2, 0
]

,

here 𝑌0(𝑥, 𝑡) ∈ 𝐶2((0, 𝜋) ×
[

−𝜏1, 0
]

,R) ∩ 𝐶([0, 𝜋] ×
[

−𝜏1, 0
]

,R) and
0(𝑥, 𝑡) ∈ 𝐶2((0, 𝜋) ×

[

−𝜏2, 0
]

,R) ∩ 𝐶([0, 𝜋] ×
[

−𝜏2, 0
]

,R). Here, 𝑌 (𝑥, 𝑡)
and 𝑍(𝑥, 𝑡) denote the adult population densities of prey and predator
at position 𝑥 and time 𝑡, respectively. 𝑌 (𝑥, 𝑡 − 𝜏1) and 𝑍(𝑥, 𝑡 − 𝜏2) stand
for the densities of juvenile prey and predator populations born at time
𝑡− 𝜏1 and 𝑡− 𝜏2, and surviving at time 𝑡 and at position 𝑥, respectively.
Positive parameters 𝑑1 and 𝑑2 are the diffusion coefficients of prey and
predator, respectively. The positive parameters 𝑟1, 𝑟2, 𝜀 and 𝜃 symbolize
the natural growth rate of the prey population, the hunting rate of the
prey population, the natural growth rate of the predator population and
the trophic efficiency, respectively. The positive real numbers 𝜏1 and 𝜏2,
respectively, indicate the time required for prey to reach the maturity
that the predator choose to hunt and the time required for the predator
to have the ability to hunt. Neumann boundary conditions show that
the prey and predator populations are in an isolated area, that is, there
is no migration from outside to inside and inside to outside.

Hu and Li [29] performed the linear stability analysis of the system
(2.6) when 𝜏1 = 0 and the Hopf bifurcation existence analysis, and then
they investigated the circumstances that would lead to the system hav-
ing a periodic solution. In addition, they identified the characteristics
of periodic solutions that are guaranteed to exist.

Our aim in this paper is to give a detailed Hopf bifurcation analysis
of the system (2.6) for arbitrary 𝜏1 and 𝜏2. We investigate the linear
stability, the existence and the direction of Hopf bifurcation using the
3

algorithm develop in [30]. We use the Hopf bifurcation analysis and
numerical simulations to study the effect of maturation periods and
random walks of prey and predator on solutions of Eq. (2.6).

The paper has the following structure. In Section 3, it is discussed
if a constant equilibrium point is stable and whether Hopf bifurcation
exists. The bifurcation properties of the periodic solutions, including
stability, direction, and period, are studied in Section 3.2. Finally,
in Section 4, we consider a ratio-dependent reaction–diffusion system
with constant coefficients including two discrete time delays under the
Neumann boundary conditions. To support the analytical results, we
executed some numerical simulations. Some concluding remarks are
made at the end of the paper.

3. Hopf bifurcation analysis

In this section, stability of the unique positive equilibrium point
𝑃⋆ = ( 𝜃𝑟1𝜀𝑟2

, 𝑟1𝜀 ) of the system (2.6) and the conditions under which
the system (2.6) has a periodic solution are investigated. Moreover, we
determine the stability, direction, and also the period of the bifurcating
periodic solutions.

System (2.6) belongs to a class of 2 × 2 reaction–diffusion equation
ystems containing two discrete delays which is fully analyzed in the
ense of Hopf bifurcation by Bilazeroğlu and Merdan [30]. In this study,
t is shown that one can determine the conditions for the existence of
he Hopf bifurcation and compute the necessary values for the direction
nalysis of the Hopf bifurcation by calculating only coefficients in the
econd degree Taylor polynomials of the functions on the right-hand
ides of the equations in the system (2.6). Because of that, we will apply
he algorithm obtained by Bilazeroğlu and Merdan [30] to complete the
nalysis in this section.

.1. Stability analysis and the existence of Hopf bifurcation

As we mentioned before, 𝑃⋆ = ( 𝜃𝑟1𝜀𝑟2
, 𝑟1𝜀 ) is the unique positive

equilibrium point of the system (2.6). We examine stability of the
equilibrium point 𝑃⋆ and the presence of Hopf bifurcation in the system
(2.6) in three steps using the algorithm developed in [30] as follows:
First, we get adequate conditions for all eigenvalues of characteristic
equation having negative real parts when there is no delay. Second,
when 𝜏2 = 0, we obtain sufficient conditions to local asymptotic stabil-
ty of equilibrium point 𝑃⋆ either for all 𝜏1 ≥ 0 or when 𝜏1 ∈

[

0, 𝜏1𝑗,0
)

or some 𝜏1𝑗,0 . In this step, since we deal with a single delay one can
lso use the algorithm improved by Kayan and Merdan in [31]. Finally,
or fixed 𝜏∗1 in its stability interval, we investigate the characteristic
quation regarding 𝜏2 as a bifurcation value to find the stability region
or equilibrium point 𝑃⋆ and bifurcation value 𝜏20 (𝜏

∗
1 ) = 𝜏20 such

hat the real parts of all eigenvalues are still negative when 𝜏2 ∈
0, 𝜏2,0

)

. After that, by analyzing transversality condition, we conclude
he conditions under which a family of periodic solutions bifurcated
rom equilibrium point 𝑃⋆ at a critical value 𝜏20 . In order to perform
hese steps, first of all we need to obtain characteristic equation.

Define the functions on the right-hand sides of the equations in the
ystem (2.6) as

(𝑌 (𝑥, 𝑡), 𝑌 (𝑥, 𝑡 − 𝜏1), 𝑍(𝑥, 𝑡), 𝑍(𝑥, 𝑡 − 𝜏2)) =𝑟1𝑌 (𝑥, 𝑡) − 𝜀𝑌 (𝑥, 𝑡)𝑍(𝑥, 𝑡),

𝑔(𝑌 (𝑥, 𝑡), 𝑌 (𝑥, 𝑡 − 𝜏1), 𝑍(𝑥, 𝑡), 𝑍(𝑥, 𝑡 − 𝜏2)) =𝑍(𝑥, 𝑡)
(

𝑟2 − 𝜃
𝑍(𝑥, 𝑡 − 𝜏2)
𝑌 (𝑥, 𝑡 − 𝜏1)

)

.
(3.1)

Coefficients in the first degree Taylor polynomials at 𝑃⋆ of the function
𝑓 can be calculated as

𝑘1 = 𝑓𝑌 (𝑃⋆) = 0, 𝑘2 = 𝑓𝑌𝜏1 (𝑃
⋆) = 0,

𝑘3 = 𝑓𝑍 (𝑃⋆) = −
𝜃𝑟1
𝑟2
, 𝑘4 = 𝑓𝑍𝜏2 (𝑃

⋆) = 0,
(3.2a)

nd of the function 𝑔 can be calculated as

𝑙1 = 𝑔𝑌 (𝑃⋆) = 0, 𝑙2 = 𝑔𝑌𝜏1 (𝑃
⋆) =

𝑟22
𝜃
,

𝑙 = 𝑔 (𝑃⋆) = 0, 𝑙 = 𝑔 (𝑃⋆) = −𝑟 ,
(3.2b)
3 𝑍 4 𝑍𝜏2 2
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where

𝑓𝑌𝜏1 =
𝜕𝑓

𝜕𝑌 (𝑡 − 𝜏1)
, 𝑓𝑍𝜏2 =

𝜕𝑓
𝜕𝑍(𝑡 − 𝜏2)

,

𝑔𝑌𝜏1 =
𝜕𝑔

𝜕𝑌 (𝑡 − 𝜏1)
, 𝑔𝑍𝜏2 =

𝜕𝑔
𝜕𝑍(𝑡 − 𝜏2)

.

Formulas of the coefficients of the characteristic equation are given
in [30] as

𝑎 = (𝑑1 + 𝑑2)
𝑛2

𝓁2
− (𝑘1 + 𝑙3), 𝑏1 = −𝑑2𝑘2

𝑛2

𝓁2
+ 𝑘2𝑙3 − 𝑘3𝑙2,

𝑏2 = −𝑑1𝑙4
𝑛2

𝓁2
+ 𝑘1𝑙4 − 𝑘4𝑙1, 𝑐1 = −𝑘2, 𝑐2 = −𝑙4,

𝑑 = 𝑑1𝑑2
𝑛4

𝓁4
− (𝑑1𝑙3 + 𝑑2𝑘1)

𝑛2

𝓁2
+ 𝑘1𝑙3 − 𝑘3𝑙1, ℎ = 𝑘2𝑙4 − 𝑘4𝑙2.

Consequently, the characteristic equation corresponding to the lin-
earization of the system (2.6) around the equilibrium point 𝑃𝑠𝑡𝑎𝑟 is
(see Section 3 in [30])

𝜆2 + 𝑎𝜆 + 𝑏1𝑒−𝜆𝜏1 + 𝑏2𝑒−𝜆𝜏2 + 𝑐2𝜆𝑒−𝜆𝜏2 + 𝑑 = 0 (3.3a)

where

𝑎 = (𝑑1 + 𝑑2)𝑛2, 𝑏1 = 𝑟1𝑟2, 𝑏2 = 𝑑1𝑟2𝑛
2,

𝑐1 = 0, 𝑐2 = 𝑟2, 𝑑 = 𝑑1𝑑2𝑛
4, ℎ = 0.

(3.3b)

To be able to obtain the first stability result, we check the hypothesis
(H1) and (H2) of Corollary 1 given in Section 3.1 by Bilazeroğlu and
Merdan [30]. Note that 𝑎+𝑐1+𝑐2 = (𝑑1+𝑑1)𝑛2+𝑟2 > 0 and 𝑏1+𝑏2+𝑑+ℎ =
𝑑1𝑑2𝑛4 + 𝑑1𝑟2𝑛2 + 𝑟1𝑟2 > 0, so hypothesis (H1) and (H2) are satisfied.
Hence, all roots of the characteristic Eq. (3.3a) have negative real parts
when 𝜏1 = 𝜏2 = 0 by Corollary 1 given in [30]. As a result, we have the
undermentioned result:

Corollary 1. The equilibrium point 𝑃⋆ = ( 𝜃𝑟1𝜀𝑟2
, 𝑟1𝜀 ) of the system (2.6) is

locally asymptotically stable when 𝜏1 = 𝜏2 = 0.

Now it is time to analyze the second case: 𝜏1 > 0 and 𝜏2 = 0. Using
the following definitions given in [30] (see Equation (3.4) in [30])

𝑅 ∶=
(

𝑎 + 𝑐2
)2 − 𝑐21 − 2

(

𝑏2 + 𝑑
)

and 𝑆 ∶=
(

𝑏2 + 𝑑
)2 −

(

𝑏1 + ℎ
)2 ,

and equalities in (3.3b), we calculate 𝑅 and 𝑆 as

𝑅 = (𝑑21 + 𝑑22 )𝑛
4 + 2𝑑2𝑛2𝑟2 + 𝑟22, (3.4a)

𝑆 = (𝑑1𝑑2𝑛4 + 𝑑1𝑛2𝑟2 + 𝑟1𝑟2)(𝑑1𝑑2𝑛4 + (𝑑1𝑛2 − 𝑟1)𝑟2). (3.4b)

Note that 𝑅 > 0. Moreover, if 𝑑1𝑛2 − 𝑟1 > 0 then 𝑆 > 0. Since 𝑅 > 0 and
𝑆 > 0 under the condition 𝑑1𝑛2−𝑟1 > 0, one of the following hypotheses
of the Corollary 2 given in Section 3.1 by Bilazeroğlu and Merdan [30]
is satisfied:

(H3-1) 𝑅2 − 4𝑆 < 0,
(H3-2) 𝑅2 − 4𝑆 = 0 and 𝑅 > 0,
(H3-5) 𝑅2 − 4𝑆 > 0, 𝑅 > 0 and 𝑆 > 0.

Moreover, if 𝑑1𝑑2𝑛4+𝑑1𝑛2𝑟2 = 𝑟1𝑟2 then 𝑆 = 0. So, under this condition
the hypothesis ‘‘(H3-4) 𝑅 > 0 and 𝑆 = 0’’ of the Corollary 2 given
in [30] holds. Therefore, we can conclude that:

Corollary 2. If

(H̃3-1) 𝑑1𝑛2 − 𝑟1 > 0,
(H̃3-2) 𝑑1𝑑2𝑛4 + 𝑑1𝑛2𝑟2 = 𝑟1𝑟2

holds, then all roots of the characteristic Eq. (3.3a) have negative real parts
for all 𝜏1 ≥ 0 when 𝜏2 = 0. It follows that the equilibrium point 𝑃⋆ is
absolutely stable when 𝜏2 = 0. Therefore, if one of the conditions (H̃3-1) or
(H̃3-2) is satisfied, then the Hopf bifurcation will not occur in the system
(2.6) when 𝜏 = 0.
4

2

On the other hand, when 𝑑1 = 𝑑2 = 0, from Eq. (3.4b) we get that
𝑆 = −𝑟21𝑟

2
2 < 0. So, for sufficiently small values of 𝑑1 and 𝑑2, we have

negative values for 𝑆. This means that for sufficiently small values of 𝑑1
and 𝑑2, only the hypothesis (H4-2) of Corollary 3 given in Section 3.1
by Bilazeroğlu and Merdan [30] (see Section 3.1 in [30]) is satisfied.
For this reason, we have the conclusion next in line:

Corollary 3. Assume that the undermentioned hypothesis is satisfied:
(H̃4)] 𝑆 = (𝑑1𝑑2𝑛4 + 𝑑1𝑛2𝑟2 + 𝑟1𝑟2)(𝑑1𝑑2𝑛4 + (𝑑1𝑛2 − 𝑟1)𝑟2) < 0. This

ypothesis automatically holds if 𝑑1 and 𝑑2 are sufficiently small positive
eal numbers. In this case, the followings hold.

1. Characteristic Eq. (3.3a) has a pair of purely imaginary roots 𝜆2
(𝜏12,𝑘 ) = 𝑖𝜔2 and 𝜆2(𝜏12,𝑘 ) = −𝑖𝜔2, 𝜔2 > 0 when 𝜏2 = 0 where

𝜔2 =

√

−𝑅 ±
√

𝑅2 − 4𝑆
2

, (3.5)

in which 𝑅 and 𝑆 are specified by (3.4a) and (3.4b), respectively,
and for 𝑘 ∈ N0

𝜏12,𝑘 = 1
𝜔2

arctan

(

((𝑑1 + 𝑑2)𝑛2 + 𝑟2)𝜔2

𝜔2
2 − 𝑑1𝑑2𝑛

4 − 𝑑1𝑛2𝑟2

)

+ 𝑘𝜋
𝜔2
. (3.6a)

One can also calculate the bifurcation value using formulas given
below:

𝜏12,𝑘 = 1
𝜔2

arcsin
(

((𝑑1 + 𝑑2)𝑛2 + 𝑟2)𝜔2
𝑟1𝑟2

)

+ 2𝑘𝜋
𝜔2

, (3.6b)

𝜏12,𝑘 = 1
𝜔2

arccos

(

𝜔2
2 − 𝑑1𝑑2𝑛

4 − 𝑑1𝑛2𝑟2
𝑟1𝑟2

)

+ 2𝑘𝜋
𝜔2

. (3.6c)

Also, the first delay value at which a pair of purely imaginary roots
occurs is 𝜏12.0 .

2. 𝑃⋆ is locally asymptotically stable for 𝜏1 ∈
[

0, 𝜏12,0
)

when 𝜏2 = 0 and
unstable for 𝜏1 > 𝜏12,0 when 𝜏2 = 0.

3. Except the pair of purely imaginary roots 𝜆2(𝜏12,𝑘 ) = 𝑖𝜔2 and
𝜆2(𝜏12,𝑘 ) = −𝑖𝜔2, all roots of the characteristic Eq. (3.3a) have
negative real parts at 𝜏1 = 𝜏12,0 when 𝜏2 = 0.

4. Re

(

𝑑𝜆
𝑑𝜏1

|

|

|

|𝜏1=𝜏12,0

)

> 0 when 𝜏2 = 0.

5. Hopf bifurcation occurs in system (2.6) at 𝜏1 = 𝜏12,0 when 𝜏2 = 0,
which means that the system (2.6) has a family of periodic solutions
in a neighborhood of 𝜏12,0 when 𝜏2 = 0.

Now, the stability interval of the equilibrium point 𝑃⋆ when 𝜏2 = 0
has been determined. We can fix 𝜏1 as 𝜏∗1 ∈ [0,∞) if one of the
conditions (H̃3-i), 𝑖 = 1, 2 holds or as 𝜏∗1 ∈

[

0, 𝜏12,0
)

if 𝑑1 and 𝑑2
are sufficiently small. Note that the coefficients of the characteristic
Eq. (3.3a) will certainly provide one of these conditions.

It is time to investigate the effect of 𝜏2 on the dynamics of the system
(2.6), after fixing 𝜏1 in its stability interval. We have concluded that
equilibrium point 𝑃⋆ is asymptotically stable for the fixed 𝜏∗1 when
𝜏2 = 0. So, 𝑃⋆ becomes unstable as 𝜏2 increases from 0 to ∞, if the
characteristic Eq. (3.3a) has either a simple zero root or a pair of
simple purely imaginary roots. Nonetheless, having (3.3a) a zero root
contradicts to the fact that 𝑏1 + 𝑏2 + 𝑑 + ℎ = 𝑑1𝑑2𝑛4 + 𝑑1𝑟2𝑛2 + 𝑟1𝑟2 > 0.

On the other side, 𝑏1 − 𝑏2 + 𝑑 − ℎ = 𝑑1𝑑2𝑛4 − 𝑑2𝑛 𝑟2 + 𝑟1𝑟2 < 0 then
the hypothesis ‘‘(H5) (𝑏1 − 𝑏2 + 𝑑 − ℎ) < 0’’ of Theorem 4 given in
Section 3.1 by Bilazeroğlu and Merdan [30] holds. Therefore, there
exist a sequence 𝜏2𝑖 = {𝜏2𝑖 (𝜏

∗
1 )|𝑖 = 1, 2,… , 𝑟} at which (3.3a) holds for

every fixed (𝜏2𝑖 ,±𝑖𝜔𝑖), 𝑖 = 1, 2,… , 𝑟. Let

𝜏20 = 𝜏20
(

𝜏∗1
)

= min
{

𝜏2𝑖
(

𝜏∗1
)

|𝑖 = 1, 2,… , 𝑟
}

(3.7)

and 𝑖𝜔0 = 𝑖𝜔0

(

𝜏20
)

is the associated purely imaginary eigenvalue.
Consequentially, if the condition (H̃5) 𝑑 𝑑 𝑛4−𝑑2𝑟 +𝑟 𝑟 < 0 holds then
1 2 𝑛 2 1 2
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the characteristic Eq. (3.3a) has a pair of purely imaginary eigenvalue
which is defined in a neighborhood of 𝜏20 as

𝜆0(𝜏2) = 𝛼0(𝜏2) + 𝑖𝜔0(𝜏2) and 𝜆0(𝜏2) = 𝛼0(𝜏2) − 𝑖𝜔0(𝜏2),

where

𝛼0(𝜏20 ) = 0 and 𝜔0(𝜏20 ) = 𝜔0 > 0

for each 𝜏1 in its stability interval, i.e., 𝜏1 ∈ [0,∞) if one of the condi-
tions (H̃3-i), 𝑖 = 1, 2 holds or 𝜏1 ∈

[

0, 𝜏12,0
)

if 𝑑1 and 𝑑2 are sufficiently
small. Note that all other roots of the characteristic Eq. (3.3a) have
nonzero real parts at 𝜏2 = 𝜏20 because we uniquely determine 𝜏20 such
that 𝜆(𝜏20 ) = 𝑖𝜔0, 𝜔0 = 𝜔0(𝜏20 ) > 0.

It is time to guarantee that ±𝑖𝜔0 is a simple root of characteristic
Eq. (3.3a), in other words equilibrium point becomes unstable after the
bifurcation value. If the hypothesis (H6) Re(𝑃 ) Re(𝑄) + Im(𝑃 ) Im(𝑄) ≠ 0
of Theorem 4 given in Section 3.1 by Bilazeroğlu and Merdan [30]

holds then we can conclude that Re

(

𝑑𝜆
𝑑𝜏2

|

|

|

|𝜏2=𝜏20

)

≠ 0. Using the

formula (B.7) in Appendix B given in [30], we obtain the following
formula:
Re(𝑃 ) Re(𝑄) + Im(𝑃 ) Im(𝑄)

= −𝑟21𝑟
4
2𝜔0 + 𝑟22

(

𝑑21𝑛
4 + 𝜔2

0
)2 𝜔0

− 𝑟1𝑟32𝑛
2 (𝑑1 + 𝑑2

) [

𝜏∗1𝜔
3
0 + 𝑑1𝑛

2 (2 + 𝑑1𝑛2𝜏∗1
)

𝜔0
]

cos(𝜏∗1𝜔0)

+ 𝑟1𝑟32𝜏
∗
1𝜔

4
0 sin(𝜏

∗
1𝜔0)

− 𝑟1𝑟32𝑛
2 [(𝑑2 − 𝑑1

)

𝑑1𝑛
2𝜏∗1 −

(

𝑑1 + 𝑑2
)]

𝜔2
0 sin(𝜏

∗
1𝜔0)

− 𝑑21 𝑟1𝑟
3
2𝑛

6 (𝑑1𝑑2𝑛
2𝜏∗1 + 𝑑1 + 𝑑2

)

sin(𝜏∗1𝜔0).

(3.8)

In conclusion, using formulas and calculations given in [30] we have
the result given below:

Corollary 4. Assume that
(H̃5) 𝑑1𝑑2𝑛4 − 𝑑2𝑛 𝑟2 + 𝑟1𝑟2 < 0 is satisfied. In that case, for each 𝜏1

in its stability interval, i.e., 𝜏1 ∈ [0,∞) if one of the conditions (H̃3-i),
𝑖 = 1, 2 holds or 𝜏1 ∈

[

0, 𝜏12,0
)

if (H̃4) 𝑑1 and 𝑑2 are sufficiently small, the
followings hold:

1. Characteristic Eq. (3.3a) has a unique pair of purely imaginary roots
𝜆(𝜏20 (𝜏1)) = 𝑖𝜔0 and 𝜆(𝜏20 (𝜏1)) = −𝑖𝜔0, 𝜔0 > 0 at some 𝜏20 > 0.
Here, 𝜔0 is the root of

𝜔4 +
(

𝑎2 − 𝑐22 − 2𝑑
)

𝜔2 + (𝑏21 − 𝑏
2
2 + 𝑑

2)

+ 2𝑏1(−𝜔2 + 𝑑) cos(𝜏1𝜔) − 2𝑎𝑏1𝜔 sin(𝜏1𝜔) = 0
(3.9)

and

𝜏20 (𝜏1) =
1
𝜔0

arctan

(

𝜙1
(

𝜏1
)

𝜙2
(

𝜏1
)

)

, (3.10a)

where
𝜙1

(

𝜏1
)

=𝑐2𝜔3
0 + (𝑎𝑏2 − 𝑐2𝑑)𝜔0 − 𝑏1𝑐2𝜔0 cos

(

𝜔0𝜏1
)

− 𝑏1𝑏2 sin
(

𝜔0𝜏1
)

,

𝜙2
(

𝜏1
)

=
(

−𝑎𝑐2 + 𝑏2
)

𝜔2
0 − 𝑏2𝑑 − 𝑏1𝑏2 cos

(

𝜔0𝜏1
)

+ 𝑏1𝑐2𝜔0 sin
(

𝜔0𝜏1
)

.

In addition, this value can be calculated with the undermentioned
equations:

𝜏20 (𝜏1) =
1
𝜔0

arcsin

(

𝜙1
(

𝜏1
)

𝑐22𝜔
2
0 + 𝑏

2
2

)

, (3.10b)

𝜏20 (𝜏1) =
1
𝜔0

arccos

(

𝜙2
(

𝜏1
)

𝑐22𝜔
2
0 + 𝑏

2
2

)

. (3.10c)

2. Except the pair of purely imaginary roots 𝜆(𝜏20 (𝜏1)) = 𝑖𝜔0 and
𝜆(𝜏20 (𝜏1)) = −𝑖𝜔0, all roots of the characteristic Eq. (3.3a) have
negative real parts at 𝜏2 = 𝜏20 (𝜏1).

3. If (H̃6) Re(𝑃 ) Re(𝑄) + Im(𝑃 ) Im(𝑄) ≠ 0 is satisfied then we have

Re

(

𝑑𝜆0
𝑑𝜏

|

|

|

)

= 𝛼′0(𝜏20 ) ≠ 0.
5

2 |𝜏2=𝜏20
𝑞

Hence, the transversality condition holds. Here, formula of

Re(𝑃 ) Re(𝑄) + Im(𝑃 ) Im(𝑄)

is given by Eq. (3.8).

Thus, using Theorem 4 given by [30] (see Section 3.1 in [30]), we
can reach the conclusion given below about the existence of periodic
solutions of the system (2.6).

Theorem 5 (Existence). Assume that the condition (H̃5) 𝑑1𝑑2𝑛4 −𝑑2𝑛 𝑟2 +
𝑟1𝑟2 < 0 holds. Define the conditions which depend on the coefficients of the
characteristic Eq. (3.3a) as (H̃3-1) 𝑑1𝑛2−𝑟1 > 0 (H̃3-2) 𝑑1𝑑2𝑛4+𝑑1𝑛2𝑟2 =
𝑟1𝑟2, (H̃4) ‘‘𝑑1 and 𝑑2 are sufficiently small positive real numbers’’.

Then, the following results hold for each 𝜏1 ∈ [0,∞) if one of the
conditions (H̃3-i), 𝑖 = 1, 2 is satisfied or for each 𝜏1 ∈

[

0, 𝜏12,0
)

if (H̃4) is
satisfied.

1. Equilibrium point 𝑃⋆ = ( 𝜃𝑟1𝜀𝑟2
, 𝑟1𝜀 ) is locally asymptotically stable when

𝜏2 ∈ [0, 𝜏20 ) where 𝜏12,0 and 𝜏20 = 𝜏20 (𝜏1) are given by (3.6a) and
(3.10a), respectively. In other words, 𝑃⋆ is locally asymptotically
stable at the points (𝜏1, 𝜏2) belonging to the region below the graph
of 𝜏20 = 𝜏20 (𝜏1). 𝑃

⋆ is unstable when 𝜏2 > 𝜏20 (𝜏1).
2. If the condition (H̃6) Re𝑃 Re𝑄+Im𝑃 Im𝑄 ≠ 0 is also satisfied where

the formula of (Re(𝑃 ) Re(𝑄) + Im(𝑃 ) Im(𝑄)) is given in by (3.8), then
the equilibrium point 𝑃⋆ is unstable when 𝜏2 > 𝜏20 . In addition to
that, the (2.6) undergoes a Hopf bifurcation at the equilibrium point
𝑃⋆ which means that a family of periodic solutions appears out of the
equilibrium point 𝑃⋆ as the delay parameter 𝜏2 passes through 𝜏20 .

3.2. Direction and stability of Hopf bifurcation

In the previous section, we discovered the circumstances in which
the delayed predator–prey model experiences the Hopf bifurcation. We
will examine the direction of Hopf bifurcation as well as the stability of
the bifurcating periodic solutions in this section. Since the system is in
the class of reaction diffusion system with two discrete delays which is
studied by Bilazeroğlu and Merdan [30], instead of reducing the system
(2.6) to the central manifold, we will use the algorithm demonstrated
by Bilazeroğlu and Merdan [30] (see Section 3.2 in [30]) to determine
the characteristics of periodic solutions.

Throughout this section, we assume that Hopf bifurcation arises in
the system (2.6) when 𝜏2 passes through the bifurcation value 𝜏20 given
by (3.10a), i.e., it satisfies the hypotheses of Theorem 5. Also, we shift
the bifurcation value to the zero via the transformation 𝜏2 = 𝜏20 + 𝜇.

Since the characteristic Eq. (3.2a) of the system (2.6) is an ex-
ponential polynomial, the system (2.6) has infinite dimension. To be
able to analyze such a system, firstly we reduce it to single ordinary
differential equation in one complex variable on a center manifold at
the bifurcation value 𝜇 = 0. To do this, define the new variable as

𝐔𝑡 = 𝑧(𝑡)𝑞 + 𝑧(𝑡)𝑞 +𝑤.

Here, 𝐔𝑡(𝜃) = 𝐔(𝑡+𝜃) where 𝐔(𝑡) = (𝑌 (𝑡)− 𝜃𝑟1
𝜀𝑟2
, 𝑍(𝑡)− 𝑟1

𝜀 )
𝑇 , 𝑧(𝑡) = ⟨𝑞∗,𝐔𝑡⟩ ∈

and ⟨𝑞∗, 𝑤⟩ = 0. In the variables 𝑧 and 𝑤, at the bifurcation value
= 0 the system (2.6) turns to

�̇� = 𝑖𝜔0𝑧 + 𝑔(𝑧, �̄�; 0),
�̇� = 𝐴(0)𝑤 +𝐻(𝑧, �̄�; 0),

here

(𝑧, 𝑧; 0) =
𝑘
∑

𝑖+𝑗=2
𝑔𝑖𝑗 (0)

𝑧𝑖𝑧𝑗

𝑖!𝑗!
+ (|𝑧|𝑘+1) = 𝑞∗(0) ⋅ ℎ(𝑧, 𝑧; 0), (3.11)

and

𝐻(𝑧, 𝑧, 0) =

{

−𝑔(𝑧, 𝑧; 0)𝑞(𝜃) − 𝑔(𝑧, 𝑧; 0)𝑞(𝜃), 𝜃 ∈ [−𝜏𝑚, 0)

ℎ(𝑧, 𝑧; 0) − 𝑔(𝑧, 𝑧; 0)𝑞(0) − 𝑔(𝑧, 𝑧; 0)𝑞(0), 𝜃 = 0.

ere, 𝑞 (𝜃) is an eigenvector of 𝐴(0) corresponding to 𝜆(0) = 𝑖𝜔0 and
∗ 𝜎 is an eigenvector of 𝐴∗(0) corresponding to 𝜆(0) = −𝑖𝜔 , where
( ) 0
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(

𝐷

𝐴
i

𝐴

𝑐

𝑐

T

𝑔

𝑔

W
f

𝑔

T
ℎ
w

a

𝜆(𝜇) = 𝛼(𝜇) + 𝑖𝜔(𝜇) is the simple complex eigenvalue of the system
2.6) with 𝛼(0) = 0 and 𝜔(0) = 𝜔0. 𝐴(0) is the operator defined for
𝜙 ∈ 1 = 𝐶1 ([−𝜏𝑚, 0

]

,R2) as

𝐴(𝜇)𝜙(𝜃) =

⎧

⎪

⎨

⎪

⎩

𝑑𝜙(𝜃)
𝑑𝜃

, 𝜃 ∈ [−𝜏𝑚, 0),

∫ 0
−𝜏𝑚

𝑑𝜂(𝜇, 𝜈)𝜙(𝜈), 𝜃 = 0,

Here,

𝑑𝜂(𝜇, 𝜃) =
(

𝐵𝛿 (𝜃) + 𝐶𝛿(𝜃 + 𝜏∗1 ) +𝐷𝛿(𝜃 + 𝜇 + 𝜏20 )
)

𝑑𝜃,

where 𝛿 (𝜃) is the Dirac delta function and

𝐵 =
⎛

⎜

⎜

⎝

−𝑑1
𝑛2

𝓁2
+ 𝑘1 𝑘3

𝑙1 −𝑑2
𝑛2

𝓁2
+ 𝑙3

⎞

⎟

⎟

⎠

, 𝐶 =

(

𝑘2 0

𝑙2 0

)

,

=

(

0 𝑘4
0 𝑙4

)

,

∗(𝜇) is adjoint operator of 𝐴(𝜇) and is defined for 𝜓 = (𝜓1, 𝜓2)𝑇 ∈ 1

n which  = 𝐶
(

[0, 𝜏𝑚],R2) as

∗(𝜇)𝜓(𝜎) =

⎧

⎪

⎨

⎪

⎩

−
𝑑𝜓(𝜎)
𝑑𝜎

, 𝜎 ∈ (0, 𝜏𝑚],

∫ 0
−𝜏𝑚

𝑑𝜂𝑇 (𝜇, 𝜈)𝜓(−𝜈), 𝜎 = 0.

Moreover, the function ℎ(𝑧, 𝑧; 0) is given by the equation (C.23) in
Appendix C.3 in [30]. For the details of this reduction and calculations,
one can see Appendix C in [30].

In order to determine the properties of periodic solutions, we need
to calculate the coefficient 𝑐1(0) of the Poincaré normal form which is

1(0) =
𝑖

2𝜔0

(

𝑔20(0)𝑔11(0) − 2|𝑔11(0)|
2 − 1

3
|𝑔02(0)|

2
)

+ 1
2
𝑔21(0).

We shall use the algorithm obtained in [30] to obtain the explicit
formulas for the terms 𝑔20(0), 𝑔11(0), 𝑔02(0) and 𝑔21(0) (the coefficients
in the expansion (3.11)).

First of all, we stand to calculate the coefficients in the second de-
gree Taylor polynomials at 𝑃⋆ of the functions 𝑓 and 𝑔 (see Eqs. (3.1)).
Coefficients in the first degree Taylor polynomials at 𝑃⋆ of the func-
tions 𝑓 and 𝑔 are given by (3.2a) and (3.2b), respectively. And the
coefficients of the quadratic terms in the second degree Taylor poly-
nomials at 𝑃⋆ of the function 𝑓 are obtained as (see Formulas (C.6) in
Appendix C in [30])

𝑚11 = 𝑚12 = 𝑚14 = 𝑚22 = 𝑚23 = 𝑚33 = 𝑚34 = 𝑚44 = 0,
𝑚13 = −𝜀,

(3.12a)

and of the function 𝑔 are obtained as

𝑟11 = 𝑟12 = 𝑟13 = 𝑟14 = 𝑟33 = 𝑟44 = 0,

𝑟22 = −
𝜀𝑟32
𝜃2𝑟1

, 𝑟23 = 𝑟24 =
𝜀𝑟22
𝜃𝑟1

, 𝑟34 = −
𝜀𝑟2
𝑟1
.

(3.12b)

The undermentioned formulas are valid for each 𝜏1 ∈ [0,∞) if one
of the conditions (H̃3-i), 𝑖 = 1, 2 holds or for each 𝜏1 ∈

[

0, 𝜏12,0
)

if (H̃4)
holds.

As defined in [30] (see Appendix C), 𝑞 (𝜃) and 𝑞∗(𝜎) are

𝑞 (𝜃) =
(

1
𝑐

)

𝑒𝑖𝜔0𝜃 and 𝑞∗(𝜎) = 𝑠
(

𝑐∗

1

)

𝑒𝑖𝜔0𝜎

where 𝑐, 𝑐∗ and 𝑠 are calculated using the formulas (C.15), (C.16) and
(C.18), respectively, given in Appendix C by [30] as:

𝑐 = −
(𝑖𝜔0 + 𝑑1𝑛2)𝑟2

𝜃𝑟1
,

∗ =
(𝑖𝜔0 − 𝑑2𝑛2 − 𝑟2𝑒

𝑖𝜔0𝜏20 )𝑟2
𝜃𝑟1

,

𝑠 =

(

𝑐 + 𝑐∗ + 𝜏1𝑒−𝑖𝜔0𝜏1
𝑟22 − 𝜏20𝑒

−𝑖𝜔0𝜏20 𝑟2𝑐

)−1

.

(3.13a)
6

𝜃

o calculate the terms 𝑔20(0), 𝑔11(0) and 𝑔02(0) in the formula of the
Poincaré normal form coefficient 𝑐1(0), we need to get the terms ℎ20(0),
ℎ11(0) and ℎ02(0). With the formulas (C.24a)-(C.24f) given in Appendix
C by [30], we obtain these terms as:

ℎ201 (0) = − 𝜀𝑐

ℎ202 (0) = −
𝜀𝑟32
𝜃2𝑟1

𝑒−2𝑖𝜔0𝜏1 +
𝜀𝑟22
𝜃𝑟1

𝑐
(

𝑒−𝑖𝜔0𝜏1 + 𝑒−𝑖𝜔0(𝜏1+𝜏20 )
)

−
𝜀𝑟2
𝑟1
𝑐2𝑒−𝑖𝜔0𝜏20

ℎ111 (0) = − 𝜀
(

𝑐 + 𝑐
)

ℎ112 (0) = −
2𝜀𝑟32
𝜃2𝑟1

+
𝜀𝑟22
𝜃𝑟1

(

𝑐
(

𝑒𝑖𝜔0𝜏1 + 𝑒𝑖𝜔0(𝜏1−𝜏20 )
)

+ 𝑐
(

𝑒−𝑖𝜔0𝜏1 + 𝑒−𝑖𝜔0(𝜏1−𝜏20 )
))

−
𝜀𝑟2
𝑟1
𝑐𝑐

(

𝑒−𝑖𝜔0𝜏20 + 𝑒𝑖𝜔0𝜏20
)

ℎ021 (0) = − 𝜀𝑐

ℎ022 (0) = −
𝜀𝑟32
𝜃2𝑟1

𝑒2𝑖𝜔0𝜏1 +
𝜀𝑟22
𝜃𝑟1

𝑐
(

𝑒𝑖𝜔0𝜏1 + 𝑒𝑖𝜔0(𝜏1+𝜏20 )
)

−
𝜀𝑟2
𝑟1
𝑐2𝑒𝑖𝜔0𝜏20

(3.13b)

where 𝑐 is given by (3.13a). Therefore, using the formulas (3.21a)-
(3.21c) given in [30], we achieve the desired terms as:

𝑔20(0) = 2𝑠
[

ℎ201 (0)𝑐
∗ + ℎ202 (0)

]

,

11(0) = 𝑠
[

ℎ111 (0)𝑐
∗ + ℎ112 (0)

]

02(0) = 2𝑠
[

ℎ021 (0)𝑐
∗ + ℎ022 (0)

]

.

(3.13c)

e have one more unknown term in the formula of the Poincaré normal
orm coefficient 𝑐1(0), namely,

21(0) = 2𝑠
[

ℎ211 (0)𝑐
∗ + ℎ212 (0)

]

. (3.13d)

his formula is given by the Equation (3.21d) in [30]. In order to obtain
211 (0) and ℎ212 (0), first of all, using the formula (3.22) given in [30]
e calculate

𝑊20(0; 0) = − 1
𝑖𝜔0

𝑔20(0)
(

1
𝑐

)

− 1
3𝑖𝜔0

𝑔02(0)
(

1
𝑐

)

+𝐾20,

𝑊20(−𝜏1; 0) = − 1
𝑖𝜔0

𝑔20(0)
(

1
𝑐

)

𝑒−𝑖𝜔0𝜏1 − 1
3𝑖𝜔0

𝑔02(0)
(

1
𝑐

)

𝑒𝑖𝜔0𝜏1

+𝐾20𝑒
−2𝑖𝜔0𝜏1

𝑊20(−𝜏20 ; 0) = − 1
𝑖𝜔0

𝑔20(0)
(

1
𝑐

)

𝑒−𝑖𝜔0𝜏20 − 1
3𝑖𝜔0

𝑔02(0)
(

1
𝑐

)

𝑒𝑖𝜔0𝜏20

+𝐾20𝑒
−2𝑖𝜔0𝜏20

(3.13e)

where

𝐷20 = − 4𝜔2
0 + 2𝑖𝜔0

(

(𝑑1 + 𝑑2)𝑛2 + 𝑟2𝑒
−2𝑖𝜔0𝜏20

)

+ 𝑑1𝑑2𝑛4

+ 𝑟1𝑟2𝑒−2𝑖𝜔0𝜏1 + 𝑑1𝑟2𝑛2𝑒
−2𝑖𝜔0𝜏20

𝐾20 =
2
𝐷20

⎛

⎜

⎜

⎜

⎝

(

2𝑖𝜔0 + 𝑑2𝑛2 + 𝑟2𝑒
−2𝑖𝜔0𝜏20

)

ℎ201 (0) −
𝜃𝑟1
𝑟2
ℎ202 (0)

𝑟22
𝜃
ℎ201 (0)𝑒

−2𝑖𝜔0𝜏1 +
(

2𝑖𝜔0 + 𝑑1𝑛2
)

ℎ202 (0)

⎞

⎟

⎟

⎟

⎠

nd using the formula (3.23) given in [30] we get

𝑊11(0; 0) =
1
𝑖𝜔0

𝑔11(0)

(

1
𝑐

)

− 1
𝑖𝜔0

𝑔11(0)

(

1
𝑐

)

+𝐾11,

𝑊11(−𝜏1; 0) =
1
𝑖𝜔0

𝑔11(0)

(

1
𝑐

)

𝑒−𝑖𝜔0𝜏1 − 1
𝑖𝜔0

𝑔11(0)

(

1
𝑐

)

𝑒𝑖𝜔0𝜏1 +𝐾11

𝑊11(−𝜏20 ; 0) =
1
𝑖𝜔0

𝑔11(0)

(

1
𝑐

)

𝑒−𝑖𝜔0𝜏20 − 1
𝑖𝜔0

𝑔11(0)

(

1
𝑐

)

𝑒𝑖𝜔0𝜏20 +𝐾11

(3.13f)
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where

𝐾11 =
1

(𝑑1𝑑2𝑛4 + 𝑑1𝑟2𝑛2 + 𝑟1𝑟2)

⎛

⎜

⎜

⎜

⎝

(

𝑑2𝑛2 + 𝑟2
)

ℎ111 (0) −
𝜃𝑟1
𝑟2
ℎ112 (0)

𝑟22
𝜃
ℎ111 (0) + 𝑑1𝑛

2ℎ112 (0)

⎞

⎟

⎟

⎟

⎠

.

Eventually, formulas (C.24 g) and (C.24 h) given in Appendix C by [30]
yield the following projected equations:

ℎ211 (0) = − 𝜀
[ 1
2
𝑊201 (0)𝑐 +𝑊111 (0)𝑐 +

1
2
𝑊202 (0) +𝑊112 (0)

]

212 (0) = −
𝜀𝑟32
𝜃2𝑟1

[

𝑊201

(

−𝜏1
)

𝑒𝑖𝜔0𝜏1 + 2𝑊111

(

−𝜏1
)

𝑒−𝑖𝜔0𝜏1
]

+
𝜀𝑟22
𝜃𝑟1

[ 1
2
𝑊201 (−𝜏1)𝑐 +𝑊111

(

−𝜏1
)

𝑐 + 1
2
𝑊202 (0)𝑒

𝑖𝜔0𝜏1

+ 𝑊112 (0)𝑒
−𝑖𝜔0𝜏1

]

+
𝜀𝑟22
𝜃𝑟1

[ 1
2
𝑊201

(

−𝜏1
)

𝑐𝑒𝑖𝜔0𝜏20 +𝑊111

(

−𝜏1
)

𝑐𝑒−𝑖𝜔0𝜏20
]

+
𝜀𝑟22
𝜃𝑟1

[ 1
2
𝑊202 (−𝜏20 )𝑒

𝑖𝜔0𝜏1 +𝑊112 (−𝜏20 )𝑒
−𝑖𝜔0𝜏1

]

−
𝜀𝑟2
𝑟1

[ 1
2
𝑊202 (0)𝑐𝑒

𝑖𝜔0𝜏20 +𝑊112 (0)𝑐𝑒
−𝑖𝜔0𝜏20

+ 1
2
𝑊202 (−𝜏20 )𝑐 +𝑊112 (−𝜏20 )𝑐

]

.

(3.13g)

Using this data and Theorem 5 given by [30] (see Section 3.2 in [30]),
we can state the theorem that will give information about the properties
of periodic solutions bifurcated from the equilibrium point 𝑃⋆ of the
system (2.6) as:

Theorem 6 (Properties Of Periodic Solutions).
Assume that one of the conditions (H̃3-1), (H̃3-2) or (H̃4) and the

conditions (H̃5), (H̃6) given in Theorem 5 are satisfied. Then

a. Coefficient of the Poincaré normal form

𝑐1(0) =
𝑖

2𝜔0

(

𝑔20(0)𝑔11(0) − 2|𝑔11(0)|
2 − 1

3
|𝑔02(0)|

2
)

+ 1
2
𝑔21(0)

(3.14)

is calculated only by using the equations given in (3.13c) and (3.13d).
b. There exist a 𝜖𝑝 > 0 such that for each 𝜖 ∈ (0, 𝜖𝑝) the system (2.6)
has a periodic solution occurring at

𝜏20 + 𝜇(𝜖) = 𝜏20 + 𝜇2𝜖
2 + 𝜇4𝜖4 + ℎ.𝑜.𝑡.

Assume that
(H̃7). Re(𝑐1(0)) ≠ 0. For 𝜖 small enough, the bifurcating periodic
solutions exist after the bifurcation value 𝜏2 = 𝜏20 if 𝜇2 > 0; before the
bifurcation value 𝜏2 = 𝜏20 if 𝜇2 < 0 where first non-zero coefficients
in the Maclaurin expansions of bifurcation parameter 𝜇 = 𝜏 − 𝜏20 is

𝜇2 = −
Re(𝑐1(0))
𝛼′0(𝜏20 )

. (3.15)

c. Bifurcating periodic solutions are unstable if Re(𝑐1(0)) > 0 (Hopf
bifurcation is subcritical); locally asymptotically stable if Re(𝑐1(0)) <
0 (Hopf bifurcation is supercritical).

d. For 𝜖 ∈ (0, 𝜖𝑝) the period of the bifurcated periodic solution is

𝑇 (𝜖) = 2𝜋
𝜔0

(

1 + 𝑇2𝜖2 + 𝑇4𝜖4 + ℎ.𝑜.𝑡
)

.

Hence for 𝜖 small enough, period is

𝑇 (𝜖) ≈ 2𝜋
𝜔0
. (3.16)

Moreover, the period increases if 𝑇2 > 0; decreases if 𝑇2 < 0 where

𝑇2 = −
𝜔′
0(𝜏20 )𝜇2 + Im(𝑐1(0))

. (3.17)
7

𝜔0
Here, from equations (B.5) and (B.6) in Appendix B given by [30],

𝛼′0(𝜏20 ) = 𝜔0

(

Re(𝑃 ) Re(𝑄) + Im(𝑃 ) Im(𝑄)
(Re(𝑄))2 + (Im(𝑄))2

)

(3.18a)

and

𝜔′
0(𝜏20 ) = 𝜔0

(

Im(𝑃 ) Re(𝑄) − Re(𝑃 ) Im(𝑄)
(Re(𝑄))2 + (Im(𝑄))2

)

(3.18b)

where
𝑃 (𝜔0, 𝜏20 ) =

(

𝑅11 + 𝑅12 cos(𝜏∗1𝜔0) + 𝑅13 sin(𝜏∗1𝜔0)
)

+ 𝑖
(

𝐼11 + 𝐼12 cos(𝜏∗1𝜔0) + 𝐼13 sin(𝜏∗1𝜔0)
)

,

𝑄(𝜔0, 𝜏20 ) =
(

𝑅21 + 𝑅22 cos(𝜏∗1𝜔0) + 𝑅23 sin(𝜏∗1𝜔0)
)

+ 𝑖
(

𝐼21 + 𝐼22 cos(𝜏∗1𝜔0) + 𝐼23 sin(𝜏∗1𝜔0)
)

in which
𝑅11 =𝑟1𝑟22𝜔0,

𝑅12 =𝑑1𝑟2𝑛4
(

𝑑1 + 2𝑑2
)

𝜔0 − 𝑟2𝜔3
0,

𝑅13 =𝑑21𝑑2𝑟2𝑛
6 − 𝑟2𝑛2

(

2𝑑1 + 𝑑2
)

𝜔2
0,

𝑅21 =𝑑1𝑟1𝑟22𝑛
2 (𝜏20 − 𝜏

∗
1
)

− 𝑟1𝑟22,

𝑅22 =𝑑1𝑟2𝑛4
(

𝑑1 + 𝑑2
)

−
[

𝑟2 + 𝑟2𝑛2
(

2𝑑1 + 𝑑2
)

𝜏20
]

𝜔2
0 − 𝑑1𝑑2𝑟2𝑛

4 + 𝑑21𝑑2𝑟2𝑛
6𝜏20 ,

𝑅23 =𝑟2𝜏20𝜔
3
0 − 𝑑1𝑟2𝑛

4 [(𝑑1 + 2𝑑2
)

𝜏2,0 + 2𝑑1𝑟2𝑛2
]

𝜔0,

𝐼11 = − 𝑑1𝑟1𝑟22𝑛
2,

𝐼12 =𝑟2𝑛2
(

2𝑑1 + 𝑑2
)

𝜔2
0 − 𝑑

2
1𝑑2𝑟2𝑛

6,

𝐼13 =𝑑1𝑟2𝑛4
(

𝑑1 + 2𝑑2
)

𝜔0 − 𝑟2𝜔3
0

𝐼21 =𝑟1𝑟22
(

𝜏2,0 − 𝜏∗1
)

𝜔0,

𝐼22 =
(

𝑑1𝑟2𝑛
4 (𝑑1 + 2𝑑2

)

𝜏2,0 + 2𝑑1𝑟2𝑛2
)

𝜔0 − 𝑟2𝜏20𝜔
3
0,

𝐼23 =𝑑1𝑟2𝑛4
(

𝑑1 + 𝑑2
)

−
(

𝑟2 + 𝑟2𝑛2
(

2𝑑1 + 𝑑2
)

𝜏20
)

𝜔2
0 − 𝑑1𝑑2𝑟2𝑛

4 + 𝑑21𝑑2𝑟2𝑛
6𝜏20 .

4. Numerical simulations

The analytical results from the previous section will be validated
by numerical simulations in this section. To analyze the impact of the
diffusion term by comparing our results with the results of the analysis
of the non-diffusive model done by Karaoğlu and Merdan [19], we use
the same parameter values chosen in [19] given below:

𝑟1 = 0.45, 𝑟2 = 0.1, 𝜀 = 0.03, 𝜃 = 0.05, (4.1)

Most especially, the effect of the diffusion term and the effect of choice
of 𝜏1 on the dynamics of the system (2.6) will be investigated.

The system (2.6) turns to the following system with these parameter
values:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑌 (𝑥, 𝑡)
𝜕𝑡

= 𝑑1
𝜕2𝑌 (𝑥, 𝑡)
𝜕𝑥2

+ 0.45𝑌 (𝑥, 𝑡) − 0.03𝑌 (𝑥, 𝑡)𝑍(𝑥, 𝑡),

𝜕𝑍(𝑥, 𝑡)
𝜕𝑡

= 𝑑2
𝜕2𝑍(𝑥, 𝑡)
𝜕𝑥2

+𝑍(𝑥, 𝑡)
(

0.1 − 0.05
𝑍(𝑥, 𝑡 − 𝜏2)
𝑌 (𝑥, 𝑡 − 𝜏1)

)

.
(4.2)

First of all, the case ‘‘𝑑1 = 0 and 𝑑2 = 0’’ where diffusion and thus
the random walk approach is ignored was analyzed by Karaoğlu and
Merdan [19]. In this study, using the parameters specified by (4.1) and
taking 𝑑1 = 0 and 𝑑2 = 0, they obtained the system next in line

⎧

⎪

⎨

⎪

⎩

𝑑𝑌 (𝑡)
𝑑𝑡

= 0.45𝑌 (𝑡) − 0.03𝑌 (𝑡)𝑍(𝑡),

𝑑𝑍(𝑡)
𝑑𝑡

= 𝑍(𝑡)
(

0.1 − 0.05
𝑍(𝑡 − 𝜏2)
𝑌 (𝑡 − 𝜏1)

)

.
(4.3)

hey applied their theoretical results we have talked about in Section 2
o this system. They concluded that the only positive equilibrium point
f this system is 𝑃⋆ = (7.5, 15) and it is locally asymptotically stable
hen 𝜏1 ∈ [0, 2.3034) and 𝜏2 = 0; while it is unstable when 𝜏1 > 2.3034

and 𝜏2 = 0. In addition, they observed that if the delay term 𝜏1 is chosen
from its stability interval [0, 2.3034) (which is calculated when 𝜏2 = 0)
as 𝜏 = 2, the equilibrium point 𝑃⋆ = (7.5, 15) is locally asymptotically
1
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Fig. 1. Density versus time graph of prey (left), density versus time graph of predator (middle), and the phase portrait of the system (4.2) with zero diffusion (right). The
initial conditions are 𝑌 (0) = 8 and 𝑍(0) = 16. The delay values are 𝜏2 = 2 and 𝜏1 = 1.5 ∈ [0, 2.3034). Simulations illustrate the asymptotic stability of the equilibrium point for
𝜏2 < 𝜏20 = 3.4582 when 𝜏1 = 1.5.
Fig. 2. The phase portraits of the system (4.2) with zero diffusion are shown, respectively, from left to right for 𝜏2 = 3.2, 𝜏2 = 3.3 and 𝜏2 = 3.4. The initial conditions are 𝑌 (0) = 8
and 𝑍(0) = 16. The delay value is 𝜏1 = 1.5 ∈ [0, 2.3034). Simulations show that the stability becomes nonlinear as 𝜏2 approaches 𝜏20 = 3.4582 when 𝜏1 = 1.5.
Fig. 3. Density versus time graph of prey (left), density versus time graph of predator (middle), and the phase portrait of the system (4.2) with zero diffusion (right). The initial
conditions are 𝑌 (0) = 8 and 𝑍(0) = 16. The delay values are 𝜏2 = 3.4582 and 𝜏1 = 1.5 ∈ [0, 2.3034). From these simulations one can observe that as 𝜏2 passes through the critical
value 𝜏2 = 3.4582 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 1.5.
stable when 𝜏2 ∈ [0, 2.2541); is unstable when 𝜏2 > 2.2541, and Hopf
bifurcation occurs in the system (4.3) when 𝜏2 = 2.2541, that is, the
system has a family of periodic solutions.

To obtain the theoretical results in Section 3.1 and Section 3.2,
we used the algorithm developed by Bilazeroğlu and Merdan [30]. In
this study, it was shown that if this algorithm is applied to the system
(4.3), obtained results agree with the conclusions of the study done
by Karaoğlu and Merdan [19] except for one difference. As in the study
of Karaoğlu and Merdan [19], if 𝜏1 is chosen from its stability interval
[0, 2.3034) as 𝜏1 = 2, then Eq. (3.9) has two distinct pairs of purely
imaginary roots ±𝑖𝜔01 = ±0.1826𝑖 when 𝜏20,1 = 2.7084 and ±𝑖𝜔02 =
±0.2273𝑖 when 𝜏20,2 = 2.2744. The first delay value at which the pair
of purely imaginary roots appears is 𝜏20,2 = 2.2744. If we round 𝜔02 =
0.2273 like 𝜔02 = 0.23 as it has been done by Karaoğlu and Merdan
[19], we get 𝜏20 = 2.2541. Hence, results obtained by Bilazeroğlu and
Merdan [30] keep up with those given by Karaoğlu and Merdan [19].
In the study of Bilazeroğlu and Merdan [30], it is also shown that Hopf
bifurcation is supercritical, the bifurcating periodic solutions are stable
and exist after the bifurcation value 𝜏20,2 = 2.2744. Moreover, it was
investigated that in the neighborhood of bifurcation value period is
≈ 27.6431 and the period is increasing with respect to delay term 𝜏 .
8

2

In order to see the effect of the diffusion term on the population dy-
namic represented by the system (4.2), 6 different cases with different
ecological meanings will be discussed:

(C1) there is no diffusion, only time variation is considered

(C2) the prey species moves randomly with a constant
diffusion
coefficient 𝑑2 = 0.05 while the predator species does not
move

(C3) the predator species moves randomly with a constant
diffusion
coefficient 𝑑2 = 0.05 while the prey species does not
move

(C4) the predator species moves randomly faster than the
prey
species

(C5) prey and predator species move randomly with the
same
diffusion coefficient

(C6) the prey species moves randomly faster than the
predator

species
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Fig. 4. The phase portraits of system (4.2) with zero diffusion are shown for the following delay values in the first row: 𝜏2 = 3.46, 𝜏2 = 3.462 and 𝜏2 = 3.464, respectively, from
left to right; and for the following delay values in the second row: 𝜏2 = 3.4626, 𝜏2 = 3.4628 and 𝜏2 = 3.47, respectively, from left to right. The initial conditions are 𝑌 (0) = 8 and
𝑍(0) = 16. The delay value is 𝜏1 = 1.5 ∈ [0, 2.3034). One can observe from the simulations that the bifurcating periodic solutions exist in a neighborhood of the critical bifurcation
value 𝜏2 = 3.4582 when 𝜏1 = 1.5.
Fig. 5. Density versus time graph of prey (left), density versus time graph of predator (middle), and the phase portrait of the system (4.2) with zero diffusion (right). The initial
conditions are 𝑌 (0) = 8 and 𝑍(0) = 16. The delay values are 𝜏2 = 3.7 and 𝜏1 = 1.5 ∈ [0, 2.3034). Simulations demonstrate the instability of the equilibrium point for 𝜏2 > 𝜏20 = 3.4582
when 𝜏1 = 1.5.
Table 2
Stability analysis and existence of Hopf bifurcation of system (4.2) when 𝜏2 = 0.

(C1) (C2) (C3) (C4) (C5) (C6)

𝑑1 = 0 𝑑1 = 0.05 𝑑1 = 0 𝑑1 = 0.01 𝑑1 = 0.01 𝑑1 = 0.01
𝑑2 = 0 𝑑2 = 0 𝑑2 = 0.05 𝑑2 = 0.005 𝑑2 = 0.01 𝑑2 = 0.05

𝜔2 0.2007 0.1972 0.1874 0.1994 0.1982 0.1873

𝜏12,0 2.3034 3.6375 3.6005 2.6815 2.8097 3.8908

Stability
[0, 2.3034) [0, 3.6375) [0, 3.6005) [0, 2.6815) [0, 2.8097) [0, 3.8908)Interval
Using the Corollaries 3–4 and Theorems 5–6 obtained in Section 3, the
values required for existence analysis and directional analysis for those
cases given in Table 2, Table 3 and Table 4.

We, first of all, discuss each case when 𝜏1 ≠ 0 and 𝜏2 = 0. This means
that a prey needs the time 𝜏1 to reach the maturity that the predator
can hunt, while a predator has the ability to hunt as soon as it born. For
all cases 𝑆 = −0.0020, so the hypothesis (H̃4) 𝑆 < 0 of Corollary 3 is
satisfied. As a result, for each case, equilibrium point (7.5, 15) is stable
when 𝜏1 ∈ [0, 𝜏12,0 ) and 𝜏2 = 0 where the associative 𝜏12,0 can be found in
third row of Table 2. Also, system (4.3) has a pair of purely imaginary
eigenvalue ±𝑖𝜔2 when 𝜏1 = 𝜏12,0 and 𝜏2 = 0. Moreover, system (4.3)
undergoes a Hopf bifurcation as 𝜏1 passes through bifurcation value
𝜏12,0 when 𝜏2 = 0. Here, 𝜔2 and 𝜏12,0 are calculated using the formulas
(3.5) and (3.6a), respectively, for each case as given in Table 2.
9

From the ecological point of view, if the time required for prey to
reach the maturity that the predator can hunt is less than 𝜏12,0 and the
initial adult population densities are close enough to the equilibrium
point (7.5, 15), then the solution of the system (4.2) will approach the
equilibrium point (7.5, 15) after some time. As a result, the long-term
behavior of the solution will be predictable, and after a long enough
time, the system’s dynamic will not change. Nonetheless, if the time
required for prey to reach the maturity that the predator can hunt is
greater than but close enough to 𝜏12,0 and the initial adult population
densities are close enough to the equilibrium point (7.5, 15), then the
solution of the system (4.2) will approach the periodic solution. In this
case, the long-term behavior of the solution will be still predictable,
while there will be a dynamic that changes but repeats itself with a
certain period. On the other hand, if the time that prey needs to mature
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Fig. 6. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.05 and 𝑑2 = 0. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 3.7 and 𝜏1 = 1.5 ∈ [0, 3.6375). Simulations illustrate the asymptotic stability of the
equilibrium point for 𝜏2 < 𝜏20 = 4.7057 when 𝜏1 = 1.5.
Table 3
Stability analysis and existence of Hopf bifurcation of system (4.2) when 𝜏1 = 1.5 and 𝜏2 ≠ 0.

(C1) (C2) (C3) (C4) (C5) (C6)

𝑑1 = 0 𝑑1 = 0.05 𝑑1 = 0 𝑑1 = 0.01 𝑑1 = 0.01 𝑑1 = 0.01
𝑑2 = 0 𝑑2 = 0 𝑑2 = 0.05 𝑑2 = 0.005 𝑑2 = 0.01 𝑑2 = 0.05

𝜔0 0.2459 0.2604 0.2593 0.2522 0.2539 0.2611

𝜏20 3.4582 4.7057 5.4452 3.9557 4.1562 5.6476

Stability
[0, 3.4582) [0, 4.7057) [0, 5.4452) [0, 3.9557) [0, 4.1562) [0, 5.6476)Interval

𝛼′0(𝜏20 ) 0.0131 0.0155 0.0149 0.0138 0.0153 0.0143
is larger enough than 𝜏12,0 the equilibrium point (7.5, 15) is unstable,
and stable periodic solutions do not exist anymore. As a result, the
long-term behavior of the solution will be unpredictable.

Now, we argue the each of these 6 cases as 𝜏1 = 1.5 and 𝜏2 ≠ 0.
In other words, we consider that a prey needs the time 𝜏1 = 1.5 to
reach the maturity that predator can hunt and the time required for
the predator to have the ability to hunt is 𝜏2.

For undertaken 6 different cases, from Corollary 4 and Theorem 5,
Table 3 shows that the equilibrium point 𝑃⋆ = (7.5, 15) of the system
(4.2) is locally asymptotically stable when 𝜏1 = 1.5 and 𝜏2 ∈ [0, 𝜏20 )
(see Fifth line of Table 3). It is also indicated in this table that because
the characteristic equation of the system (4.2) has a pair of purely
imaginary roots ±𝑖𝜔0 when 𝜏1 = 1.5 and 𝜏2 = 𝜏20 , the equilibrium point
𝑃⋆ = (7.5, 15) lose its stability and becomes unstable when 𝜏1 = 1.5 and
𝜏2 > 𝜏2,0. Moreover, since transversality condition holds (see Last line
of Table 3), Hopf bifurcation occurs in the system (4.2) as 𝜏2 passes
through bifurcation value 𝜏20 when 𝜏1 = 1.5. That is, according to
Theorem 5 for each diffusion coefficient value pair given in Table 3,
the system (4.2) has a family of periodic solutions in a neighborhood
of 𝜏20 while 𝜏1 = 1.5.

The condition (H̃5) is not satisfied in any case, but using MATLAB
it is shown that system (4.3) has two pairs of purely imaginary eigen-
values ±𝑖𝜔01 when 𝜏2 = 𝜏201 and ±𝑖𝜔02 when 𝜏2 = 𝜏202 . Choosing the
smallest 𝜏2 as 𝜏20 and the corresponding eigenvalue as ±𝑖𝜔0 we obtain
the values given in Table 3. Also, in each case, we used the formula
(3.18a) to specify 𝛼′0(𝜏20 ).

According to Theorem 6, Table 4 gives the following information
about the properties of existing Hopf bifurcation and bifurcating peri-
odic solutions for all cases as: (i) since Re(𝑐1(0)) < 0, Hopf bifurcation is
supercritical and the resulting periodic solutions are stable; (ii) because
𝜇2 > 0, bifurcating periodic solutions occur after the bifurcation value
𝜏20 ; (iii) the period of the periodic solutions is as given in the last line
of Table 4 when the value of 𝜏2 is close enough to the bifurcation value
𝜏20 and the period increases with respect to 𝜏2 since 𝑇2 > 0. Here, in
each case, we used the formulas (3.14), (3.15), (3.16) and (3.17) to
calculate Re(𝑐1(0)) < 0, 𝜇2 > 0, period and 𝑇2 > 0, respectively.

To support these theoretical results, for each case, we perform some
numerical simulations using the technique described as follows: For
Figs. 1–5, MATLAB DDE (Delay Differential Equations) solver is used
10
to simulate the system. For Figs. 6–33, the coupled initial boundary-
value problem, defined in (2.6), have been analyzed within the one-
dimensional spatial domain  ∶= [0, 𝜋] and the time interval  ∶=
[0, 𝑡sim] where 𝑡sim ∈ {100, 200} denotes the total simulation time.
The transient partial differential Eq. (2.6) has been discretized spa-
tially through the finite element method using two-node linear line
elements and, in time, using the Crank–Nicolson scheme. The dis-
cretized coupled predator–prey problem has been implemented into a
general-purpose finite element program FEAP [32] through the newly
developed problem-specific user codes furnished with an efficient tool
for memory management to handle the history of delay variables. It is
worth noting that the resultant coupled system of nonlinear equations
has been solved monolithically using the iterative Newton-type solver
at each time step. In the numerical analyses of all the simulations
depicted in Figs. 6–33, the element size ℎ and the value of time step
𝛥𝑡 are chosen ℎ = 𝜋∕100 and 𝛥𝑡 = 10−3, respectively. In other words,
the finite element analysis has been conducted using 100 elements
in either 105 or 2 ⋅ 105 time steps. Moreover, flux-free (homogeneous
Neumann) boundary conditions 𝜕𝑌 (𝑥, 𝑡)∕𝜕𝑥 = 𝜕𝑍(𝑥, 𝑡)∕𝜕𝑥 = 0 for all
𝑥 ∈ 𝜕 ∶= {0, 𝜋} and 𝑡 ∈  ∶= [0, 𝑡sim] have been adopted. The
initial values of the field variables are chosen to be (𝑌0(𝑥), 𝑍0(𝑥)) =
(7.5 − 0.01 cos(𝑥), 015 − 0.01 cos(𝑥)).

Simulations labeled by figures in the third row of Table 5 show
that the equilibrium point is asymptotically stable for a chosen 𝜏2 less
than the corresponding 𝜏20 for each case in turn. In Figures, shown in
the fourth row of Table 5, it is represented that a Hopf bifurcation
arises at 𝑃⋆ = (7.5, 15) when 𝜏2 passes through associated critical
value 𝜏20 for all cases respectively. Simulations denoted in figures in
the fifth row of Table 5 demonstrate that the equilibrium point 𝑃⋆ =
(7.5, 15) is unstable for a chosen 𝜏2 greater than the corresponding 𝜏20
for the apiece case in turn. In all simulations, 𝜏1 is selected from the
stability interval as 𝜏1 = 1.5 and 𝜏20 is given in Table 3 for every case,
respectively.

Now, we will interpret these theoretical results from the ecological
point of view. If a prey needs the time 𝜏1 = 1.5 to reach the maturity
that predator can hunt, and the time 𝜏2 required for the predator to
have the ability to hunt is less than 𝜏20 , and the initial adult population
densities are close enough to the equilibrium point (7.5, 15), then the
solution of the system (4.2) will approach the equilibrium point (7.5, 15)
after some time. Consequently, the long-term behavior of the solution
will be predictable and after a long enough time the dynamic of the
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Table 4
Direction analysis of Hopf bifurcation of system (4.2) when 𝜏∗1 = 1.5 and 𝜏2 ≠ 0.

(C1) (C2) (C3) (C4) (C5) (C6)

𝑑1 = 0 𝑑1 = 0.05 𝑑1 = 0 𝑑1 = 0.01 𝑑1 = 0.01 𝑑1 = 0.01
𝑑2 = 0 𝑑2 = 0 𝑑2 = 0.05 𝑑2 = 0.005 𝑑2 = 0.01 𝑑2 = 0.05

Re(𝑐1(0)) −0.0009 −0.0023 −0.0030 −0.0013 −0.0016 −0.0032

𝜇2 0.0651 0.1470 0.2035 0.0895 0.1025 0.2243

Period 25.5554 24.1296 24.2300 24.9147 24.7483 24.0633

𝑇2 0.0324 0.0410 0.0356 0.0346 0.0349 0.0368
Table 5
Numerical simulations of system (4.2) when 𝜏1 = 1.5 and 𝜏2 ≠ 0.

(C1) (C2) (C3) (C4) (C5) (C6)

𝑑1 = 0 𝑑1 = 0.05 𝑑1 = 0 𝑑1 = 0.01 𝑑1 = 0.01 𝑑1 = 0.01
𝑑2 = 0 𝑑2 = 0 𝑑2 = 0.05 𝑑2 = 0.005 𝑑2 = 0.01 𝑑2 = 0.05

(7.5,15) is Fig. 1 Fig. 6 Fig. 9 Fig. 13 Fig. 17 Fig. 21Stable

Periodic Fig. 3 Fig. 7 Fig. 11 Fig. 14 Fig. 19 Fig. 23Solution

(7.5,15) is Fig. 5 Fig. 8 Fig. 12 Fig. 16 Fig. 20 Fig. 24Unstable
Table 6
Effects of diffusion in system (4.2) when 𝜏1 = 1.5 and 𝜏2 ≠ 0.

Effects Compared Cases

(E1) Effect of existence of diffusion (C1) and (C5)

(E2) Effect of the diffusion term 𝑑1 (C3) and (C6)

(E3) Effect of the diffusion term 𝑑2 (C4) and (C5)
(C5) and (C6)

(E4) Effect of increase in diffusion terms (C1) and (C2),
(at least one of them is zero) (C2) and (C3)

(E5) Effect of increase in diffusion terms (C4) and (C5),
(at least one of them is zero) (C5) and (C6)
c
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system will not change. At the same time, if the time required for a
predator to have the ability to hunt is larger than but close enough to
𝜏20 and the initial conditions are close enough to the equilibrium point
7.5, 15), then the solution of the system (4.2) will approach the periodic
olution. In this case, the long-term behavior of the solution will be still
redictable, while there will be an oscillating dynamic that changes but
epeats itself with a certain period of time. On the other hand, if the
ime required for a predator to have the ability to hunt is larger enough
han 𝜏20 , the equilibrium point (7.5, 15) is unstable, and stable periodic
olutions do not exist anymore. As a result, the long-term behavior of
he solution will be unpredictable.

We have concluded from the theoretical studies that occurring Hopf
ifurcations are all supercritical. In the dynamics of supercritical Hopf
ifurcation, a locally asymptotically stable equilibrium point loses its
tability at a critical value of the parameter, and just before it loses
his stability, the equilibrium point becomes nonlinearly stable. One
an see from the simulations in Fig. 2 that the phase portraits of the
ystem (4.2) with zero diffusion for 𝜏2 = 3.2, 𝜏2 = 3.3 and 𝜏2 = 3.4,
espectively, from left to right. Simulations represent that the stability
ecomes nonlinear as 𝜏2 increases and approaches the critical value
20 = 3.4582 when 𝜏1 = 1.5 for (C1). Moreover, Fig. 10, Fig. 18, and
ig. 22 show that the equilibrium point 𝑃⋆ = (7.5, 15) is nonlinearly
symptotically stable for a chosen 𝜏2 less than but very close to the
orresponding 𝜏20 for the cases (C3), (C5) and (C6), respectively. These
esults support the predicted theoretical result.

In contrast, in the dynamics of supercritical Hopf bifurcation, when
locally asymptotically stable equilibrium point loses its stability at a
11

t

ritical value of the parameter, stable periodic solutions arise at and
fter the critical value of the parameter. Also, they exist on the right
alf part of an interval containing the critical value of the parameter.
n Fig. 4, simulations represent that the bifurcating periodic solutions
xist in a neighborhood of the critical value 𝜏2 = 3.4582 when 𝜏1 = 1.5
or (C1). Additionally, because of the smoothness in the dynamic of
he Hopf bifurcation, we expect that the instability of the equilibrium
olution after the critical value is nonlinear first of all. Simulations
n Fig. 15 represents that the equilibrium point 𝑃⋆ = (7.5, 15) is
onlinearly unstable for 𝜏2 > 𝜏20 = 3.9557 when 𝜏1 = 1.5 for (C4).

Using the obtained numerical results given in Table 3 and Table 4;
nd simulations given in Figs. 1–24, we want to analyze the following
ive different effects of random walk: (E1) Impact of random walk
f both species (Effect of the existence of diffusion), (E2) Impact of
andom walk of the prey species (Effect of the diffusion term 𝑑1), (E3)
mpact of random walk of the predator species (Effect of the diffusion
erm 𝑑2) (E4), Impact of increase in movement rate of one species
Effect of diffusion when at least one of the diffusion terms is zero),
nd (E5) Impact of increase in movement rate of two species (Effect of
ncrease in diffusion when both of the diffusion terms are non-zero).

e fix the maturation period for predator as 𝜏1 = 1.5 and compare the
espective cases as given in Table 6 to analyze these effects.

First of all, to analyze the effect of the existence of diffusion, we
ompare (C1) (diffusive terms are both zero) and (C5) (nonzero diffu-
ion terms have the same value of 0.01). If the diffusion terms are added
o the system, the equilibrium point remains even if it takes longer
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Table 7
Change in stability interval of the equilibrium point and period of the periodic solutions
of system (4.2) when 𝜏1 = 1.5.

(E1) (E2)

(C1) (C5) (C3) (C6)

𝑑1 = 0 𝑑1 = 0.01 𝑑1 = 0 𝑑1 = 0.01
𝑑2 = 0 𝑑2 = 0.01 𝑑2 = 0.05 𝑑2 = 0.05

Stability
[0, 3.4582) [0, 4.1562) [0, 5.4452) [0, 5.6476)Interval

Numerical
Simulations

when 𝜏2 = 3.7 when 𝜏2 = 5.5

unstable stable unstable stable
Fig. 5 Fig. 17 Fig. 12 Fig. 22

Period
decreases decreases

25.5554 24.7483 24.2300 24.0633

(E3)

(C4) (C5) (C5) (C6)

𝑑1 = 0.01 𝑑1 = 0.01 𝑑1 = 0.01 𝑑1 = 0.01
𝑑2 = 0.005 𝑑2 = 0.01 𝑑2 = 0.01 𝑑2 = 0.05

Stability
[0, 3.9557) [0, 4.1562) [0, 4.1562) [0, 5.6476)Interval

Numerical
Simulations

when 𝜏2 = 4.05 when 𝜏2 = 5.5

unstable stable unstable stable
Fig. 15 Fig. 18 Fig. 20 Fig. 22

Period
decreases decreases

24.9147 24.7483 24.7483 24.0633

(E4)

(C1) (C2) (C2) (C3)

𝑑1 = 0 𝑑1 = 0.05 𝑑1 = 0.05 𝑑1 = 0
𝑑2 = 0 𝑑2 = 0 𝑑2 = 0 𝑑2 = 0.05

Stability
[0, 3.4582) [0, 4.7057) [0, 4.7057) [0, 5.4452)Interval

Numerical
Simulations

when 𝜏2 = 3.7 when 𝜏2 = 5

unstable stable unstable stable
Fig. 5 Fig. 6 Fig. 8 Fig. 10

Period
decreases decreases

25.5554 24.1296 24.1296 24.2300

(E5)

(C4) (C5) (C5) (C6)

𝑑1 = 0.01 𝑑1 = 0.01 𝑑1 = 0.01 𝑑1 = 0.01
𝑑2 = 0.005 𝑑2 = 0.01 𝑑2 = 0.01 𝑑2 = 0.05

Stability
[0, 3.9557) [0, 4.1562) [0, 4.1562) [0, 5.6476)Interval

Numerical
Simulations

when 𝜏2 = 4.05 when 𝜏2 = 5.5

unstable stable unstable stable
Fig. 15 Fig. 18 Fig. 20 Fig. 22

Period
decreases decreases

24.9147 24.7483 24.7483 24.0633

for the predator to have the ability to hunt. The equilibrium point
𝑃⋆ = (7.5, 15) is asymptotically stable when 𝜏2 ∈ [0, 3.4582) if there
s no diffusion. Besides, it is asymptotically stable when 𝜏2 ∈ [0, 4.1562)
f the prey species and the predator species move randomly with a same
onstant diffusion coefficient 𝑑1 = 𝑑2 = 0.01 (see Table 3 and Table 7).
f we fixed 𝜏1 = 1.5 and 𝜏2 = 3.7 it is seen that the equilibrium point
⋆ = (7.5, 15) is unstable in Fig. 5 since 𝜏2 = 3.7 > 3.4582. However,
ecause 3.7 ∈ [0, 4.1562), Fig. 17 represents that the equilibrium point
⋆ = (7.5, 15) is asymptotically stable for (C5). On the other hand, in
more realistic model (the diffusive model in (C5)), periodic solutions
ccur in a higher time (𝜏2) required for the predator to have the ability
o hunt. The periodic solution emerges when 𝜏 = 3.4582 (see Fig. 3) in
12
Table 8
Stability analysis and existence of Hopf bifurcation of system (4.2) when 𝑑1 = 0.01 and
𝑑2 = 0.005.

(D1) (D2) (D3)

𝜏1 = 0.5 𝜏1 = 1.5 𝜏1 = 2

𝜔0 0.2670 0.2522 0.2381

𝜏20 5.4642 3.9557 3.0709

Stability
[0, 5.4642) [0, 3.9557) [0, 3.0709)Interval

𝛼′0(𝜏20 ) 0.0154 0.0149 0.0109

Table 9
Direction analysis of Hopf bifurcation in system (4.2) when 𝑑1 = 0.01 and 𝑑2 = 0.005.

(D1) (D2) (D3)

𝜏1 = 0.5 𝜏1 = 1.5 𝜏1 = 2

Re(𝑐1(0)) −0.0019 −0.0013 −0.0011

𝜇2 0.1248 0.0895 0.1044

Period 23.5314 24.9147 26.3902

𝑇2 0.0447 0.0346 0.0264

(C1), while it arises when 𝜏 = 4.1560 (see Fig. 19) in (C5). As a final
effect, if diffusion is taken into consideration, the period of the periodic
solutions decreases (see Table 4).

As we did in the first effect, we compare respective cases as given
in Table 6 to analyze the other effects. We observe that whatever the
effect (E1–E5) we analyze, we have obtained similar changes in the
dynamics of the system (4.2) when the maturation period for a predator
is fixed as 𝜏1 = 1.5. If we add diffusion term to the system (E1) or if we
ncrease the value of one or both of the diffusion coefficients (E2–E5),
e observe the following changes in the dynamics of the system (4.2)
s summarized in the Table 7:

1. The equilibrium point remains stable for a more extended period
ccording to the predator’s ability to hunt (𝜏2).

2. Periodic solutions occur in a higher time (𝜏2) required for the
redator to have the ability to hunt.

3. The period of the periodic solutions decreases, that is to say, the
ystem repeats itself in a shorter time.

These ecologically means that if the time required for prey to reach
aturity is fixed as 𝜏1 = 1.5 in the stability interval, then the predator
eeds to gain the ability to hunt later so that the dynamic can repeat
tself. And this repetition, which means continuing to live together,
ccurs over a shorter period.

In order to investigate the effect of the time required for the prey
pecies to reach maturity (𝜏1) on the population dynamics represented
y the system (4.2), the diffusion coefficient values are fixed as 𝑑1 =
.01 and 𝑑2 = 0.005 ((C4)). One can see from Table 2 that the
quilibrium point is locally asymptotically stable if 𝜏1 ∈ [0, 2.6815)
hen 𝜏2 = 0. Because of this, to analyze the effect of 𝜏1, we choose
alues in this stability interval as (D1): 𝜏1 = 0.5, (D2): 𝜏1 = 1.5, and
D3): 𝜏1 = 2.

Table 8 shows that the equilibrium point 𝑃⋆ = (7.5.15) of the system
4.2) is locally asymptotically stable if 𝜏2 ∈ [0, 5.4642) when 𝜏1 = 0.5; if
2 ∈ [0, 3.9557) when 𝜏1 = 1.5 and if 𝜏2 ∈ [0, 3.0709) when 𝜏1 = 2 (see
ifth line of Table 8). Moreover, the equilibrium point 𝑃⋆ = (7.5, 15)
oses its stability, and Hopf bifurcation occurs in the system at the delay
alue 𝜏2 = 𝜏20 , since the characteristic equation of the system ±𝑖𝜔0
as just a pair of purely imaginary root. Also, the equilibrium point
⋆ = (7.5.15) is unstable if 𝜏2 > 5.4642 when 𝜏1 = 0.5; if 𝜏2 > 3.9557
hen 𝜏1 = 1.5 and if 𝜏2 > 3.0709 when 𝜏1 = 2. This means that, the

ystem (4.2) has a family of periodic solutions in a neighborhood of 𝜏20
y Theorem 5.

Table 9 gives the following information about the properties of
he occurring Hopf bifurcation in the system (4.2) for all cases (D1)-
D3) according to Theorem 6: since Re(𝑐 (0)) < 0, Hopf bifurcation
1
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Fig. 7. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.05 and 𝑑2 = 0. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 4.7057 and 𝜏1 = 1.5 ∈ [0, 3.6375). From these simulations one can observe that as 𝜏2
passes through the critical value 𝜏2 = 4.7057 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 1.5.
Table 10
Numerical simulations of system (4.2) when 𝑑1 = 0.01 and 𝑑2 = 0.005.

(D1) (D2) (D3)

𝜏1 = 0.5 𝜏1 = 1.5 𝜏1 = 2

(7.5,15) is Fig. 25 Fig. 28 Fig. 31Stable

Periodic Fig. 26 Fig. 29 Fig. 32Solution

(7.5,15) is Fig. 27 Fig. 30 Fig. 33Unstable

is supercritical and the resulting periodic solutions are stable; because
𝜇2 > 0, bifurcating periodic solutions occur after the bifurcation value
𝜏20 . Moreover, the period of the periodic solutions is as in the last line
of Table 9 when 𝜏2 is close enough to the bifurcation value 𝜏20 . Also,
since 𝑇2 > 0, this period increases as the bifurcation parameter 𝜏2 moves
away from the bifurcation value 𝜏20 .

To support these theoretical results, we simulate the system (4.2)
for each case. One can see for each case in turn that the equilibrium
point is asymptotically stable for a chosen 𝜏2 less than the correspond-
ing 𝜏20 from the simulations labeled by figures in the third row of
Table 10. Simulations denoted in figures in the fourth row of Table 10
demonstrate that a Hopf bifurcation arises at 𝑃⋆ = (7.5, 15) when 𝜏2
passes through associated critical value 𝜏20 for all cases respectively. In
Figures, shown in the last row of Table 10, it is represented that the
equilibrium point 𝑃⋆ = (7.5, 15) is unstable for a chosen 𝜏2 greater than
the corresponding 𝜏20 for the apiece case in turn. In all simulations,
diffusion coefficients are fixed as 𝑑1 = 0.01 and 𝑑2 = 0.005. If we
increase the value of 𝜏1 when 𝑑1 = 0.01 and 𝑑2 = 0.005, the following
changes in the dynamics of the system (4.2) are observed:

1. The equilibrium point remains stable for a more shorter pe-
riod according to the predator’s ability to hunt (𝜏2) (see Fifth row of
Table 8).

2. Periodic solutions occur at an earlier time (𝜏2) required for the
predator to be capable of hunting (see Fourth row of Table 8).

3. The period of the periodic solutions increases (see Last row of
Table 9).

These ecologically means that, if the prey and predator species
moves randomly with a constant diffusion coefficients 𝑑1 = 0.01 and
𝑑1 = 0.005, respectively, when the prey needs longer time to mature,
the predator needs to gain the ability to hunt earlier so that the dynamic
can repeat itself. And this repetition, which means living together,
occurs over a more extended period.

5. Conclusion

Mathematical modeling and its analysis have been often used to
understand, explain and offer solutions to real life problems. Reaction–
diffusion mechanism and delay in response to inputs or stimuli inherent
in many problems. So, while modeling a real life problem, not neglect-
ing reaction–diffusion mechanism and delay term will provide a more
realistic representation of the problem [30].
13
In this study, we take into account a diffusive ratio-dependent
predator–prey model (2.6) involving two discrete delays under the
Neumann boundary conditions. These delay parameters represent the
time required for prey to reach the maturity that the predator can hunt,
say 𝜏1, and the time needed for the predator to develop hunting skills,
say 𝜏2. Our first question is what changes will occur in the qualitative
behavior of the system as these delay parameters vary.

Hopf bifurcation is a type of bifurcation in which the stability
structure of the equilibrium point of the system changes as a parameter
in the system varies. This change is attended by the emergence or
vanish of periodic solutions while a parameter in the system varies
in an interval. The presence of periodic behaviors in the dynamics
of a predator–prey system represents coexistence, continuing to live
together.

First of all, we assumed that the predator species can predate as soon
as they are born, 𝜏2 = 0, and they only catch mature adult prey with a
certain maturation time; in other words, the prey must be old enough
to be caught. We observed that if the other parameters in the model
satisfy one of the conditions given in Corollary 2, then the equilibrium
point 𝑃⋆ is absolutely stable; that is, the Hopf bifurcation never occurs
in the system (2.6) when 𝜏2 = 0. Moreover, if the other parameters in
the model satisfy the condition given in Corollary 3, then the system
(2.6) has a family of periodic solutions in a neighborhood of critical
bifurcation value 𝜏12,0 when 𝜏2 = 0.

Secondly, we assumed that the time required for prey to reach
the maturity that the predator can hunt, 𝜏1, is nonzero and is fixed
in the stability interval to guarantee that the positive equilibrium
point is stable when 𝜏2 = 0. Additionally, we presumed that some
predators take some time to develop the ability to hunt; in other words,
the predator must reach adulthood before it can successfully catch
prey. Next, we chose the delay parameter, 𝜏2, which represents the
time the predator needs to gain the ability to hunt as the bifurcation
parameter. In this case, we obtained that under the conditions given in
Theorem 5, the (2.6) undergoes a Hopf bifurcation at the equilibrium
point 𝑃⋆, that is to say, a family of periodic solutions appears out
of the equilibrium point 𝑃⋆ as the delay parameter 𝜏2 passes through
𝜏20 . We have determined these results using the algorithm in [30] one
again. Using the same algorithm, some of the bifurcation properties,
such as stability, direction, and also period are investigated. In order
to support these theoretical results and to answer our second question,
we analyzed a model with constant coefficients, the system (4.2), and
performed some numerical simulations to support the analytical results.

To see the effect of the diffusion term on the population dynamic
represented by the system (4.2), six different situations with different
ecological meanings were discussed. The following changes have been
observed in the dynamics of the system (4.2): (i) the equilibrium point
remains stable for a more extended period according to the predator’s
ability to hunt (𝜏2), (ii) periodic solutions occur in a higher time (𝜏2)
required for the predator to have the ability to hunt, and (iii) the
period of the periodic solutions decreases, which means that the system
repeats itself in a shorter time. These ecologically means that if the time
required for prey to reach maturity is fixed as 𝜏1 = 1.5 in the stability
interval, then the predator needs to gain the ability to hunt later so
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Fig. 8. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.05 and 𝑑2 = 0. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 5 and 𝜏1 = 1.5 ∈ [0, 3.6375). Simulations demonstrate the instability of the equilibrium
point for 𝜏2 > 𝜏20 = 4.7057 when 𝜏1 = 1.5.

Fig. 9. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0 and 𝑑2 = 0.05. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 2 and 𝜏1 = 1.5 ∈ [0, 3.6005). Simulations illustrate the asymptotic stability of the
equilibrium point for 𝜏2 < 𝜏20 = 5.4452 when 𝜏1 = 1.5.

Fig. 10. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0 and 𝑑2 = 0.05. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 5 and 𝜏1 = 1.5 ∈ [0, 3.6005). Simulations illustrate the nonlinearly asymptotic stability of
the equilibrium point for 𝜏2 < 𝜏20 = 5.4452 when 𝜏1 = 1.5.

Fig. 11. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0 and 𝑑2 = 0.05. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 5.4450 and 𝜏1 = 1.5 ∈ [0, 3.6005). From these simulations one can observe that as 𝜏2
passes through the critical value 𝜏2 ≈ 5.4452 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 1.5.

Fig. 12. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0 and 𝑑2 = 0.05. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 5.5 and 𝜏1 = 1.5 ∈ [0, 3.6005). Simulations demonstrate the instability of the equilibrium
point for 𝜏2 > 𝜏20 = 5.4452 when 𝜏1 = 1.5.
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Fig. 13. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 2 and 𝜏1 = 1.5 ∈ [0, 2.6815). Simulations illustrate the asymptotic stability of the
equilibrium point for 𝜏2 < 𝜏20 = 3.9557 when 𝜏1 = 1.5.

Fig. 14. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 3.9560 and 𝜏1 = 1.5 ∈ [0, 2.6815). From these simulations one can observe that as 𝜏2
passes through the critical value 𝜏2 ≈ 3.9557 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 1.5.

Fig. 15. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 4.05 and 𝜏1 = 1.5 ∈ [0, 2.6815). Simulations demonstrate the nonlinear instability of the
equilibrium point for 𝜏2 < 𝜏20 = 3.9557 when 𝜏1 = 1.5.

Fig. 16. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5− 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15− 0.01 cos(𝑥). The delay values are 𝜏2 = 5.36 and 𝜏1 = 1.5 ∈ [0, 2.6815). Simulations demonstrate the instability of the equilibrium
point for 𝜏2 > 𝜏20 = 3.9557 when 𝜏1 = 1.5.

Fig. 17. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.01. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 3.7 and 𝜏1 = 1.5 ∈ [0, 2.8097). Simulations illustrate the asymptotic stability of the
equilibrium point for 𝜏2 < 𝜏20 = 4.1562 when 𝜏1 = 1.5.
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Fig. 18. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.01. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 4.05 and 𝜏1 = 1.5 ∈ [0, 2.8097). Simulations illustrate the nonlinearly asymptotic stability
of the equilibrium point for 𝜏2 < 𝜏20 = 4.1562 when 𝜏1 = 1.5.
Fig. 19. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.01. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 4.1560 and 𝜏1 = 1.5 ∈ [0, 2.8097). From these simulations one can observe that as 𝜏2
passes through the critical value 𝜏2 ≈ 4.1562 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 1.5.
Fig. 20. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.01. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 5.5 and 𝜏1 = 1.5 ∈ [0, 2.8097). Simulations demonstrate the instability of the equilibrium
point for 𝜏2 > 𝜏20 = 4.1562 when 𝜏1 = 1.5.
Fig. 21. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.05. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 2 and 𝜏1 = 1.5 ∈ [0, 3.8908). Simulations illustrate the asymptotic stability of the
equilibrium point for 𝜏2 < 𝜏20 = 5.6476 when 𝜏1 = 1.5.
Fig. 22. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.05. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 5.5 and 𝜏1 = 1.5 ∈ [0, 3.8908). Simulations illustrate the nonlinearly asymptotic stability
of the equilibrium point for 𝜏2 < 𝜏20 = 5.6476 when 𝜏1 = 1.5.
16
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Fig. 23. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.05. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 5.6476 and 𝜏1 = 1.5 ∈ [0, 3.8908). From these simulations one can observe that as 𝜏2
passes through the critical value 𝜏2 = 5.6476 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 1.5.
Fig. 24. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.05. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 7 and 𝜏1 = 1.5 ∈ [0, 3.8908). Simulations demonstrate the instability of the equilibrium
point for 𝜏2 > 𝜏20 = 5.6476 when 𝜏1 = 1.5.
Fig. 25. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 2 and 𝜏1 = 0.5 ∈ [0, 2.6815). Simulations illustrate the asymptotic stability of the
equilibrium point for 𝜏2 < 𝜏20 = 5.4642 when 𝜏1 = 0.5.
Fig. 26. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right),. Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 5.4642 and 𝜏1 = 0.5 ∈ [0, 2.6815). From these simulations one can observe that as 𝜏2
passes through the critical value 𝜏2 = 5.4642 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 0.5.
Fig. 27. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 7 and 𝜏1 = 0.5 ∈ [0, 2.6815). Simulations demonstrate the instability of the equilibrium
point for 𝜏2 > 𝜏20 = 5.4642 when 𝜏1 = 0.5.
that the dynamic can repeat itself. And this repetition, which means
continuing to live together, occurs over a shorter period.

In order to investigate the effect of the time required for the prey
species to reach maturity (𝜏1) on the population dynamics represented
by the system (4.2), the diffusion coefficient values are fixed as 𝑑1 =
0.01 and 𝑑 = 0.005 (as in case (C4)). If we increase the value of
17
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𝜏1 when 𝑑1 = 0.01 and 𝑑2 = 0.005, the following changes in the
dynamics of the system (4.2) are observed: (i) the equilibrium point
remains stable for a more shorter period according to the predator’s
ability to hunt (𝜏2), (ii) periodic solutions occur at an earlier time (𝜏2)
required for the predator to be capable of hunting, and (iii) the period
of the periodic solutions increases. These ecologically means that, if
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Fig. 28. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 2 and 𝜏1 = 1.5 ∈ [0, 2.6815). Simulations illustrate the asymptotic stability of the
equilibrium point for 𝜏2 < 𝜏20 = 3.9557 when 𝜏1 = 1.5.

Fig. 29. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5−0.01 cos(𝑥), 𝑍(𝑥, 0) = 15−0.01 cos(𝑥). The delay values are 𝜏2 = 3.956 and 𝜏1 = 1.5 ∈ [0, 2.6815). From these simulations one can observe that as 𝜏2 passes
through the critical value 𝜏2 ≈ 3.9557 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 1.5.

Fig. 30. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5− 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15− 0.01 cos(𝑥). The delay values are 𝜏2 = 5.36 and 𝜏1 = 1.5 ∈ [0, 2.6815). Simulations demonstrate the instability of the equilibrium
point for 𝜏2 > 𝜏20 = 3.9557 when 𝜏1 = 1.5.

Fig. 31. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5−0.01 cos(𝑥), 𝑍(𝑥, 0) = 15−0.01 cos(𝑥). The delay values are 𝜏2 = 2 and 𝜏1 = 2 ∈ [0, 2.6815). Simulations illustrate the asymptotic stability of the equilibrium
point for 𝜏2 < 𝜏20 = 3.0709 when 𝜏1 = 2.

Fig. 32. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 3.071 and 𝜏1 = 2 ∈ [0, 2.6815). From these simulations one can observe that as 𝜏2 passes
through the critical value 𝜏2 ≈ 3.0709 a Hopf bifurcation arises at the equilibrium point 𝑃 ⋆ = (7.5, 15) when 𝜏1 = 2.
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Fig. 33. Spatio-temporal graph of density of prey (left), spatio-temporal graph of density of predator (right). Here, diffusion coefficients are 𝑑1 = 0.01 and 𝑑2 = 0.005. The initial
conditions are 𝑌 (𝑥, 0) = 7.5 − 0.01 cos(𝑥), 𝑍(𝑥, 0) = 15 − 0.01 cos(𝑥). The delay values are 𝜏2 = 3.95 and 𝜏1 = 2 ∈ [0, 2.6815). Simulations demonstrate the instability of the equilibrium
point for 𝜏2 > 𝜏20 = 3.0709 when 𝜏1 = 2.
the prey and predator species move randomly with a constant diffusion
coefficients 𝑑1 = 0.01 and 𝑑1 = 0.005, respectively, when the prey needs
longer time to mature, the predator needs to gain the ability to hunt
earlier so that the dynamic can repeat itself. And this repetition, which
means living together, occurs over a more extended period.
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