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ABSTRACT

For commitments on secrets, statistical hiding is a must when we are dealing with a long-term secret or when the secret
domain is small enough for a brute-force attack by a powerful adversary. Unfortunately, all the Chinese Remainder
Theorem-based verifiable secret sharing schemes in the literature are either insecure or suffer from the vulnerability of
computationally hiding commitments. To the best of our knowledge, there exist five such studies where two of them were
already proven to be insecure. In this work, we first show that two of the remaining schemes are also insecure, that is,
the schemes reveal information on the secret even when the adversary is passive. In addition, the remaining one is only
secure against a computationally bounded adversary which can be a problem for secret sharing schemes requiring long-
term secret obscurity or using small secret domain. We propose a modification for the latter scheme and prove that the
modified scheme is a secure verifiable secret sharing scheme against an unbounded adversary. Lastly, as an application, we
show how to use the new scheme for joint random secret sharing and analyze the practicality and efficiency of the proposed
schemes. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Secret sharing schemes (SSS) play an important role in
cryptosystems, especially for safeguarding keys. Many
systems are vulnerable to disclose of the single master key
by an accident or an attacker. The result of a disclosure
would be catastrophic for crucial cases like launching a
nuclear missile. Secret sharing precludes a single point of
failure by splitting the master secret into several shares.
The notion of secret sharing is important in many cryp-
tographic protocols such as multiparty computation, for
example, [1–3].

An SSS involves a dealer who has a secret, a set of par-
ticipants that the secret is shared amongst, and a collection
of the authorized subsets of the participants which is called
the access structure. In threshold cryptography, the access
structure is defined by a threshold that is the minimum
cardinality of each authorized set.

Shamir[4] and Blakley[5] proposed the first SSSs in
1979. Shamir’s SSS is based on Lagrange interpolation,
whereas Blakley’s scheme is based on hyperplane geom-
etry. There are also Chinese Remainder Theorem (CRT)
based SSSs such as Mignotte[6] and Asmuth-Bloom[7].

The dealer in an SSS has a crucial impact on the system;
in the malicious case, the dealer may forge the shares of
the participants and misdirect them. The need of a trusted
dealer raises practical privacy and authenticity concerns for
the system. In addition to a malicious dealer, the partic-
ipants can also cheat during the reconstruction phase. In
order to overcome a corrupted dealer and participants, the
concept of verifiable secret sharing (VSS) is introduced by
Chor et al., based on Shamir’s SSS [8]. A VSS scheme
enables participants to check the validity of the shares
during the distribution and reconstruction phases. Because
of its simplicity and provable security, VSS schemes are
exploited in several systems like multi-party computation
protocols and ad hoc networks[9,10].
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1.1. Motivation and our contributions

Although Shamir’s SSS has long had verifiable vari-
ants[8,11–13], many CRT-based VSS proposals lack
proper security. To the best of our knowledge, there are five
VSS schemes based on CRT in the literature[14–18]. Kaya
and Selçuk already show that[15] and[16] are not robust
against a corrupted dealer[14]. In this paper, we first show
that even the most recent ones, for example,[17,18] are not
secure and robust because the secret is simply revealed to
an adversary with t – 1 shares. Therefore, the best CRT-
based VSS we have is still the one proposed in [14] which
is only secure against an adversary with bounded compu-
tational power. In particular, a computationally unbounded
adversary can extract the secret by using the information
revealed by the scheme. As it can be seen from the previ-
ous works in the literature and attacks on these schemes in
this paper, designing CRT-based VSS construction is not a
straightforward task.

In this work, we use a statistically hiding and computa-
tionally binding commitment scheme to have a CRT-based
VSS and prove that the proposed scheme is secure for an
unbounded adversary which makes it the first fully secure
verifiable scheme based on CRT. A statistically hiding
commitment is crucial when we are dealing with a long-
term secret or when the secret domain is small enough for
a brute-force attack by a powerful adversary; for exam-
ple, such an adversary can find solutions x to the equation
gx = h given the elements g and h of a finite cyclic group
G with a sufficiently small order. Considering the recent
algorithms for the discrete logarithm problem (DLP), for
example,[19], for various fields, revealing gx for a secret x
is not a good idea. Unfortunately, this is the approach fol-
lowed by the only secure CRT-based VSS [14] from the
literature to the best of our knowledge. With statistical hid-
ing, we have the advantage of a committed value remaining
hidden forever [20]. As computational bounds increase day
by day, it is always important to provide security against
unbounded adversaries.

Because a VSS implies robustness against a corrupted
dealer, a typical application is joint random secret sharing
(JRSS) where playing the role of the dealer, all users jointly
generate and share a random secret, for example,[21,22].
A CRT-based JRSS primitive has already been proposed
in the literature[14]. We will show that our approach is
applicable to JRSS and yields a scheme that is also secure
against an unbounded adversary which is not the case for
the scheme of[14].

The rest of the paper is organized as follows Section 2
introduces the necessary background on secret sharing,
Asmuth-Bloom SSS, and summarizes the related work.
The security analysis of the existing CRT-based VSS
schemes and their weaknesses are given in Section 3.
Sections 4 and 5 explain the proposed CRT-based VSS and
JRSS schemes, respectively, in detail. Section 6 concludes
the paper.

2. BACKGROUND

An SSS consists of two phases: in the distribution phase,
the dealer splits the secret into n pieces by using the shar-
ing function and delivers shares to the participants via a
secure channel (discrete channel for each participant). In
the reconstruction phase, a qualified group of participants
can reconstruct the secret with the help of the recon-
struction function. A perfect secret sharing scheme should
satisfy the following two conditions:

1. Correctness: Any qualified group of participants can
reconstruct the secret.

2. Perfect Privacy: No unqualified group of participants
can obtain any information about the secret.

A (t, n) threshold scheme satisfies that any t shares can
recover the secret and less can obtain no information about
the secret. Some of the well-known threshold schemes are
Shamir’s SSS, Blakley’s SSS, and Asmuth-Bloom SSS.

We call an SSS verifiable if the participants can verify
the consistency of their shares. Formally, a VSS scheme
has a verification phase which can be defined by the
following conditions given in [11]:

(1) If the dealer follows the distribution phase, and
the dealer and participant i follows the verification
protocol, then participant i accepts his share with
probability one.

(2) For any two qualified groups of participants G1 and
G2 such that all shares included are accepted, the
following could happen with at most a negligible
probability: if s1 is the recovered secret by G1 and s2
by G2, then s1 ¤ s2.

Adversary model and security: For the security proofs
in this paper, we have two types of adversaries:

� A passive adversary can access all the information
she has, but she does not make them deviate from
the protocol. Hence, a passive adversary is honest but
curious.

� An active adversary can access all the informa-
tion they have and send/broadcast messages on their
behalf. Hence, an active adversary is not only curious
but also dishonest, that is, she may try to cheat and
deviate from the protocol.

We assume that an adversary can corrupt at most t –
1 users [23,24]. Because any t users can open the secret,
an adversary having t users does not make sense for this
scheme. Without loss of generality, we also assume that
secure private channels exist between each user pair. The
share of each participant is sent via these channels; hence,
no one but the participant herself and the dealer knows her
share unless she is corrupted. In addition, we assume that a
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secure and robust broadcast channel exists and when data is
broadcast, each user will read the same value. In particular,
an active adversary cannot send two different values to two
different users in a broadcast message. For the rest of the
paper, we will use the notation summarized in Table I.

Chinese Remainder Theorem: Let m1, : : : , mk be
pairwise co-primes, and b1, : : : , bk 2 Z. The system
of equations

x � b1 mod m1
...

x � bk mod mk

has a unique solution in ZM(k) which can be found by the
following formula:

x =
kX

i=1

˛i � ˇi � bi mod M(k)

where M(k) =
Qk

i=1 mi and ˛i =
M(k)
mi

, ˇi =
h

mi
M(k)

i
mi

. Here,h
mi
MG

i
mi

is obtained by first dividing MG by mi in Z and

compute the inverse of the result in Zmi .

2.1. Asmuth-Bloom secret sharing scheme

The Asmuth-Bloom scheme is a CRT-based SSS as shown
in Figure 1. Because CRT with t moduli guarantees a
unique solution for y < M(t) (M(t) =

Qt
i=1 mi), the secret

Table I. Notation.

Notation Explanation

n The number of users/participants.
t The threshold, the minimum number of

users required to construct the secret.
S The secret to be shared.
p A prime specifies the domain of S 2 Zp.
mi The prime modulus for user i.
qi A safe prime, 2mi + 1.
Q

Qn
i=1 qi.

M(r)
Qr

i=1 mi.
M(s) Qs

i=1 mn–i+1.
y d + A � p, where A is the blinding factor.
yi y mod mi, the share of user i.
E(y, r) The commitment value of an integer y.
Range_Proof (a, R) The Boudot’s range proof for a being in the range of (0, R).
G A coalition of users.
MG The modulus of coalition G,

Q
i2G mi.

|G| The cardinality of G.
Za The set of all congruence classes modulo a.
Z*

a The set of all non-zero congruence classes modulo a.
[ � ]a The arithmetic inside is performed in Za.

Figure 1. Asmuth-Bloom secret sharing scheme.
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S can be extracted by computing first y and then y mod p.
The SSS has the following properties:

Theorem 1 ([7]). In Asmuth-Bloom SSS, a passive adver-
sary cannot eliminate any candidate from Zp for the
secret.

Theorem 2 ([25]). Asmuth-Bloom SSS is not perfect: the
possible secret candidates do not have the same probabil-
ity for an unqualified group B having less than t shares;

every secret candidate will be obtained either
j

M(t)
pMB

k
orj

M(t)
pMB

k
+ 1 times when y mod p is computed for each

possible y candidate.

Let Pr(B,S)(S
0) be the probability of S0 2 Zp is equal

to the shared secret S from an unqualified group B’s point
of view. For a perfect SSS, Pr(B,S)(S

0) = Pr(B,S)(S) for all
possible combinations of S, S0, and B. We should point
out that, from Theorem 2, the number of appearances of
the possible secret values can differ by one and the secret
candidates are (negatively or positively) biased to be the
secret. Hence, the secret candidates are not be equally
likely to be the secret. This can be a problem especially

when
M(t)
pMB

is small and the bias is large. To alleviate this,
Quisquater et al., proposed that p, m1, : : : , mn should be
chosen as consecutive primes to make the scheme asymp-
totically perfect[25]. That is, for every B and positive �
value, the dealer can choose a prime p such that Pr(B,S)(S

0)–
Pr(B,S)(S) < �. For similar reasons, Kaya and Selçuk [26]
proposed to change the fourth condition of the distribution
phase with

M(t) > p2 �M(t–1) (1)

In this case, the scheme becomes statistically secure,
that is, the statistical distance between the distribution
Pr(B,S)(.) and uniform distribution is smaller than a given �
with a carefully chosen p.

Theorem 3 ([26]). The modified Asmuth-Bloom scheme
with (1) is a statistically secure secret sharing scheme
against a passive adversary.

Here, we sightly modified the statement of the theorem,
but the meaning and the proof are almost the same.

2.2. Related work

The original versions of the Asmuth-Bloom and Mignotte
SSSs [6,7] are not verifiable. The first CRT-based VSS
scheme has been proposed by Qiong et al., in [15]
which uses a similar approach to Pedersen’s polynomial-
evaluation-based VSS[11]. Later, Iftene proposed the only
VSS based on Mignotte’s scheme [16] and showed that the
security of the scheme is based on the hardness of the DLP.

Kaya and Selçuk[14] proposed another VSS based on
the Asmuth-Bloom scheme with robustness analyses of the

Quiong et al., and Iftene’s schemes[15,16]. They showed
that the existing schemes are not robust against a mali-
cious dealer because the dealer can distribute inconsistent
shares that lead to different reconstructed secrets for dif-
ferent qualified subsets. To solve this problem, they used a
range proof to prove that the y value is in the desired (CRT)
range. Their scheme assures the validity of the shares not
only for malicious participants (reconstruction phase) but
also for a malicious dealer (distribution phase).

Recently, two VSS schemes based on Asmuth-Bloom
have been proposed [17,18]. In 2014, Harn et al., proposed
a very efficient scheme aiming at detecting malicious
behavior of the dealer with the assumption that the par-
ticipants act honestly (which already makes the scheme
insecure against an active adversary)[17]. The scheme uses
additional verification secrets generated within a given
range. Based on these ranges, the participants can have a
range guarantee on y. This assures that the dealer cannot
distribute inconsistent shares. With the same motivation,
Liu et al.,[18] proposed a VSS where every participant
adds an adjusting value (from a guaranteed range, because
the participants are again assumed to be honest) to his
share, then all the participants recover an adjusted value for
y which is supposed to give no additional information but
the range of y.

As mentioned before, VSS schemes which do not
employ a CRT-based SSS already exist in the literature.
However, CRT-based SSSs such as Asmuth-Bloom are
fundamentally different when compared with these SSSs.
Hence, designing extensions and other functionalities, such
as function sharing, JRSS, and secure multi-party com-
putation, for CRT-based schemes is a challenging task
and indeed an interesting problem which recently gained
more attention. In fact, as we show in this work, provid-
ing the necessary security requirements is hard even for
VSS which is arguably a simpler scheme compared with
the aforementioned extensions: if one is not careful, she
can design an insecure protocol with hidden weaknesses.

2.3. Boudot’s range proof

As mentioned in the previous section, a crucial part of the
VSS scheme of [14] is the proof that the blinded secret, y,
is in the allowed range. Whereas [14] uses the range proof
of [27], we use the one presented by Boudot in [28].

Boudot[28] proposed an efficient and non-interactive
technique to prove that a committed number lies within an
interval. He used the Fujisaki–Okamoto integer commit-
ment scheme[29], where the commitment of an integer y is
as follows:

D = D(y, r) = gy
Nhr

N mod N,

where gN is an element of high order in Z*
N , hN is an

element of the group generated by gN , r is a random inte-
ger, and N is an RSA composite whose factorization is
unknown. As proved in[28,29], this commitment scheme

Security Comm. Networks 2016; 9:4416–4427 © 2016 John Wiley & Sons, Ltd. 4419
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is statistically hiding and computationally binding assum-
ing that the prime factorization of N is unknown. That is,
the committer cannot find another valid proof unless he is
computationally unbounded, and the receiver of the com-
mitment cannot distinguish the discrete logarithm, that is,
y, from a random value.

The commitment scheme we use, however, is slightly
different: let Q =

Qn
i=1 qi be a composite number. The

commitment to a value, y, is

E = E(y, r) = gyhr mod Q

where g is an element in Z*
Q, and h is an element of the

group generated by g. In [28], the author shows how to
reduce a range proof for the commitment E to a range proof
for the commitment D by a zero-knowledge proof of equal-
ity of committed values (see section 3.2 and appendix A
of [28]).

3. ANALYSIS OF THE CRT-BASED
VERIFIABLE SECRET SHARING
SCHEMES

3.1. Kaya and Selçuk’s verifiable secret
sharing scheme

Instead of Boudot’s range proof, Kaya and Selçuk[14] use
the range proof technique in[27] as a black box. Their
algorithm can be seen in Figure 2.

Their scheme prevents malicious behavior of both
dealer and participants in a way that misleading shares
can be detected by the participants. Because the commit-
ment is computationally hiding, the secret is leaked to an
unbounded adversary. Furthermore, even a computation-
ally bounded adversary can extract the secret from the
commitment in the case of small sizes of p.

Lemma 4. The order of g 2 ZQ is M(n).

Proof Sketch. Let ord(g) = d in ZQ. Because gd �

1 mod qi, then mi | d (for all i’s) which concludes to
M(n) | d.

Similarly, because gM(n) � 1 mod qi (for all i’s), then
gM(n) � 1 mod Q by CRT which implies that d | M(n).
Therefore, d = M(n).

Lemma 5. There is exactly one y value satisfying the
commitment in mod M(n).

Proof. Assume that y0 and y00 satisfy the commitment
such that E(y0) � E(y00) mod Q. By using Lemma 4:

E(y0) � E(y00) mod Q H) 1 = gy0–y00 mod Q

H) ord(g) | y0 – y00 H) y0 � y00mod M(n)

H) y0 = y00 because y0, y00 2 (0, M(t))

which implies that only one element satisfies the commit-
ment.

Figure 2. Kaya and Selçuk’s verifiable secret sharing scheme.
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Theorem 6. Kaya and Selçuk’s VSS scheme is inse-
cure against an unbounded passive adversary because the
secret value can be found by O(p2) exponentiations.

Proof. From Theorems 1 and 2, it follows that an unqual-
ified group, B, can compute y mod MB; thus, there are at

most
M(t)
MB

+1 possible solutions (denoted by PSB) for group

B (|PSB| �
M(t)
MB

+ 1). By using Lemma 5, trying all values
yB 2 PSB in the commitment would give the exact one:

E(y)
?
= E(yB) = gyB mod Q.

For the VSS using the original Asmuth-Bloom

sequence, the time complexity of the attack is O
�

M(t)
MB

+ 1
�

which is O(p), whereas for the case of the modified
Asmuth-Bloom given in [26], the time complexity will be
O(p2).

An attack on this scheme is feasible for small (i.e.,
32 bit) secret ranges and insecure against a bounded pas-
sive adversary.

3.2. The verifiable secret sharing scheme of
Harn et al.,

The VSS scheme of Harn et al.,[17] aims to provide the
range proof of the blinded secret, that is, it just assures that
the dealer chooses y between 0 and M(t); all participants
are assumed to be honest. The algorithm of Harn et al.,’s
VSS can be seen in Figure 3. Detailed explanations can be
found in [17].

Lemma 7. The VSS [17] in Figure 3 is not a complete
scheme. In the case of y � M(t) – M(t–1), it is not possible

to choose verification secrets satisfying the conditions in
Equation (2).

Proof. If the dealer chooses A arbitrary as supposed, there
is a chance that y � M(t) – M(t–1). In that case, there is no
space for verification secrets. In other words, M(t–1) < Si
and M(t) – M(t–1) � y implies M(t) < Si + y contradicting
with (2).

A simple correction for the scheme would be to restrict
y with M(t) – M(t–1) instead of M(t). However, bounding
y between M(t–1) and M(t) – M(t–1) cause an attack in the
case of M(t) � p �M(t–1). In order to implement an efficient
Asmuth-Bloom scheme, the parameters should be chosen
such that M(t) is approximately equal to p �M(t–1). In that
case, let B = {n – r + 2, n – r + 3, : : : , n} be an unquali-
fied group of participants such that the group moduli MB
is equal to M(t–1), that is, B knows y0 = y mod M(t–1).
Because M(t–1) < y < M(t) – M(t–1), the possible solution
set of y is not more than {y0 +M(t–1), : : : , y0+(p–1)M(t–1)}
for B. Here, there are at most p – 1 possible solution for an
unqualified group B.

Theorem 8. Verification secrets leak information about
the blinded secret y for a passive adversary.

Proof. The blinded secret y can be restricted by the
following:

� using the first part of the verification:

y 2
�

S(1)
max, M(t) – S(1)

max

�
(2)

Figure 3. The verifiable secret sharing of Harn et al.,
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where S(1)
max = maxk/2

i=1 S(1)
i .

� using the second part of the verification:

y > max
i1,i2

n
Ki1 , Ki2 – S(2)

max,i2

o
y < min

i1,i2

n
Ki1 – S(2)

max,i1
, Ki2

o (3)

where Ki1 = y – S(2)
i1

, Ki2 = y + S(2)
i2

, S(2)
max,i1

=

maxk/4
i1=1 S(2)

i1
and S(2)

max,i2
= maxk/4

i2=1 S(2)
i2

.

If Sis are chosen from a wide range, (2) is more useful
to eliminate possible solutions, whereas (3) for the narrow
range case.

In order to determine the range of Sis, the first part
of the verification can be used. Because S is randomly

divided into S(1)
i s and S(2)

i s, the distribution of S(1)
i s gives

some information about the range. In a similar manner,

S(2)
max,i1

and S(2)
max,i2

can be approximated by S(1)
max which are

required in the second elimination method (3).

3.3. The verifiable secret sharing scheme of
Liu et al.,

In the scheme of[18], the dealer generates an Asmuth-
Bloom sequence and selects the secret S 2 Zp. Then, the
dealer chooses an integer, A, in such a way that y = S+Ap 2
(M(t–1) + 2T , M(t) – 2T) where T =

Pn
i=1 mi. The dealer

sends share yi � y mod mi to participant i.
In the verification phase, each participant selects an

adjusting value, �i 2 (–(mi – 1), mi – 1), and broadcasts the
value M(n)/mi �

�
mi/M(n)

�
mi
�yi +�i. Using the CRT formula,

the participants can calculate an adjusted value y(adj) of
y where:

y(adj) =

" nX
i=1

M(n)

mi
�

�
mi

M(n)

�
mi

� yi + �i

#
M(n)

Participants check that y(adj) ?
2 (M(t–1) + T , M(t) – T)

which implies that y 2 (M(t–1), M(t)) and this is enough to
say that the dealer cannot distribute inconsistent shares.

Theorem 9. The VSS proposed by Liu et al., [18] is
insecure against a passive adversary.

Proof. It is assumed that each participant and the dealer
act honestly. Note that in the verification phase, every
participant will learn y(adj).

An adversarial group B can compute y0 = y mod MB
using their own shares. If T � MB (which in practice is
satisfied for all of the unqualified groups with t – 1 par-
ticipants) then using y0 and y(adj) values, the exact value
of y can be easily found, because it is already known that

y(adj) –T < y < y(adj) +T , and only one value in that interval
satisfies the modulo condition y0.

Note that because mis are large primes and assumed to
be close to each other, |B| � 2 implies that T � MB. In any
case, for B = {n – 1, n}, this condition is already satisfied:

MB = mn � mn–1 	 mn � n >
nX

i=1

mi = T

4. CRT-BASED VERIFIABLE SECRET
SHARING SECURE AGAINST AN
UNBOUNDED ADVERSARY

As shown before, Kaya and Selçuk’s VSS[14] is vulnerable
because of the computationally hiding commitment they
used. In the proposed scheme, we use Fujisaki–Okamoto
commitment E(y, r) = gy � hr mod Q and Boudot’s range
proof. Using E(y, r) commitment in a VSS is challenging
because it is supposed to be seen as a random value for
any unauthorized attempt as well as assuring the validity of
the commitment for any authorized access. That is why the
random value r needs to be collectively constructed by the
participants in a way that the participants can then verify
their shares by using E(y, r). The proposed VSS scheme is
described in Figure 4.

4.1. Analysis of the proposed scheme

Our scheme is based on the following assumptions: the
factorization of N is unknown, the DLP in Z*

qi
is a com-

putationally hard problem, and loggi hi is not known by
the dealer nor the participants. A simple way to construct
such gi and hi’s is the following: each participant and the

dealer randomly chooses an aj 2 mi and broadcasts gaj

i (for
j = 1, : : : , n + 1), then hi is computed by the product of all
broadcast values for the ith instant, that is, ai = loggi hi =Pn+1

j=0 aj mod mi.
There are unique g and h in ZQ satisfying g �

gi mod mi, h � hi mod mi for all i’s, and they can be
computed by the CRT formula:

g =

" nX
i=1

Q

qi
�

�
qi

Q

�
qi

� gi

#
Q

h =

" nX
i=1

Q

qi
�

�
qi

Q

�
qi

� hi

#
Q

(4)

4.1.1. Correctness.

If the dealer and the participants are honest, then the
verification phase passes.
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Figure 4. Our proposed verifiable secret sharing scheme.

E(y, r) mod qi = gy � hr mod Q mod qi

= gy � hr mod qi

= gy
i � h

r
i mod qi

= gyi
i � h

ri
i mod qi.

Lemma 10. The discrete logarithm of h in base g is co-
prime to M(n).

Proof. Let a = loggh be the discrete logarithm of h in
base g and loggi hi = ai, in other words gai

i � hi mod qi,
for each i = 1, : : : , n. And then, it can be seen that ga �

h mod Q where a � ai mod mi for all i’s. Because mi’s
are primes and ai’s are not equal to zero, a and M(n) are
co-primes.

Theorem 1 states the security of Asmuth-Bloom secret
sharing by showing the existence of a set of elements, SB,
such that no element of SB can be ruled out as a possi-
ble value of y. In Theorem 3, it is shown that the modified
version of Asmuth-Bloom in [26] is a statistical SSS. We
now show that the elements of SB are also consistent with
the additional information obtained by the adversary in the
VSS scheme which concludes the following theorem:

Theorem 11. For an unbounded passive adversary, no
possible secret value can be ruled out, and the VSS is a
statistical SSS.

Proof. Let B be an unqualified group of participants
(|B| � r – 1). B knows {yi � y (mod mi) : i 2 B}, {ri � r
(mod mi) : i 2 B}, and the commitment c = E(y, r) =
gyhr mod Q. Let y0 2 [0, MB] be the unique solution to
the congruences yi � y0 (mod mi). Because the adver-
sary is unbounded, he can compute the discrete logarithms
logg(c) = logg(E(y, r)) = logg(gyhr) = y + ar and logg(h) =
a. It follows from (1) that

M(t) > p2M(t–1) � p2MB.

Therefore, all elements of the set SB = {y0, y0 +
MB, : : : , y0 + p2MB} are possible solutions to the set of
congruences {yi � y (mod mi) : i 2 B, y 2 [0, M(t)]}.

Likewise, we define r0 as the unique solution in ZMB to
the set of congruences {ri � r (mod mi) : i 2 B}, and the

set RB = {r0, r0 + MB, : : : , r0 +
M(n)–MB

MB
MB} of possible

solutions to the same set of congruences modulo M(n).
Let Qy be an arbitrary element of SB. The solution to the

congruence logg(c) � Qy + aQr (mod ord(g)), with respect

to Qr, is in RB: Qr � a–1(logg(c) – Qy) � a–1((y – Qy) + ar)

(mod ord(g)) (where the existence of a–1 mod ord(g) fol-
lows from Lemmas 4 and 10). Because y � Qy (mod MB),
and MB | ord(g), Qr � r (mod MB), so Qr 2 RB. We con-
clude that the pair (Qy, Qr) is consistent with all information
available to the adversary, so Qy cannot be ruled out as a
possibility for the true value of y.
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Because (MB, p) = 1 the set {Qy mod p : Qy 2 SB} = Zp,
so no possible secret value, s 2 Zp can be ruled out. From
Theorems 1 and 3, it follows that the VSS is a statistical
SSS.

Consistency of the shares comes with the range proof;
by completeness of the range proof, the participants can be
sure that every qualified group of participants will acquire
the same secret. Participants can check that their shares are
actually derived from the blinded secret y by confirming
Equation (5).

Theorem 12. A computationally bounded corrupted
dealer cannot distribute inconsistent shares without being
detected.

Proof Sketch. Because the random r is determined by the
participants, the dealer cannot give an inconsistent share
without knowing ai which contradicts with our assump-
tion:

gyi � hri � gy0i � hr0i mod qi

” gyi
i � h

ri
i � g

y0i
i � h

r0i
i mod qi

” yi + ai � ri � y0i + ai � r
0
i mod mi

” ai = (y0i – yi) � (ri – r0i)
–1 mod mi

The range proof of y is based on the commitment
scheme given by Boudot [28]. For that reason, it is enough
to satisfy the requirements of that scheme. Because the pro-
posed VSS scheme uses the bases (g, h) where g 2 Z*

Q
and h is an element of the group generated by g with an
unknown order, the range proof commitment is statistically
secure in the case that factorization of N is unknown.

Theorem 13. A computationally bounded corrupted par-
ticipant cannot cheat without being detected.

Proof Sketch. Similar to Theorem 12, participant i can-
not cheat unless he knows ai which contradicts with the
assumption:

gyi � hri � gy0i � hr0i mod qi

” gyi
i � h

ri
i � g

y0i
i � h

r0i
i mod qi

” yi + ai � ri � y0i + ai � r
0
i mod mi

” ai = (y0i – yi) � (ri – r0i)
–1 mod mi

The efficiency of the proposed VSS scheme is analyzed
in Appendix 6.

5. JOINT RANDOM SECRET
SHARING

Joint random secret sharing protocols enable a group of
users to jointly generate and share a random secret where

a dealer is not available. In this work, we are adapting the
JRSS scheme given by Kaya and Selçuk [14]. We modify
the commitment with respect to our VSS and also use a
modified version of the original scheme;

M(t) > np2M(t–1) (5)

M =

�
M(t)

n

	
(6)

where M denotes the domain of y, that is, y 2 ZM . The
CRT-based JRSS scheme is given in Figure 5.

5.1. Analysis of the proposed scheme

Theorem 14. In the modified Asmuth-Bloom scheme
with (5) and (6), no possible secret value can be ruled out
for an adversary, and the JRSS is a statistical SSS.

Proof. Let B be the set of t – 1 users corrupted by the
adversary. Let X be the probability distribution Pr(S = ı)
over the secret candidates ı 2 Zp from the adversary’s
point of view. The adversary can compute y0 = y mod MB
and r0 = r mod MB. Because of (5) and (6), M/MB > p2.
The rest of the proof is similar to that of Theorems 3
and 11.

5.1.1. Correctness.

Observe that when all users behave honestly, the JRSS
scheme works correctly. Let y =

P
i2B y(i). It is easy to see

that y < M(t), because y(i) < M for all i 2 B, where |B| � n
and M =



M(t)/n

˘
. One can see that yj = y mod mj for all

j 2 B by checking

y mod mj =

0
@X

i2B
y(i)

1
A mod mj

=

0
@X

i2B
y(i)

j

1
A mod mj

= yj mod mj = yj

Hence, each yi satisfies yi = y mod mi and y < M(t); y
can be constructed with t shares.

For correctness of the verification procedure in (10), one
can observe that

0
@Y

j2B
E(y(j), r(j))

1
A mod qi

= g
P

j2B y(j)
� h
P

j2B r(j)
mod qi

= g

P
j2B y(j)

i � h

P
j2B r(j)

i mod qi

= gi
yi hi

ri mod qi
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Figure 5. The proposed joint random secret sharing scheme.

where ri =
�P

j2B r(i)
j

�
mod mi. Hence, when all users

behaves honestly, the proposed JRSS scheme works
correctly. The privacy of the secret shared by the JRSS
follows from Theorem 14 and the privacy of the modified
Asmuth-Bloom scheme.

The consistency and the commitment correctness of the
JRSS follows from that of the underlying VSS scheme:
if any participant tries to deal inconsistent shares in the
sharing phase or tries to provide false shares in the recon-
struction phase, this will be detected by the VSS as shown
in Theorems 12 and 13. The practicality of the scheme is
analyzed in Appendix 6.

6. CONCLUSION

In this work, we pointed out certain security concerns
for three VSS schemes based on the CRT in the lit-
erature. To the best of our knowledge, there exist five
such schemes [14–18] where two of them [15,16] were
already proven to be insecure. In this work, we first show
that two of the remaining schemes [17,18] are also inse-
cure, and the remaining one [14] is only secure against a

computationally bounded adversary. We propose a modifi-
cation for this scheme and prove that the modified scheme
is a secure VSS scheme against an unbounded adversary.
Lastly, as an application, we show how to use the new
scheme for JRSS.
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APPENDIX A: PRACTICALITY AND
EFFICIENCY OF THE SCHEMES

If both q and 2q+1 are prime numbers, q is called a Sophie
Germain prime. It is believed that the number of Sophie
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Table II. Number of Sophie Germain primes less than N[31].
The second column is the actual number of Sophie Germain

primes less than N. The third and fourth columns are the
integral and ratio approximations on the left and right side

of (A.1), respectively.

N Actual Integral Ratio

1 000 000 7746 7811 6917
10 000 000 56 032 56 128 50 822
100 000 000 423 140 423 295 389 107
1 000 000 000 3 308 859 3 307 888 3 074 425
10 000 000 000 26 569 515 26 568 824 24 902 848
100 000 000 000 218 116 524 218 116 102 205 808 662

Germain primes is infinite and because of the conjecture
of Hardy and Littlewood[30], for sufficiently large N, the
number of Sophie Germain primes less than N is

2C
Z N

2

dx

log x log 2x
�

2CN

(ln N)2
, (A.1)

where C � 0.66 is the twin prime constant. The accuracy
of the conjecture and the ratio is in Table II.

For the proposed VSS, a sequence m1 < m2 < � � � <
mn consisting of n Sophie Germain primes is needed.
Also, for security issues, this sequence must also satisfy
inequality (1). Let us assume that p, the number of secret
candidates, is a k-bit prime. From (1), first, each mi must
be at least a 2k-bit Sophie Germain prime. We know that
such primes exist because the number of Sophie Germain
primes is infinite. Second, we need to know that we can
find a Sophie Germain sequence for every t, n, and k such
that the product of the t smallest numbers in the sequence
is larger than the product of the t – 1 largest ones and p2.
Note that the Hardy–Littlewood conjecture says that the
density of the Sophie Germain primes less than N is pro-
portional to 1/(ln N)2, where the prime number theorem
says that the density of primes less than N is proportional
to 1/(ln N). Hence, considering N 	 ln N, finding an
Asmuth-Bloom sequence with Sophie Germain primes sat-
isfying (1) should not be much harder than finding such a
sequence with ordinary primes.

An analysis of the existence of a desired sequence and
the information rate of the proposed schemes can be given

as follows: let p be a k-bit prime. Provided that 2k 	 n, the
number of 2k-bit Sophie Germain primes is approximately
equal to

2C22k+1

(ln 22k+1)2
–

2C22k

(ln 22k)2

=
C22k+1

(ln 2)2

�
2

(2k + 1)2
–

1

(2k)2

�

which is much greater than n. Let m1 be a 2k-bit Sophie
Germain prime and ` = ln m1. Let mi be the (i – 1)st
Sophie Germain prime after m1. Because of (A.1), we can
assume that mi � m1 + (i – 1)`2. Note that the ratio mi/mj

for i < j is bounded previously by
�

1 + n`2/m1

�
. Hence,

the inequality

m1 >
p2Qt–1

i=1 mn–i+1Qt–1
i=1 mi+1

is satisfied when

m1 > p2

 
1 +

n`2

m1

!t–1

Because m1 	 n`2 and m1 	 t, we can choose m1 �

p2, and the information rate of the VSS scheme becomes
|p|/|mn| � |p|/|p2 + 4n(ln p)2| � 1/2. A similar analysis can
be carried out for the JRSS scheme as well: Equation (1) is
replaced by (5); hence,

m1 > n p2

 
1 +

n`2

m1

!t–1

So the information rate is again

|p|

|n p2 + 4n(ln p)2|
�

1

2

respectively. Although the proposed scheme is not ideal,
they are highly practical because the information rate is
only 1/2.
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