
Sharing DSS by the Chinese Remainder

Theorem

Kamer Kaya, Ali Aydın Selçuk

Department of Computer Engineering
Bilkent University

Ankara, 06800, Turkey
{kamer,selcuk}@cs.bilkent.edu.tr

November 16, 2008

Abstract

A new threshold scheme for the Digital Signature Standard is proposed using
Asmuth-Bloom secret sharing based on the Chinese Remainder Theorem. The
proposed scheme is simple and can be used practically in real life.

Keywords: Asmuth-Bloom secret sharing, threshold cryptography, function
sharing, DSS.

1 Introduction

Threshold cryptography deals with the problem of sharing a highly sensitive secret
among a group of n users so that only when a sufficient number t of them come
together can the secret be reconstructed. This problem is known as the secret sharing
problem and several secret sharing schemes (SSS) have been proposed in the literature
(e.g., [1, 2, 8]).

Another problem threshold cryptography deals with is the function sharing prob-
lem. A function sharing scheme (FSS) requires distributing the function’s computa-
tion according to the underlying SSS such that each part of the computation can be
carried out by a different user and then the partial results can be combined to yield
the function’s value without disclosing individual secrets. All FSSs in the literature,
e.g., [3, 4, 7, 9], proposed for various cryptosystems have traditionally used Shamir’s
SSS [8] until a recent work by Kaya and Selçuk [6] which showed how to use the
Asmuth-Bloom SSS (AB-SSS [1] for function sharing.

The Digital Signature Standard (DSS) is the current U.S. standard for digital
signatures. Sharing DSS is an interesting problem and a neat solution was given

1

by Gennaro et al. [5] based on Shamir’s SSS. Here we give an alternative solution for
this problem based on a modified version of the Asmuth-Bloom SSS (AB-SSS).

The rest of the paper is organized as follows: In Section 2 and 3, we describe the
Digital Signature Standard and the Asmuth-Bloom secret sharing scheme, respec-
tively. In Section 4, the threshold DSS scheme based on the Asmuth-Bloom SSS is
proposed. Section 5 concludes the paper.

2 Digital Signature Standard:

The DSS is summarized below:

• Key Generation Phase: Let p and q be large prime numbers where q|p− 1 and
g ∈ Z∗p be an element of order q. The private key α ∈R Z∗q is chosen randomly
and the public key β = gα mod p is computed.

• Signing Phase: The signer first chooses a random ephemeral key k ∈R Z∗q and
then computes the signature (r, s) where

r = (gk
−1

mod p) mod q
s = k(w + αr) mod q

for a hashed message w ∈ Zq.

• Verification Phase: The signature (r, s) is verified by checking

r
?= (gws

−1
βrs

−1
mod p) mod q

where s−1 is computed in Z∗q .

3 Asmuth-Bloom Secret Sharing Scheme

The phases of the Asmuth-Bloom SSS are described below:

• Dealer Phase: Let d be the secret to be shared, n be the number of users, and
t be the threshold value. Let m0 < m1 < m2 < . . . < mn be relatively prime
integers such that d < m0 and

m0
2
t−1∏
i=1

mn−i+1 <
t∏
i=1

mi

(see [6] for a detailed discussion). Let M denote
∏t
i=1mi. The dealer computes

y = d+Am0 where A is a random positive integer such that y < M . The share
of the ith user is yi = y mod mi.

2

• Combiner Phase: Let S be a coalition of t users gathered to construct the secret.
Let MS denote

∏
i∈Smi.

– Let MS\{i} denote
∏
j∈S,j 6=imj and M ′S,i be the multiplicative inverse of

MS\{i} in Zmi , i.e., MS\{i}M
′
S,i ≡ 1 (mod mi). First, the ith user computes

ui = yiM
′
S,iMS\{i} mod MS .

– The users first compute

y =

(∑
i∈S

ui

)
mod MS

and then obtain the secret d by computing

d = y mod m0.

We will use the notation d
t↔ (y1, y2, . . . , yn) to denote a (t, n)-SSS with secret d

and shares {y1, y2, . . . , yn}.

3.1 Arithmetic Properties of the Asmuth-Bloom SSS

Suppose multiple secrets are shared with common parameters t, n, and moduli mis.
The shareholders can use the following properties to obtain new shares for the sum
and product of the shared secrets.

Proposition 1 Let d1, d2, · · · , d` be secrets shared by AB-SSS with common param-
eters t, n, and moduli mis, for some ` < m0. Let yij be the share of the ith user
for secret dj. Then, for d = (

∑`
i=1 di) mod m0 and yi = (

∑`
j=1 yij) mod mi, we have

d
t+1↔ (y1, y2, · · · , yn).

Proof 2 For y =
∑`

i=1(di +Aim0), we have yi ≡ y mod mi. Note that y < `M <
MS for any coalition S where |S| ≥ t + 1. Hence, a coalition S of t + 1 users can
construct y ∈MS and obtain d = y mod m0.

Proposition 3 Let d1, d2 be secrets shared by AB-SSS with common parameters t,
n and moduli mis. Let yij be the share of the ith user for secret dj. Then, for
d = d1d2 mod m0 and yi = y1y2 mod mi, we have d 2t↔ (y1, y2, · · · , yn).

Proof 4 For y =
∏2
i=1(di +Aim0), we have yi ≡ y mod mi. Note that y < M2 <

MS for any coalition S where |S| ≥ 2t. Hence, a coalition S of 2t users can construct
y ∈MS and obtain d = y mod m0.

3

4 Sharing DSS

To obtain a threshold DSS scheme, first the dealer generates the private key α and
shares it among the users by (t, n) AB-SSS with m0 = q. Then a signing coalition
S can sign a message in a threshold fashion without requiring a trusted party. Note
that anyone can forge signatures if he knows k for a valid signature (r, s). Hence,
r = (gk

−1
mod p) mod q must be computed in a way that no one obtains k. Here,

we first explain the necessary primitives that will be used to solve this problem and
then describe the overall threshold signature scheme together. Below, S denotes the
signing coalition of size 2t+ 2.

4.1 Joint Random Secret Sharing

In a joint random secret sharing (Joint-RSS) scheme, each user in the signing coali-
tion S contributes something to the secret generation process and obtains a share for
the resulting random secret as described below:

1. Each user j ∈ S chooses a random secret dj ∈ Zm0 and shares it as dj
t↔

(y1j , y2j , · · · , ynj) where yij is the share of the ith user.

2. The ith user computes yi = (
∑n

j=1 yij) mod mi. By Proposition 1, d t+1↔
(y1, y2, . . . , yn) is a valid SSS for d = (

∑n
i=1 di) mod m0 assuming n < m0.

4.2 Computing gd mod p

In DSS, we need to share and compute gd mod p for a joint random secret d. Here
we give a scheme, Joint-Exp-RSS, to construct an approximate value for gd mod p.
This approximate value will later be corrected through a separate correction process.

1. Use Joint-RSS to generate and share a secret d as d t+1↔ (y1, y2, . . . , yn). Let
S′ ⊂ S be a coalition of size t+ 1 that wants to compute fd = gd mod p.

2. Each user i ∈ S′ computes ui,d = (yiMS′\{i}M
′
S′,i) mod MS′ where M ′S′,i is the

inverse of MS′\{i} mod mi, and broadcasts fi,d = gui,d mod p.

3. The approximate value for gd mod p is computed as fd′ =
∏
i∈S′ fi,d mod p.

Observe that d = ((
∑

i∈S′ ui) mod MS′) mod q whereas this construction process
computes fd′ = gd

′
mod p for d′ =

∑
i∈S′ ui mod q. Since there are t + 1 users in S′

and ui < MS′ for all i, d ≡ d′ − δdMS′ mod q for some integer 0 ≤ δd ≤ t.

4

4.3 Computing gk
−1

mod p

In DSS, we need to compute r = gk
−1

mod p in such a way that neither k nor k−1

is known by any user. The following Joint-Exp-Inverse procedure computes r
without revealing k:

1. S uses Joint-RSS to jointly share random secrets k t+1↔ (k1, k2, . . . , kn) and
a

t+1↔ (a1, a2, . . . , an) and constructs v = ak from shares vi = aiki mod mi,
i ∈ S. Note that v 2t+2↔ (v1, v2, . . . , vn) by Proposition 3.

2. To compute ga mod q, each user i ∈ S′ computes
ui,a = (aiMS′\{i}M

′
S′,i) mod MS′

and broadcasts fi,a = gui,a mod p. The approximate value is computed as

fa′ =
∏
i∈S′

fi,a mod p = ga
′

mod p

for some a′ = a + δaMS′ , 0 ≤ δa ≤ t. S′ corrects fa′ through the following
correction procedure:

(a) Let S′ ⊂ S be a set of t+ 1 users. Each user i ∈ S′ computes

ui,k = (kiMS′\{i}M
′
S′,i) mod MS′

and broadcasts fi,k = gui,k mod p and fi,ak = fa′
ui,k mod p. After that,

fk′ =
∏
i∈S′

fi,k mod p = gk
′

mod p,

fa′k′ =
∏
i∈S′

fi,ak mod p = ga
′k′ mod p

are computed, where k′ = k + δkMS′ for some 0 ≤ δk ≤ t. Note that

fa′k′ = gak+aδkMS′+kδaMS
′′+δaδkM

2
S′ mod p

= gv(fa′g−δaMS′)δkMS′ (fk′g−δkMS′)δaMS′gδaδkM
2
S′ mod p

= gvf
δkMS′
a′ f

δaMS′
k′ g−δaδkM

2
S′ mod p

(b) S′ checks the following equality for all 0 ≤ ja, jk ≤ t

fa′k′
?= gvf

jkMS′
a′ f

jaMS′
k′ g−jajkM

2
S′ mod p (1)

and finds the (ja = δa, jk = δk) pair that satisfies this equality. Once δa is
found fa = ga mod p = fa′g

−δaMS′ mod p can be computed.

3. The signing coalition S computes gk
−1

mod p = fa
(v−1) mod p.

The (ja, jk) pair, 0 ≤ ja, jk ≤ t, found for (1) is unique with overwhelming prob-
ability given that (t+ 1)2 � q.

5

4.4 Threshold DSS Scheme

The phases of the proposed threshold DSS scheme are as follows:

• Key Generation Phase: Let α ∈R Z∗q be the private signature key. The dealer

sets m0 = q and shares α t↔ (α1, α2, . . . , αn).

• Signing Phase: To sign a hashed message w ∈ Zq, the signing coalition S of
size 2t+ 2 first computes r = (gk

−1
mod p) mod q by Joint-Exp-Inverse. To

compute s = k(w + rα) mod q, each user i ∈ S computes

si = ki(w + rαi) mod mi.

Since α is shared (t, n), the value y = α + Aαm0 is less than M . Hence,
w + ry < m0 + m0y < (m0 + 1)M and a coalition of size t + 1 is sufficient to
compute w + ry and obtain w + rα mod q. Since the threshold for secret k is
also t + 1, by Proposition 3, s 2t+2↔ (s1, s2, . . . , sn) and s is computed by 2t + 2
partial signatures.

• Verification Phase is the same as the standard DSS verification.

5 Conclusion

In this paper, we investigated how to share the signing function used in the Digital
Signature Standard by using the Asmuth-Bloom secret sharing scheme. We proposed
a t-out-of-n threshold signature scheme based on the Chinese Remainder Theorem.

References

[1] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE
Trans. Information Theory, 29(2):208–210, 1983.

[2] G. Blakley. Safeguarding cryptographic keys. In Proc. of AFIPS National Com-
puter Conference, 1979.

[3] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Proc. of CRYPTO’89,
volume 435 of LNCS, pages 307–315. Springer-Verlag, 1990.

[4] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures.
In Proc. of CRYPTO’91, volume 576 of LNCS, pages 457–469. Springer-Verlag,
1992.

[5] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. Information and Computation, 164(1):54–84, 2001.

6

[6] K. Kaya and A. A. Selçuk. Threshold cryptography based on Asmuth-Bloom
secret sharing. Information Sciences, 177(19):4148–4160, 2007.

[7] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely? In Proc. of STOC94, pages 522–533, 1994.

[8] A. Shamir. How to share a secret? Comm. ACM, 22(11):612–613, 1979.

[9] V. Shoup. Practical threshold signatures. In Proc. of EUROCRYPT 2000, volume
1807 of LNCS, pages 207–220. Springer-Verlag, 2000.

7

