FORMULZ RELATED TO THE ¢-DIXON FORMULA WITH
APPLICATIONS TO FIBONOMIAL SUMS

EMRAH KILIC AND HELMUT PRODINGER

ABSTRACT. The g-analogue of Dixon’s identity involves three g-binomial coef-
ficients as summands. We find many variations of it that have beautiful corol-
lories in terms of Fibonomial sums. Proofs involve either several instances
of the ¢-Dixon formula itself or are “mechanical,” i. e., use the g¢-Zeilberger
algorithm.

1. INTRODUCTION

Define the second order linear sequence {U,} for n > 2 by
U, =pUp_1+Up_9, Uyg=0,U; =1
For n > k > 1, define the generalized Fibonomial coefficient by

n o u,0,...U,
{k}U (U Us...Up)(UUs . ..Uy _y)
with {¢}, = {"}, = 1. When p = 1, we obtain the usual Fibonomial coeffi-
cient, denoted by {Z} - For more details about the Fibonomial and generalized

Fibonomial coefficients, see [2, 3].
Our approach will be as follows. We will use the Binet forms

Un: an_ﬁn :an_ll_qn
a—p l1—q
with ¢ = /o= —a72, so that a =i/,/q where o, 8 = (p+ \/p> +4)/2.
Throughout this paper we will use the following notations: the ¢g-Pochhammer
symbol (z;¢), = (1 —2)(1 —zq)...(1 —2¢" 1) and the Gaussian g-binomial coef-
ficients

{q __ (@dn
kl, (GO@GDn—k

When z = ¢, we sometimes use the notation (q),, instead of (¢;q),. We conve-
niently adopt the notation that [Z]q =0ifk<0ork>n.

The link between the generalized Fibonomial and Gaussian ¢-binomial coefhi-

cients is
{n} = gFn=k) {n] with ¢ = —a™2.
ko k g

We recall the g-analogue of Dixon’s identity [1, 4], which is central in this paper:

st [ B L, = T
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where [n]! = [, =% = (g @)/ (1 — @)™

Recently the authors of [5, 6] proved sum identities including certain generalized
Fibonomial sums and their squares with or without the generalized Fibonacci and
Lucas numbers. We recall such a result: if n and m are both nonnegative integers,
then from [5], we have that

i": . o i 2m—1\
k v (2m—-1)k — n,meI 2% — 1 v (4k—2)n>

k=0

where

n—m
IT Vak if n>m,
Tnm: K

)

=0
m—n—1 1

I[I V5. if n<m,
k=1

and three similar formulee.
From [6], we have that for any positive integer n,

2n n
Ziik{QIj} =i*" [ Var-1,
U k=1

k=0
i {271}2 _ ﬁ VarUs(2k—1)
k=0 kly k=1 Uak

and

n
2 i il

n (2n+1 ) ]:[ Ve if nis odd,
S DT =D
k=0 U I] Var if n is even.
k=1

In this paper, we consider some sum formulse whose terms include certain triple
Fibonomial coefficients, with or without extra Fibonacci numbers. To be system-
atic, we first organize the ¢-Dixon type identities in a list (a much longer list is in
[7]), then discuss the proofs of them, and then get a list of Fibonacci type identities

as corollaries.

2. TRIPLE GAUSSIAN ¢-BINOMIAL SUMS

In this section, we present some sum formulse. In order to keep this paper
within reasonable length, we restricted ourselves to a short selection. We prepared
an extended version of this paper with all identities we found and put in on our
websites for the readers’ benefit [7]. The identities in this section hold for all
nonnegative integers n.

(1)

2n 2
k k q q q

=0 q n n
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(2)
2 Ton]% [2n + 1 .
Z {k] [ i } (—1)kq2BR=6n=3)(1 4 42F)
k=0 q q
g(—1)rg- s 20| 30
n q n q'
(3)
2n M 2 2n+1 .
Z |:k’] |: k :| (*l)kqf(‘ikfﬁnf?))(l _ q2k)
k=0 q q
2(1)”q3(3"+1)(1q2n+1)|:2n:| { 3n } |
nl,n- 1 q
(4)
2n+1 2
Z {Qn;— 1] [Qn]:— 2} (_1)kq§(3k—6n—5) (1- qk)
k=0 q q
— (—1)n g B (HDBRE) (1 _ 2n42) {Zn + 1} [371 + 2} -
n q n g
(5)
2n+1 9
2n+1] [2n+2 (—1)F & (3k—6n-5)
k k q
k=0 q q
— (,1)n+1q7%(n+1)(3n+2) 2n +1 3n+3 .
no J,Lln+1],
(6)
2n+1 9
Z [Zn]:— 1:| |:2n]:- 2:| (_1)kq§(3k—6n—7) (1 _ qk)Z
k=0 q q
= (=1)Hlg 3 (DGt (1- q2n+2)2 {271 + 1} [3n + 2} -
n q n q
(7)

2n
Z 2n]%[2n + 3 (1)t g @k—on)
k k+1],

k=0 q
_ (—1yng- 3@y Lo 20 ] 3042
1—¢® [n—1 JLon q'

3. PROOFS

In this section we prove the identities 1, 2, 3, 4, 5, 6 using the g-Dixon formula.
Proof of identity 1.
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First if we replace K — n — k, then we write

Z[ 2n F[Zn—kl] (_1)kq§(3k+1): {Qn} [3n+1]
n—kq n—k q nl, n q

k

which is an equivalent form of identity (1). Another equivalent form is

on 1°[ 2n+1 k(s (@)3n+1
1 _ g2nt1 { } { ] 1) kg2 Bk+1) — ntl
Zk( 1 )n+kqn+1+kq( ) (q)3

and this one we will prove now by two applications of Dixon’s formula. Note

that within the following computations, we sometimes change k <> —k in order to
k(3k—1) ,  k(3k+1)

transform the exponent 5 to 5.

om 12 2n+1 .
1 _ 2n+1 _1 k 5(3’€+1)
%:( 4 ){n+kz]q{n+1+kL< )

2n 2n+1 2n+1 et l— E
=2 n—|—k] {n—kk} [n+1+k} L =g ()@Y
k q q q

(@)3n+1 _Z{ 2n } [2n+1] { 2n+1 } gk (1) B @R

(D7 (@)nt1 n+kl, | ntk|, [n+1+k],

_ (q)3n+1 n+1z 2n+1 2n+1 (_1)k k(3k+1)
()2 n+k Jntk+1] [n+k], ¢

(q (q n+1
— (Q)3n+1 _qn+1 (Q)3n+1
(@7 (Dn+1 (@3 (Dn+1
_ (Q)Sn—i-l
(@3,

Proof of identity 5. By taking k — n + 1 — k and after some rearrangements,
then we write

2n + 1 om+2 1° k(3 (Q)3n+3
1 — 22 [ ] { ] _1kgaBk-1) — _\H/3nd3
%:( 1 )n+1—|—/€qn+1—|—kq( )'a (@n(@)741

This form is equivalent to identity (5) and will be proved now by two applications
of Dixon’s identity.

2
2n+1 2n + 2
1 — g2nt2 —1)kgs (k-1
zk:( 1 )[n+1+kL[n+1+kL( )'a

3
=301 g 2n +2 (—1)kg5@EE-D)
- n+1+k q

3
_ (@snts nﬂz{ 2n + 2 } (_l)kqg(Skﬂ)

(@) 14 n+1+kf,
_ (@)3n+3 _on+l (@)3n+3
(Q)i+1 (Q)i+1
(@Q)3n+3

(Dn(@)2 4y
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Proof of identity 4. By replacing k — n + 1 + k and rearrangements, we get the
equivalent form

Z[ 2n+2] {Qn—i—l ] [Zn—&-l}
- n+1—|—kqn+1—|—kq n+k p

~ (_1)kq§(3k+1)(1 _ qn+1—k) _ (Q)3n+2

(D2(D)nt1
It will be proved by two applications of Dixon’s formula:
2n+2 :| |: 2n+1 :| |:27’L+ 1:| k E(3k+1) +1—k
(=1)%¢> (1—¢""7)
;{n+1+k q n+1+k p n+k 4
_ (Dan+2 o Z [ 2n + 2 } [ 2n+1 } [Zn + 1] (_1)kqg(3k—1)
(q)n(q)nJrl n+l+k] [n+1+k] [n+k],
_ (Q)3n+2 _ qn+1 (Q)3n+2
(@)n(D)i1 (@n(@)7 41
(@)3n+2

Proof of identity 6.
By taking k — n + 1 — k and some rearrangements, the claimed identity takes
the equivalent form

Z(l—q%“)[znﬂ} [ 2n + 1 ]2<_1)kqg(3k+1>:(q)3n+z

k n+k qn+1+kq (q)%(q)n-‘rl’

which will be proved by Dixon’s formula:

Z(l_q2n+2>{2n+1} { 2n +1 }2(—1)%5(3%1)

- n+k], [n+1+k],

:Z 2n+1} [ 2n + 2 } [ 2n+1 ] (—1)F(1 = gH—h)g 5B+
- n+k qn+1+kqn+1+kq

_ (Dan+2 nHZ {2714—1} [ 2n + 2 ] [ 2n +1 ] (—l)kqg(?’k’l)
(@n (D) 41 n+kl, n+1+k[ |n+1+k],

:4((1) snt+2 nJﬂZ{ 2n+1 } [ 2n+2 } [2n+1] (_1)kq§(3k+1)
(@)n (9741 ntk+1] |n+1+k| [n+k],

_ (9)3n+2 gt \d8nt2 (@)3n+2
(q)n(Q)%-i-l (@)n(q )n+1

_ (Q)3n+2
(D)7 (@)n+1

Proof of identity 3. This proof is more involved and requires auxiliary quantities
that will be evaluated by several applications of Dixon’s identity. Define

2
2n|"2n+1 k E(3k—6n—
T::}: 1)k 5 Bk—6n=3) k
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2n]*2n + 1 E E
W= 1 (3k—6n—3) 2k
ZM[ h L( Vo ’

q
and
on]*[2n + 1 .
X = -1 f(3k76n73).
L[ e
k q q
To complete the proof we should prove that

XW2(1)nq3<3n+1>(1qznﬂ)[?n} { 3n ] |
nj, n—1 q

First we notice that T is the sum in identity (1), so

_n 1 (Q)3n+1
T = (-1 nq 2(3n+1) ]
(=1) L= 2 (@n(@n(@)n

Next we compute

onl?[2n + 1 E (35— 6m_
V:Z[,J [ L ] (—1)kqBGE=6n=3)(1 _ gk)2
k q

q

— (1 — 2\(] — g2nt1 ok E@k—6n—3) [2n— 1] [2n] | 2n
(2 e [k1 AR

k
2n—1 2n 2n
— (1 — g2™)(] — 2"+ _1)k g% (3k—6n=3)
(L= =g ) (=) om—k| |2n—k| [2n+1—k
k q q q
. 7y 2n —1 2n 2n

= (1— M) - @) <—1>J‘1q%(‘"”‘6”“°’)[‘ } H { }
zj: g1l —1l,

= -V,

hence V = 0. Therefore we get

ol g (R

k q

-]

2

2n+1 E —6n—
2 e g
q q

and thus

X-T=T-W
and so

X+ W =2T,

which will be used later. Now we compute

E (3%—6m— 12n| [2n| |2n+1
W:Z(_Dkq’;(?,k 6n 3)q2k{k} [k} [ B} ]
k q q q

n k 2n 2n 2n+1
— (—1)rg— 3 Bn—1) _1)k k(3k+1)
D DS M et iy
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_n — 1 L3
— (—1)”(] 5 (3n—1) — q2n+1 Z(_l)kq2(3k+1)(1 _ qn+1+k>
k

o 2n 2n+1 2n+1
n+k n+1+k n+k

R X 2n+1 7 [2n+1
— (—1)"g— (3n—1) (3k+1)

(=1)"q 2 1_q2n+1z n+kqn+1+kqn+kq

2n 2n+1 2n+1

(1) B k(3k+1), nt+1+k

( )q 1_q2n+lz 2 q n-i—kqn—l—l—i—kq n+k q
= (—1)ng 2B ! (@301

1-— q2"+1 (Q)n(Q)n(q)n+1
n n 2n 2n+1 2n+1

_(—1)" —7(3n—1)+*+1 £(3k+3)

(=1)"q > 2 2n+1z n+kqn+1+/€q n—i—k‘q

and

E(3h_6n_3)|2n| [2n| [2n+1
<gerom i P
q q q

3 2n 2n +1
— (—1\"a~ n(n+1) 1 (3k—3)
g e o] 2] (8] P

’I'L

. 1 : q;:l Z YeghBh=8) (1 _ gnikil) [nilk} [TL?IL];} J [2:_;#}:]
q q q

= (—1)"q—%n(n+1) s Z F e Lﬁlk]q [ninl;:l 1L ﬁ?jklh

- (—1)”q‘%"("+1)m %:(‘1)kqg(3k_3)qn+k+l {nzj:k} , [nink—:t 1] , F:Iﬂ .

= (—1)"q_%"("+1)ﬁ ?(—n qr [ank] . [ninl;:l 1] . F:ijl} .

1 k 2n 2n+1 2n+1
_ (_1)g—3Bn=2)(n+1) _1)k g5 Bk=1)
(=% 1—q2"+12k:( s n+kl n+k+1] [n+k]]

which by & — —k in the second sum, equals

3 k 2n 2n+1 2n +1
= (=1)" **n(n+1) k(3k—3)
(=1 2"“2 @' n+k| n+k+1], [n+k],
2n 2n+1 2n+1
— (-1 1(3n—2)(n+1) k(3k+1)
(=D)"* 1—q2"+1z n—|—kq n+kqn+1+kq
3 2n+1 2n+1
= (=1)" —sn(n+1) o £ (3k—3)
(=D)%> 1—q2"+1§k:( n—|—k n+k+1f [n+k],
(—1)ng-Bn-2) 1) 1 (@)3n+1

1= ¢ (Q)n(@n (@t
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Consequently we have the summarized results

1 (@)3n+1
1- q2n+1 (Q)n(Q)n(Q)n—H

n 1 & 2n 2n+1 2n+1
_ (1 —5(Bn—-1)+n+1 -1 k5 (3k=3)
(=1 1—q2”+1zk:( )'a n+kj,ntk|,[n+1+k],

and

3 1 k 2n 2n+1 2n+1
X = (—=1)\"g—2nn+D) - 1)k g5 (Bk=3)
(=1 1—q2”+12k:( ) n+k| n+k+1f [n+k],

W = (—]_)nq_%(?’n_l)

~ (—1)rg-En-n+D 1 (@)3n+1 '
1- q2n+1 (Q)n(Q)n(Q)nJrl
Therefore
q3’n+1X + W
1 n
7(71)nq7%(3n72)(n+1)q3n+1 — (@)3n+1
1= ¢ (@)n(@)n (@) nt1

1 (@)3n+1
1 - q2n+1 (Q)n(Q)n(Q)n+1

— (—1)ng FBnD) 1—¢®"2 (@)sn .
1= (@)n(@)n(@n+1

+ (_1)nq—§(3n—1)

We can rewrite this as
X AW =T(1+¢" )"
But we also know that
W+ X =2T.
From these two relations, we can compute X and W and thus X — W as

1
— n+1y\ n
X*Tl_q3n+1(2*(1+q )q)

1 (Q)Sn
L= @* 1 (@Q)n(@)n(@)n

= (1)"q FO (2 (14 g7

and

W=2T-X

-3 1 1 (q)3n+1
— (_1)nq - (3n+1)+n(1 + qn+1 _ 2q2n+1) 7
L =gt 1 — ¢ (q)n(@)n(@)n
and so the result

1 1

_ _ n+ly n\ n n+l 2n-+1
X_W_Tl_q3n+1(2 (1+q )q) 1_q3n+1q (1+4¢ 2q )
1 n n n n n
ZTW(@—(LFQ g") —q"(1+¢" —2¢7 H))
1
=2T(1-¢") (1 — ") ———
1— q3n+1
1 (q)Sn

=2(=1)"q 21— ¢")(1 - ¢** ) 1= ¢* 1 (@) n(@)n(@)n
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(136 (@
A @

as claimed.
Remark. From this proof we know that

X +W = 2T,

which proves the identity 2.

As the last example has shown, the reduction to instances of the ¢-Dixon identity
can be quite involved. Therefore we present an alternative method, namely the g-
Zeilberger algorithm [8]. We discuss identity 7 as a showcase: Define

2 [2n]%[2n + 3 i
ey [ kL [ o L (1) g,
Zeilberger’s algorithm produces a recursion
Ty + 05 Tni1 + e Tnge +dpyThis =0,
where a,,, by, c,, d,, are complicated expressions with about 1000 terms each.
Set
R AT O
L—q® [n—-1],[ n ],
then it can be checked (by a computer) that also
anUpn +0,Unt1 + U2 + dpUpys = 0.

After checking a few initial values directly, this proves indeed that T,, = U,, for all
nonnegative integers n.

4. APPLICATIONS TO FIBONOMIALS SUMS IDENTITIES

In this section, we present corollaries of our previous list of identities, by spe-
cializing the value of ¢ as described in the Introduction. Each identity corresponds
now to two identities which have slightly different forms. By replacing n — 2n,
we get a formula labelled with “e” (even), and by replacing n — 2n + 1, we get a
formula labelled with “0” (odd).

1-e)

4%2 4n + 2 2 4dn + 3 (_1)%k(k+1):(_1)n+1 4n + 2 6n+4
O B m+1f,\2n+1f,

k=0
1-0)

R R R R R
2.¢)

4n 2
4n dn+1 1 n | 4n 6n +1
E {k} { & } 1/2k(_1)2k(k+1):2(_1) {2 } { 5 } ,
U U n)y n Ju
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5-¢)

D

4n+1 {
k=0

4n+2 4 +2
>

4dn + 2

In+1

4dn +1

k

4n +1

)

2

{
|

k}

4n

|

|

A

ful
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{4n+3

k

+1
k

dn + 3

k

k

k

k

O R
U

k
2

}UU%(—U

} Uz (—1)2FE=1)
U

= 2(_1)n+1U4n+3{

An 42 o
n + } Uk(il);k(k 1)
U

= (—1)nU4n+2{

4 4 1
n+ } Uy, (—1)$KG+D)
U

= (-1 U4n+4{

4dn + 2

U

4dn + 2
2n+1 U

2n 2n

6n+4
2n +1 U'

4n 6n
U U

4n 42 6n + 3
2n+1),1 2n J,

dn+1\ [6n+2
2n Jy L 2n J

dn +3 6n +5
2n+1),2n+1),

2
(_1)%k(k—1) — (_1)n an+1 6n + 3

2
i (—1)2k+D) — (_q)ntl dn +3 6n+6]
k U 2n+1),12n+2J,

2

U

- (—1>"Ufn+2{

2n J, U 2n ),
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6-0)
R In+3 dn+4 2 2 Lk(k—1)
Z i A Ui (-1)
k=0 U U
in+ 3 6n+5
= (-1)""'U} .
( ) 4dn+4 2n+1 - 2TL+1 -

7-e)

i 4n) 2 in+3 (_1)%/6(76—1):(_1)71[]4"4-3 in 6n + 2
EJylk+1 ), U 2n=1f,1 2n [

k=0
7-0)

=0 k U k+1 U U2n+1 2n U 2n+1 U
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