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Abstract

Motivation: High throughput DNA sequencing (HTS) technologies generate an excessive number

of small DNA segments -called short reads- that cause significant computational burden. To ana-

lyze the entire genome, each of the billions of short reads must be mapped to a reference genome

based on the similarity between a read and ‘candidate’ locations in that reference genome. The

similarity measurement, called alignment, formulated as an approximate string matching problem,

is the computational bottleneck because: (i) it is implemented using quadratic-time dynamic pro-

gramming algorithms and (ii) the majority of candidate locations in the reference genome do not

align with a given read due to high dissimilarity. Calculating the alignment of such incorrect candi-

date locations consumes an overwhelming majority of a modern read mapper’s execution time.

Therefore, it is crucial to develop a fast and effective filter that can detect incorrect candidate loca-

tions and eliminate them before invoking computationally costly alignment algorithms.

Results: We propose GateKeeper, a new hardware accelerator that functions as a pre-alignment

step that quickly filters out most incorrect candidate locations. GateKeeper is the first design to ac-

celerate pre-alignment using Field-Programmable Gate Arrays (FPGAs), which can perform pre-

alignment much faster than software. When implemented on a single FPGA chip, GateKeeper

maintains high accuracy (on average>96%) while providing, on average, 90-fold and 130-fold

speedup over the state-of-the-art software pre-alignment techniques, Adjacency Filter and Shifted

Hamming Distance (SHD), respectively. The addition of GateKeeper as a pre-alignment step can re-

duce the verification time of the mrFAST mapper by a factor of 10.

Availability and implementation: https://github.com/BilkentCompGen/GateKeeper

Contact: mohammedalser@bilkent.edu.tr or onur.mutlu@inf.ethz.ch or calkan@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High throughput sequencing (HTS) technologies are capable of gen-

erating a tremendous amount of sequencing data. For example, the

Illumina HiSeq4000 platform can generate more than 1.5 trillion

base pairs (bp) in less than four days. This flood of sequenced data

continues to overwhelm the processing capacity of existing algo-

rithms and hardware (Canzar and Salzberg, 2015). The success of

the medical and genetic applications of HTS technologies relies on
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the existence of sufficient computational resources, which can

quickly analyze the overwhelming amounts of data that the sequen-

cers generate. An HTS instrument produces short reads (typically

75–150 bp) sampled randomly from DNA. In the presence of a refer-

ence genome, the short reads are first mapped to the long reference

sequence. During this process, called read mapping, each short read

is mapped onto one or more possible locations in the reference gen-

ome based on the similarity between the short read and the reference

sequence segment at that location. Optimal alignment of the read

and the reference segment could be calculated using the Smith-

Waterman local alignment algorithm (Smith and Waterman, 1981).

However, this approach is infeasible as it requires O(mn) running

time, where m is the read length (100–150 bp for Illumina) and n is

the reference length (�3.2 billion bp for human genome), for each

read in the dataset (hundreds of millions to billions). Therefore, read

mapping algorithms apply heuristics to first find candidate map lo-

cations (seed locations) of subsequences of the reads using hash

tables (Alkan et al., 2009; David et al., 2011; Hach et al., 2010;

Homer et al., 2009; Xin et al., 2013) or BWT-FM indices

(Langmead and Salzberg, 2012; Langmead et al., 2009; Li and

Durbin, 2009; Li et al., 2004), and then align the read in full only to

those seed locations. Although the strategies for finding seed loca-

tions vary among different read mapping algorithms, seed location

identification is typically followed by a verification step, which com-

pares the read to the reference segment at the seed location to check if

the read aligns to that location in the genome with fewer differences

than a threshold. The verification step is the dominant part of the

whole execution time in current mappers (over 90% of the running

time) (Cheng et al., 2015; Xin et al., 2013). It calculates edit distance

using quadratic-time algorithms such as Levenshtein’s edit distance

(Levenshtein, 1966), Smith-Waterman (Smith and Waterman, 1981)

and Needleman-Wunsch (Needleman and Wunsch, 1970). Edit dis-

tance is defined as the minimum number of edits (i.e. insertions, dele-

tions, or substitutions) needed to make the read exactly match the

reference segment (Levenshtein, 1966). If the edit distance score is

greater than a user-defined edit distance threshold (usually less than

5% of the read length (Ahmadi et al., 2012; Hatem et al., 2013; Xin

et al., 2015)), then the mapping is considered to be invalid (i.e. the

read does not match the segment at seed location) and thus is rejected.

DEFINITION 1. Given a candidate read r, a reference segment f,

and an edit distance threshold E, the pairwise alignment problem is

to identify a set of matches of r in f, where the read aligns with an

edit distance�E.

Recent work found that an overwhelming majority (>98%) of

the seed locations exhibit more edits than the threshold (Xin et al.,

2013, 2015). These particular seed locations impose a large compu-

tational burden as they waste 90% of the mapper’s execution time

in verifying these incorrect mappings (Cheng et al., 2015; Xin et al.,

2013). To tackle these challenges and bridge the widening gap be-

tween the execution time of the mappers and the increasing amount

of sequencing data, most existing works fall into two approaches: (i)

Design hardware accelerators to accelerate the verification step

(Arram et al., 2013; Houtgast et al., 2015; Liu et al., 2012; Luo

et al., 2013; Olson et al., 2012; Waidyasooriya et al., 2014). (ii)

Build software-based alignment filters before the verification step

(Cheng et al., 2015; Marco-Sola et al., 2012; Rasmussen et al.,

2006; Ukkonen, 1992; Weese et al., 2009, 2012; Xin et al., 2013,

2015). Such filters aim to minimize the number of candidate loca-

tions on which alignment is performed. They calculate a best guess

estimate for the alignment score between a read and a seed location

on the reference. If the lower bound exceeds a certain number of

edits, indicating that the read and the segment at the seed location

do not align, the seed location is eliminated such that no alignment

is performed. Unfortunately, existing filtering techniques are either

slow, such as Shifted Hamming distance (SHD) (Xin et al., 2015), or

inaccurate in filtering, such as the Adjacency Filter (Xin et al., 2013)

(implemented as part of FastHASH (Xin et al., 2013)) and

mrsFAST-Ultra (Hach et al., 2014)). While mrsFAST-Ultra is able to de-

tect only substitutions, FastHASH is unable to tolerate substitutions ef-

ficiently. We provide full descriptions of the key principles underlying

each strategy in Supplementary Material, Section S1.2.

Our goal, in this work, is to minimize the mapper time spent on

accurate alignment filtering. To this end, we introduce a new FPGA-

based fast alignment filtering technique (called GateKeeper) that

acts as a pre-alignment step in read mapping. To our knowledge,

this is the first work that provides a new pre-alignment algorithm

and architecture using reconfigurable hardware platforms. A fast fil-

ter designed on a specialized hardware platform can drastically ex-

pedite alignment by reducing the number of locations that must be

verified via dynamic programming. This eliminates many unneces-

sary expensive computations, thereby greatly improving overall run

time.

Our filtering technique improves and accelerates the state-of-the-

art SHD filtering algorithm (Xin et al., 2015) using new mechanisms

and FPGAs. We build upon the SHD algorithm as it is the fastest

and the most accurate filter (Xin et al., 2015). Our new filtering al-

gorithm has two properties that make it suitable for an FPGA-based

implementation: (i) it is highly parallel, (ii) it heavily relies on bit-

wise operations such as shift, XOR and AND. Due to the highly par-

allel and bitwise-processing-friendly architecture of modern FPGAs,

our design achieves more than two orders of magnitude speedup

compared to the best prior software-based filtering approaches

(SHD and Adjacency Filter), as our comprehensive evaluation shows

(Section 3). Our architecture discards the incorrect mappings from

the candidate mapping pool in a streaming fashion – data is pro-

cessed as it is transferred from the host system. Filtering the map-

pings in a streaming fashion gives the ability to integrate our filter

with any mapper that performs alignment, such as Bowtie2

(Langmead and Salzberg, 2012) and BWA-MEM (Li, 2013).

Contributions. We make the following contributions:

• We introduce the first hardware acceleration system for align-

ment filtering, called GateKeeper, which greatly reduces the need

for alignment verification in DNA read mapping. To this end, we

develop both a hardware-acceleration-friendly filtering algorithm

and a highly parallel hardware accelerator design. We show that

developing a hardware-based alignment filtering algorithm and

architecture together is both feasible and effective by building

our accelerator on a modern FPGA system.
• We comprehensively evaluate GateKeeper and compare it to two

state-of-the-art software-based alignment filtering algorithms.

A key result is that our design for reads of length 100 bp on a sin-

gle FPGA chip provides, on average, 90-fold and 130-fold speedup

over the state-of-the-art filters, Adjacency Filter (Xin et al., 2013)

and SHD (Xin et al., 2015), respectively. Experimental results on

both simulated and real datasets demonstrate that GateKeeper has

a low false positive rate (the rate of incorrect mappings that are ac-

cepted by the filter) of 4% on average.
• We provide the design and implementation of a complete FPGA

system and release its source code. To our knowledge,

GateKeeper is the first open-source, freely available FPGA based

alignment filter for genome analysis.
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2 Gatekeeper architecture

2.1 Overview of our accelerator architecture
Based on the discussion provided in the Supplementary Material,

Section 1.2, we introduce the first specialized FPGA-friendly hard-

ware architecture for a new alignment filtering algorithm. The over-

all architecture, implementation details and flowchart

representation of GateKeeper are discussed in the Supplementary

Material, Section 1.3.1. Our current filter implementation relies on

several optimization methods to create a robust and efficient filter-

ing approach. At both the design and implementation stages, we sat-

isfy several requirements: (i) Ensuring a lossless filtering algorithm

by preserving all correct mappings. (ii) Supporting both Hamming

distance and edit distance. The Hamming distance is a special case

of the edit-distance. It is defined as the minimum number of substi-

tutions required to change the read into the reference segment. The

Hamming distance is computed in linear time. (iii) Examining the

alignment between a read and a reference segment in a fast and effi-

cient way (in terms of execution time and required resources).

2.2 Parallelization
GateKeeper is designed to utilize the large amounts of parallelism

offered by FPGA architectures (Aluru and Jammula, 2014; Herbordt

et al., 2007; Trimberger, 2015). The use of FPGAs can yield sig-

nificant performance improvements, especially for massively parallel

algorithms. FPGAs are the most commonly used form of reconfigur-

able hardware engines today, and their computational capabilities

are greatly increasing every generation due to increased number of

transistors on the FPGA chip. An FPGA chip can be programmed

(i.e. configured) to include a very large number of hardware execu-

tion units that are custom-tailored to the problem at hand. We take

advantage of the fact that alignment filtering of one read is inher-

ently independent of filtering of another read. We therefore can

examine many reads in a parallel fashion. In particular, instead of

handling each read in a sequential manner, as CPU-based filters (e.g.

SHD) do, we can process a large number of reads at the same time

by integrating as many hardware filtering processing cores as pos-

sible (constrained by chip area) in the FPGA chip. Each processing

core is a complete alignment filter and can handle a single read at a

time. We use the term ‘processing core’ in this paper to refer to the

entire operation of the filtering process involved in GateKeeper.

Processing cores are part of our architecture and are unrelated to the

term ‘CPU cores’ or ‘threads’.

2.3 GateKeeper processing core
Our primary purpose is to enhance the state-of-the-art SHD align-

ment filter such that we can greatly accelerate pre-alignment by tak-

ing advantage of the capabilities and parallelism of FPGAs. To

achieve our goal, we design an algorithm inspired by SHD to reduce

both the utilized resources and the execution time. These optimiza-

tions enable us to integrate more processing cores within the FPGA

chip and hence examine many alignments at the same time. We pre-

sent three new methods that we use in each GateKeeper processing

core to improve execution time. Our first method introduces a new

algorithmic method for performing alignment very rapidly com-

pared to the original SHD. This method provides: (1) fast detection

for exact matching alignment and (2) handling of one or more base-

substitutions. Our second method supports calculating the edit dis-

tance with a new, very efficient hardware design. Our third method

addresses the problem of hardware resource overheads introduced

due to the use of FPGA as an acceleration platform. We provide the

workflow of GateKeeper including the three optimization methods

in the Supplementary Material, Figure S8. All features are imple-

mented within the filtering processing core hardware and thus are

performed highly efficiently. Next, we describe the three new

methods.

2.3.1 Method 1: Fast approximate string matching

We first discuss how to examine the alignment of reads against the

reference sequence with a given Hamming distance threshold, and

later extend our solution to support edit distance. Our first method

aims to quickly detect the obviously-correct alignments that contain

no edits or only few substitutions (i.e. less than the user-defined

threshold). If the first method detects a correct alignment, then we

can skip the other two methods but we still need the optimal align-

ment algorithms. A read is mappable if the Hamming distance be-

tween the read and its seed location does not exceed the given

Hamming distance threshold. Hence, the first step is to identify all

bp matches by calculating what we call a Hamming mask. The

Hamming mask is a bit-vector of ‘0’s and ‘1’s representing the com-

parison of the read and the reference, where a ‘0’ represents a bp

match and a ‘1’ represents a bp mismatch. We need to count only

occurrences of ‘1’ in the Hamming mask and examine whether their

total number is equal to or less than the user-defined Hamming dis-

tance threshold. If so, the mapping is considered to be valid and the

read passes the filter. Similarly, if the total number of ‘1’ is greater

than the Hamming distance threshold then we cannot be certain

whether this is because of the high number of substitutions, or there

exist insertions and/or deletions; hence, we need to follow the rest of

our algorithm. Our filter can detect not only substitutions but also

insertions and deletions in an efficient way, as we discuss next.

2.3.2 Method 2: Insertion and deletion (indel) detection

Our indel detection algorithm is inspired by the original SHD algo-

rithm presented in (Xin et al., 2015). If the substitution detection re-

jects an alignment, then GateKeeper checks if an insertion or

deletion causes the violation (i.e. high number of edits). Figure 1 il-

lustrates the effect of occurrence of edits on the alignment process. If

there are one or more base-substitutions or the alignment is exact

matching, the matching and mismatching regions can be accurately

determined using Hamming distance. As the substitutions have no

effect on the alignment of subsequent bases, the number of edits is

equivalent to the number of ‘1’s in the resulting Hamming mask. On

the other hand, each insertion and deletion can shift multiple trailing

bases and create multiple edits in the Hamming mask. Thus, pair-

wise comparison (bitwise XOR) between the bases of the read and

the reference segment is not sufficient. Our indel detection method

identifies whether the alignment locations of a read are valid, by

shifting individual bases. We need to perform E incremental shifts to

the right direction to detect any read that has E deletions, where E is

the edit distance threshold. The right shift process guarantees to can-

cel the effect of deletion. Similarly, we need to perform E incremen-

tal shifts to the left direction to detect any read that has E insertions.

As we do not have prior knowledge about whether there exist inser-

tions, or deletions, or both, we need to test for every possible case in

our algorithm. Thus, GateKeeper generates 2E Hamming masks re-

gardless the source of the edit. Each mask is generated after incre-

mentally shifting the candidate read against the reference and

performing pairwise comparison (i.e. bitwise XOR operation).

A segment of consecutive matches in the one-step right-shifted mask

GateKeeper 3357
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indicates that there is a single deletion that occurred in the read

sequence.

Since deletions and insertions affect only the trailing bases, we

need to have an additional Hamming mask that is generated with no

shifts. This mask helps detect the matches that are located before the

first indel. However, this mask is already generated as part of the

first method of the algorithm (i.e. Fast Approximate String

Matching). The last step is to merge all the 2Eþ1 Hamming masks

using a bitwise AND operation. This step tells us where the relevant

matching and mismatching regions reside in the presence of edits in

the read compared to the reference segment. We provide an example

of a candidate alignment with all masks that are generated by a sin-

gle GateKeeper processing core in the Supplementary Material,

Figure S9. Identical regions are identified in each shifted Hamming

mask as streaks of continuous ‘0’s. As we use a bitwise AND oper-

ation, a zero at any position in the 2Eþ1 Hamming masks leads to

a ‘0’ in the resulting final bit-vector at the same position. Hence,

even if some Hamming masks show a mismatch at that position,

a zero in some other masks leads to a match (‘0’) at the same pos-

ition. This tends to underestimate the actual number of edits and

eventually causes some incorrect mappings to pass. To fix this issue,

we build a new hardware-based amending process. The amending

process is first presented in the original SHD filter (Xin et al., 2015)

that actually amends (or flips) short streaks of ‘0’s (single or double

zeros) in each mask into ‘1’s such that they do not mask out ‘1’s in

other Hamming masks. Short streaks of ‘0’s do not represent identi-

cal sections and thus they are useless. As a result, bit streams such as

101, 1001 are replaced with 111 and 1111, respectively. In SHD,

the amending process is accomplished using a 4-bit packed shuffle

(SIMD parallel table-lookup instruction), shift and OR operations.

The number of computations needed is 4 packed shuffle, 4m bitwise

OR, and three shift operations for each Hamming mask, which is

(7þ4m)(2Eþ1) operations, where m is the read length. We find

that this is very inefficient for FPGA implementation. To reduce the

number of operations, we propose using dedicated hardware com-

ponents in FPGA slices. More precisely, rather than shifting the read

and then performing packed shuffle to replace patterns of 101 or

1001 to 111 or 1111 respectively, we perform only packed shuffle

independently and concurrently for each bit of each Hamming

mask. As illustrated in Figure 2, the proposed architecture for

amendment operations contains one 5-input look-up table (LUT)

dedicated for each output bit, except the first and last output bits.

We provide full details of our amending architecture in the

Supplementary Material (Section 1.3). Using this dedicated architec-

ture, we are able to get rid of the four shifting operations and per-

form the amending process concurrently for all bits of any

Hamming mask. Thus, the required number of operations is only

(2Eþ1) instead of (7þ4m)(2Eþ1) for a total of (2Eþ1)

Hamming masks. This saves a considerable amount of the filtering

time, reducing it by 407� for a read that is 100 bp long.

2.3.3 Method 3: Minimizing hardware resource overheads

The short reads are composed of a string of nucleotides from the

DNA alphabet
P
¼ {A, C, G, T}. Since the reads are processed in an

FPGA platform, the symbols have to be encoded in to a unique bin-

ary representation. We need 2 bits (log2j
P
j bits) to encode each

symbol. Hence encoding a read sequence of length m results in a

2m-bit word. Encoding the reads into a binary representation intro-

duces overhead to accommodate not only the encoded reads but

also the Hamming masks as their lengths also double (i.e. 2m). The

issue introduced by encoding the read can be even worse when we

apply certain operations on these Hamming masks. For example,

the number of LUTs required for performing the amending process

on the Hamming masks will be doubled, mainly due to encoding the

read. To reduce the complexity of the subsequent operations on the

Hamming masks and save about half of the required amount of

FPGA resources, we propose a new solution. We observe that com-

paring a pair of DNA nucleotides is similar to comparing their bin-

ary representations (e.g., comparing A to T is similar to comparing

‘00’ to ‘11’). Hence, comparing each two bits from the binary repre-

sentation of the read with their corresponding bits of the reference

segment generates a single bit that represents one of two meanings;

either match or mismatch between two bases. This is performed by

encoding each two bits of the result of the pairwise comparison (i.e.

bitwise XOR) into a single bit of ‘0’ or ‘1’ using OR operations in a

Fig. 1. An example showing how various types of edits affect the alignment

of two reads. In (a) the upper read exactly matches the lower read and thus

each base exactly matches the corresponding base in the target read. (b)

shows base-substitutions that only affect the alignment at their positions. (c)

and (d) demonstrate insertions and deletions, respectively. Each edit has an

influence on the alignment of all the subsequent bases

Fig. 2. Workflow of the proposed architecture for the parallel amendment

operations
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parallel fashion, as explained in Figure 3. This makes the length of

each Hamming mask equivalent to the length of the original read,

without affecting the meaning of each bit of the mask. The modified

Hamming masks are then merged together in 2E bitwise AND oper-

ations. Finally, we count the number of ones (i.e. edits) in the final

bit-vector mask; if the count is less than the edit distance threshold,

the filter accepts the mapping.

2.4 Novelty
GateKeeper is the only read mapping filter that takes advantage of

the parallelism offered by FPGA architectures in order to expedite

the alignment filtering process. GateKeeper supports both Hamming

distance and edit distance in a fast and efficient way. Each

GateKeeper processing core performs all operations defined in the

GateKeeper algorithm (Supplementary Material, Section 1.3,

Algorithm 1). Table 1 summarizes the relative benefits gained by

each of the aforementioned optimization methods over the best pre-

vious filter, SHD (E is the user-defined edit distance threshold and

m is the read length). When a read matches the reference exactly, or

with few substitutions, GateKeeper requires only 2m bitwise XOR

operations, providing substantial speedup compared to SHD, which

performs a much greater number of operations. However, this is not

the only benefit we gain from our first proposed method (i.e. Fast

Approximate String Matching). As this method provides an accurate

examination for alignments with only substitutions (i.e. no deletions

or insertions), we can directly skip calculating their optimal align-

ment using the computationally expensive alignment algorithms (i.e.

verification step). For more general cases such as deletions and inser-

tions, GateKeeper still requires far fewer operations (as shown in

Table 1) than the original SHD filter, due to the optimization meth-

ods outlined above. Our improvements over SHD help drastically

reduce the execution time of the filtering process. The rejected align-

ments by our GateKeeper filter are not further examined by a verifi-

cation step. Thus, GateKeeper leads to the acceleration of the entire

read mapping process, as our evaluation quantitatively shows

(Section 3).

3 Evaluation

To implement and evaluate GateKeeper, we use a Xilinx VC709

board (Xilinx, 2014), which features a Virtex-7 XC7VX690T-

2FFG1761C FPGA (Xilinx, 2015), and a 3.6 GHz Intel i7-3820

CPU with 8 GB RAM as the host and to run all experiments. We

build the FPGA design with Vivado 2014.4 in Verilog. We use

RIFFA 2.2 (Jacobsen et al., 2015) to perform the host-FPGA PCIe

communication. We configure RIFFA 2.2 as Gen3 4-lane PCIe.

3.1 Theoretical speedup
We first examine the maximum speedup theoretically possible with

our architecture, assuming the only constraint in the system is the

FPGA logic. To this end, we calculate the number of mappings that

our accelerator board can potentially examine in parallel using as

many GateKeeper processing cores as possible. Table 2 shows the re-

source utilization of a single processing core for two read lengths of

100 and 300 bp, with different edit distance thresholds. We find that

a single processing core for a read length of 300 bp shows 3-fold in-

crease in the number of LUTs compared to its counterpart for a read

length of 100 bp, for the same edit distance threshold. This observa-

tion is supported by theory: as we show in Table 1, the number of

operations of GateKeeper is proportional to both read length and

edit distance threshold. Based on the resource report in Table 2, we

estimate that we can design GateKeeper, on the VC709 FPGA, to

process up to 140 alignments of 100 bp reads and edit distance

threshold of up to 5% in parallel in a single clock cycle. The number

of alignments drops to 20 for a read length of 300 bp and E¼15.

The bottleneck in this idealized system is transferring a total of

28 000 (140 alignment � 100 bp � 2 bits for encoding) bits in a sin-

gle clock cycle into the FPGA, which is not practical for any of the

existing PCIe drivers that supply data to the FPGA. For instance,

RIFFA (Jacobsen et al., 2015) transmits the mapping pairs into the

FPGA in ‘packages’ of 128 bits per clock cycle at a clock speed of

250 MHz (i.e. 4 nanoseconds). We conclude that the theoretical

speedup provided by GateKeeper is extremely large, but practical

speedup, which we will examine next, is mainly limited by the data

transfer rate into the accelerator.

Fig. 3. An example of applying our solution for reducing the number of bits of

each Hamming mask by half. We use a modified Hamming mask to store the

result of applying the bitwise OR operation to each two bits of the Hamming

mask. The modified mask maintains the same meaning of the original

Hamming mask

Table 1. Overall benefits of GateKeeper over SHD in terms of num-

ber of operations performed

# of operations for SHD:

� m(2Eþ1) bitwise XORb. � 4m(2Eþ1) bitwise OR.a

� 2E shift. � 4(2Eþ1) packed shuffle.a

� 3(2Eþ1) shift.a

# of operations for GateKeeper:

For Substitution Detection For Indel Detection

� 2m bitwise XOR. � 2m(2Eþ1) bitwise XOR.

� 2E shift.

� m(2Eþ1) bitwise OR.

� (2Eþ1) look-up table.a

aThis operation is required for the amending process.
bE: edit distance threshold. m: read length.

Table 2. FPGA resource utilization for a single GateKeeper core

Resource utilization %

Read length 100 bp 300 bp

Edit distance 2 5 2 5 15

Slice LUTa 0.39% 0.71% 1.27% 2.2% 4.82%

Slice Registerb 0.01% 0.01% 0.01% 0.01% 0.01%

aLUT: look-up tables.
bFlip-flop.
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3.2 Experimental speedup
Throughput and resource analysis. Filtering speed of GateKeeper is

dependent on the total number of concurrent processing cores and

the clock frequency. The number of processing cores is determined

by the maximum data throughput and the available FPGA re-

sources. The operating frequency of the accelerator is 250 MHz. At

this frequency, we observe a data throughput of nearly 3.3 GB/s,

which corresponds to �13.3 billion bases per second, nearly reach-

ing the maximum throughput of 3.64 GB/s provided by the RIFFA

communication channel that feeds data into the FPGA (Jacobsen

et al., 2015). Table 3 lists the resource utilization of the entire design

including the PCIe communication logic, for various read lengths

and edit distance thresholds. For a read length of 100 bp, we find

that we can align each read against up to 16 different reference seg-

ments in parallel, without violating the timing constraints (e.g. max-

imum operating frequency). This design occupies about 50% of the

available FPGA resources (i.e. slice LUTs). We find that as read

length increases, timing constraints of the design can be violated. By

pipelining the design (i.e. shortening the critical path delay of each

processing core by dividing it into stages or smaller tasks), we can

meet the timing constraints and achieve more parallelism. However,

pipelining the design comes with the expense of increased register

utilization. For a read length of 300 bp, GateKeeper can process up

to 8 alignments concurrently and use 91% of the available registers.

As our design is FPGA-platform independent, FPGAs with higher

logic density (such as Xilinx UltraScaleþFPGAs) can be used, to

achieve more parallelism and higher data throughput. Next, we

evaluate the effect of varying the number of processing cores on the

execution time of GateKeeper.

Speedup versus existing filters. We now evaluate the execution

time of GateKeeper compared to the best existing filters. We use

mrFAST (Alkan et al., 2009) mapper to retrieve all potential map-

pings (read-reference pairs) from two datasets. The first set

(ERR240727_1) contains about 4 million real reads, each of length

100 bp, from the 1000 Genomes Project Phase I (Consortium,

2012). The second set contains about 100 thousand reads, each of

length 300 bp, simulated from the human genome using the mason

simulator (http://packages.seqan.de/mason/). Figure 4 shows the

number of mappings that are processed by GateKeeper (with differ-

ent numbers of processing cores), SHD, and the Adjacency Filter

within 40 minutes. To ensure as fair a comparison as possible, we

evaluate Gate Keeper using a single FPGA chip and run both SHD

and the Adjacency Filter using a single CPU core. We believe our

comparison is fair because we compare GateKeeper running on a

part of a single FPGA chip to SHD/Adjacency-Filter running on a

part of a single CPU (Section 1.5, Supplementary Material). Both

SHD and the Adjacency Filter are software filters (i.e. cannot run on

an FPGA) and they do not support multithreading. SHD supports a

read length up to only 128 bp (due to SIMD registers size). Under

different edit distance thresholds (up to 5% of the read length),

GateKeeper provides consistently good performance.

On average, GateKeeper for 100 bp reads is 130x faster than

SHD and 90� faster than the Adjacency Filter. For longer reads (i.e.

300 bp), GateKeeper is also, on average, 10� faster than the

Adjacency Filter. As edit distance threshold increases, Gatekeeper’s

speedup over SHD and the Adjacency Filter also increases (e.g. up to

105� and 215� faster than the Adjacency Filter and SHD, respect-

ively, when E¼5 edits and read length¼100 bp). This is because

our architecture offers the ability to perform all computations in a

parallel fashion (as we explained when we described our three new

methods in the GateKeeper core). Note that the Adjacency Filter be-

comes faster than SHD as E increases, but at the expense of accur-

acy, as we will show soon. We conclude that GateKeeper greatly

improves the performance of alignment filtering by at least one

order of magnitude. GateKeeper also scales very well over a wide

range of both edit distance thresholds and read lengths.

3.3 Filtering accuracy
An ideal filter should be both fast and accurate in rejecting the incor-

rect mappings. We evaluate the accuracy of GateKeeper by comput-

ing its true negative, false positive and false negative rates. We use

the Needleman-Wunsch algorithm to benchmark the three filters as

this algorithm has both zero false positive and zero false negative

rates. To evaluate the accuracy of SHD regardless of the limitation

of its SIMD implementation (i.e. limited read length), we implement

SHD in C and refer to it as SHD-C. We also compare the accuracy

of our filter with SHD and the Adjacency Filter using both simulated

and real mapping pairs. We simulate reads from the human genome

using the mason simulator. The configuration and parameters used

in our experiment are provided in Supplementary Material (Section

1.4). We generate five sets, each of which contains 400 000

Illumina-like reads. Each set has an equal number of reads of length

64, 100, 150 and 300 bp. While two sets have a low number of dif-

ferent types of edits, the other three sets have a high number of sub-

stitutions, insertions and deletions. The purpose of simulating the

low-edit reads is that we want most of the reads to have edits less

than the allowed threshold. This enables us to quantify the false

negatives (i.e. correct mappings that are rejected by the filter) of the

three filters with different read lengths. On the other hand, we use

the edit-rich reads to evaluate the robustness of the three filters to

Table 3. Overall system resource utilization under different read

lengths and edit distance thresholds

Resource utilization %

Read length 100 bp 300 bp

Edit distance 2 5 2 15

Slice LUT 32% 45% 50% 69%

Slice register 2% 2% 17% 91%

Block memory 2% 2% 2% 2%

Fig. 4. Performance of GateKeeper, SHD, and the Adjacency Filter in terms of

the number of examined mappings across different edit distance thresholds

and read lengths. The y-axis is on a logarithmic scale. SHD does not support

300 bp long reads
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incorrect mappings. This enables us to quantify both the false posi-

tives and true negatives. While the false positive rate is the rate of in-

correct mappings that are accepted by the filter, the true negative

rate is the rate of incorrect mappings that are rejected by the filter.

Figure 5(a) shows the result of this experiment. We also consider a

more realistic scenario in which reads can have a combination

of substitutions and indels. Instead of simulated reads, we use the

first 30 million pairs produced by mrFAST when the dataset

ERR240727_1 mapped to the human genome to evaluate both the

false positive and true negative rates of the three filters, as shown in

Figure 5(b).

Based on these results, we make five main observations. (i) Using

the low-edit reads, we observe that the three filters never filter out

correct mappings; hence, they provide a lossless filtering mechanism

with a false negative rate of zero. (ii) We find that GateKeeper is

very effective and superior to the Adjacency Filter at both substitu-

tion and indel detection. Figure 5(a) shows the average false positive

and true negative rates of the three filters, respectively, using the

three simulated edit-rich sets. We observe that both GateKeeper and

SHD have the same false positive and true negative rates. (iii) On

average, GateKeeper produces a false positive rate of 4%, which is

much smaller (on average, 0.25�) than that of the Adjacency Filter.

(iv) GateKeeper rejects a significant fraction of incorrect mappings

(e.g. 84% to 99.9% of the mappings, depending on the edit distance

threshold used) and thus avoids expensive verification computations

required by alignment algorithms. GateKeeper rejects up to 20%

more incorrect mappings than the Adjacency Filter. (v) The

Adjacency Filter is more robust in handling indels than in handling

substitutions. This is expected as the presence of one or more substi-

tutions in any seed is counted by the Adjacency Filter as a single mis-

match. The effectiveness of the Adjacency Filter for substitutions

and indels diminishes when E becomes larger than 3%. The de-

tailed results for each of the three edit-rich sets are provided in

the Supplementary Material (Section 1.4). We conclude that

Gatekeeper’s accuracy is as good as that of the best previous filter,

SHD, and much better than that of the Adjacency Filter yet

GateKeeper is much faster than both SHD and the Adjacency Filter

(as we showed earlier). Hence, GateKeeper is extremely fast and

accurate.

3.4 Verification
GateKeeper is a standalone filter and can be integrated with any

existing reference-based mapper. GateKeeper does not replace the

local/global alignment algorithms (e.g. Smith–Waterman (Smith and

Waterman, 1981) and Needleman–Wunsch (Needleman and

Wunsch, 1970)). GateKeeper should be followed by an alignment

verification step, which precisely verifies the alignments that pass

our filter and eliminates the false positives (as provided in the

Supplementary Material, Fig. S9). The verification step is accurate

and admits zero false positive rate. It also allows specifying a cost to

each edit (i.e. a scoring system). Such integration is mapper-specific

and will be explored in detail for various mappers in our future re-

search. In this work, we mainly focus on and deeply evaluate the

benefits and downsides of our filtering algorithm and architecture

independently of any mapper it can be combined with. Nonetheless,

we have a preliminary assessment on the overall benefits of integrat-

ing GateKeeper with the mrFAST mapper (Alkan et al., 2009).

We select mrFAST for two main reasons. (i) It already includes

the Adjacency Filter (Xin et al., 2013) as a pre-alignment step, so it

constitutes a state-of-the-art baseline. (ii) It utilizes a banded

Levenshtein edit distance algorithm (Ukkonen, 1985) that is paral-

lelized using the Intel SSE instructions, and thus it utilizes the

capabilities of state-of-the-art hardware. Table 4 summarizes the ef-

fect of pre-alignment on the overall mapping time, when all reads

from ERR240727_1 (100 bp) and Set_5 (300 bp, mason-simulated

deletion-rich reads) are mapped to the human genome with an edit

distance threshold of 5%. We make three observations. (i)

GateKeeper is at least 41 times faster than the banded dynamic pro-

gramming alignment algorithm (Ukkonen, 1985). (ii) The verifica-

tion time drops by a factor of 10 after replacing the Adjacency Filter

with GateKeeper as the pre-alignment step. (iii) GateKeeper reduces

Table 4. Overall mrFAST mapping time (in hours) with and without a pre-alignment step, with an edit distance threshold of 5%

Read length/E mrFAST version/pre-alignment type Filtering & verification time (speed-up) Overall mapping time (speed-up)

100 bp /5 edits 2.1/No Pre-alignment 22.60 h (1�) 24.27 h (1�)

2.6/Adjacency Filter 5.65 h (4�) 7.31 h (3.3�)

2.1/GateKeeper 0.55 h (41�) 2.50 h (9.7�)

300 bp /15 edits 2.1/No Pre-alignment 0.94 h (1�) 1.02 h (1�)

2.6/Adjacency Filter 0.04 h (24�) 0.12 h (8�)

2.1/GateKeeper 0.003 h (279�) 0.09 h (11�)

(a)

(b)

Fig. 5. Accuracy of GateKeeper, SHD and the Adjacency Filter across different

edit distance thresholds (E) and read lengths. We calculate the false positive

[Falseþves] and true negative [True -ves] rates using (a) simulated and

(b) real mapping pairs
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the overall mapping time of mrFAST (mrFAST-2.6) by a factor of

1.3–3. Details are provided in the Supplementary Material, Section

1.6.

4 Future work

GateKeeper shows that there is a great benefit in designing an align-

ment filtering accelerator to handle the flood of sequenced data. Since

a single-core GateKeeper has only a small footprint on the FPGA, we

can combine our architecture with any of the FPGA-based accelerators

for BWT-FM or hash-based mapping techniques on a single FPGA

chip. With such a combination, the end result would be an efficient

and fast multi-layer mapping system: alignments that pass GateKeeper

can be further verified using a dynamic programing based alignment al-

gorithm within the same chip. We leave this combination for future

work. Another potential target of our research is to influence the design

of more intelligent and attractive sequencing machines by integrating

GateKeeper inside them, to perform real-time pre-alignment. This ap-

proach has two benefits. First, it can hide the complexity and details of

the underlying hardware from users who are not necessarily fluent in

FPGAs (e.g. biologists and mathematicians). Second, it allows a signifi-

cant reduction in total genome analysis time by starting read mapping

while still sequencing (Lindner et al., 2016). Our next efforts will also

focus on investigating the sources of the false positives and explore the

possibility of eliminating them to achieve a dynamic-programming-free

alignment approach or a more accurate filter.

5 Summary

In this paper, we propose the first hardware accelerator architecture

for pre-alignment in genome read mapping. In our experiments,

GateKeeper can filter up to �4 trillion mappings within 40 mins

using a single FPGA chip while preserving all correct ones.

Comparison against the best two software-based alignment filters

reveals the following: (i) Our filter provides, on average, 90-fold and

130-fold speedup compared to the Adjacency Filter and SHD, re-

spectively. (ii) Our filter is as accurate as the SHD and 4 times more

accurate than the Adjacency Filter. We conclude that GateKeeper is

both a fast and an accurate filter that can improve the performance

of existing and future read mappers. Our preliminary results show

that the addition of GateKeeper as the pre-alignment step can reduce

the filtering and verification time of the mrFAST mapper by a factor

of 10.

Our design is open source and freely available online. To our

knowledge, GateKeeper is the first open-source FPGA-based align-

ment filtering accelerator for genome analysis. As such, we hope

that it catalyzes the development and adoption of such hardware ac-

celerators in genome sequence analysis, which are becoming increas-

ingly necessary to cope with the processing requirements of greatly

increasing amounts of genomic data.
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