
Undecidable Problems in Malware Analysis 
 

Ali Aydın Selçuk 

Dept. of Computer Engineering 

TOBB University of Economics and Technology 

Ankara, Turkey 

aliaydinselcuk@gmail.com 

Fatih Orhan, Berker Batur 

Comodo Security Solutions, Inc. 

Clifton, NJ, USA 

{fatih.orhan,berker.batur@comodo.com }

 

 
Abstract— Malware analysis is a challenging task in the theory as 

well as the practice of computer science. Many important 

problems in malware analysis have been shown to be 

undecidable. These problems include virus detection, detecting 

unpacking execution, matching malware samples against a set of 

given templates, and detecting trigger-based behavior. In this 

paper, we will give a review of the undecidability results in 

malware analysis and discuss what can be done in practice. 

Keywords- Computer viruses, malware analysis, virus detection, 

undecidability. 

I.  INTRODUCTION 

The number of malware programs encountered by security 
companies multiplies every year. Each of these programs needs 
to be analyzed by static and dynamic analysis tools. The task of 
running each program in a controlled environment and 
analyzing its behavior manually is a tedious and labor-intensive 
task. Therefore, there is a great need for automation of this 
process and tools that will help with the analysis. 

One of the most significant theoretical results in malware 
analysis is from the seminal works of Cohen on computer 
viruses [Coh87, Coh89] where he showed that a program that 
detects all computer viruses precisely is impossible. Later, 
Chess and White [4] gave an example of a polymorphic virus 
that cannot be precisely detected by any program. Other results 
followed [CJS+05, RHD+06, BHL+08] which stated the 
impossibility of certain critical tasks in static and dynamic 
malware analysis. 

In this paper, we give a brief survey of the major 
undecidability results found in the malware analysis literature. 
Then we give examples from the positive side showing what 
can be done on these undecidable problems in practice. 

II. MALWARE ANALYSIS AND UNDECIDABILITY 

Since Cohen [6] gave the first formal treatment of computer 
viruses, many problems in malware analysis have been shown 
to be undecidable. Many of these results are based on the fact 
that precisely deciding whether a given program/input satisfies 
a certain post-condition, for an arbitrary post-condition, is 
undecidable. The proofs are based on two general techniques: 
Either they build a self-contradictory program assuming the 
existence of a decider for the given problem, similar to [6], or 
they give a reduction from a well-known undecidable problem, 
such as the Halting Problem, similar to [7]. In this section, we 

review some of the most significant undecidability results in 
the field. 

A. Undecidability of the General Virus Detection Problem 

The first result on the undecidability of the general virus 
detection problem is due to Cohen [6]. Using a well-known 
proof technique, he argued that:  

“In order to determine that a given program ‘P’ is a virus, it 
must be determined that P infects other programs. This is 
undecidable since P could invoke any proposed decision 
procedure ‘D’ and infect other programs if and only if D 
determines that P is not a virus. We conclude that a program 
that precisely discerns a virus from any other program by 
examining its appearance is infeasible.” 

He gave the following piece of program 

“contradictory-virus” as an example that cannot be 
detected by a virus detector D in a correct way: 

 

 

 

 

 

 

 

 

 

 

As Cohen [6] observed, “… if the decision procedure D 
determines CV to be a virus, CV will not infect other programs, 
and thus will not act as a virus. If D determines that CV is not a 
virus, CV will infect other programs, and thus be a virus. 
Therefore, the hypothetical decision procedure D is self-
contradictory, and precise determination of a virus by its 
appearance is undecidable.” A minor flaw in this argument was 
observed by Steinparz [11], who noted that this argument only 
shows the impossibility of a virus detector which is not a virus 
itself. Otherwise, if D is a virus itself, it can return “true” on 
contradictory-virus and be correct. 

program contradictory-virus := 

{.... 

 main-program := 

 {if ~D(contradictory-virus) then 

  {infect-executable; 

  if trigger-pulled then 

   do-damage; 

  } 

  goto next; 

 } 

} 

 



A more formal proof was again given by Cohen himself [7] 
by a reduction from the Halting Problem. He showed that the 
existence of a precise virus detector would imply a decider for 
the Halting Problem and hence is not possible. 

B. Existence of an Undetectable Virus 

As summarized above, Cohen [Coh87, Coh89] showed the 
impossibility of a virus detector that detects all viruses 
precisely. Chess and White [4] extended this result by showing 
that there are viruses, in theory, with no error-free detectors. 
They explained, “That is, not only can we not write a program 
that detects all viruses known and unknown with no false 
positives, but in addition there are some viruses for which, 
even when we have a sample of the virus in hand and have 
analyzed it completely, we cannot write a program that detects 
just that particular virus with no false positives.” 

The result of Chess and White is based on an extension of 
the contradiction argument in Cohen’s first paper [6]: Consider 
a polymorphic virus W that is able to modify its code. This 
virus modifies its spreading condition such that if some 
particular subroutine in it returns “false” on W itself, it spreads. 
Furthermore, this subroutine is subject to change as a part of 
W’s polymorphism. Now, if some detector code C were to 
detect W, there is at least one instance of this polymorphic 
virus, where the subroutine is replaced by C, that cannot be 
detected by C: Just like Cohen’s argument, detection by C 
would result in the virus’ not spreading, and hence would 
imply a false positive. 

The same argument shows the non-existence of a detector 
for W under a looser notion of detection as well: Say a program 
“detects” a virus V if it (i) returns “true” on every program 
infected with V, (ii) returns “false” on every program not 
infected with any virus, (iii) may return “true” or “false” on a 
program that is infected with some virus other than V. The 
impossibility argument above applies to this looser notion of 
detection verbatim. Hence, Chess and White [4] concluded that 
there exists, in theory, some virus that cannot be detected 
precisely by any virus detector even under this looser notion of 
detection. 

C. Semantic-Aware Malware Detection 

A malware detector based on a pattern matching approach 
is fundamentally limited against obfuscation techniques used 
by hackers. The goal of malware obfuscation is to morph or 
modify the malware to evade detection. A piece of malware 
can modify itself by, for example, encrypting its payload, and 
then later decrypting it during execution. A polymorphic virus 
tries to obfuscate its decryption code using several 
transformations, such as code transposition, nop insertion, and 
register reassignment. Metamorphic viruses, on the other hand, 
try to evade detection through obfuscating the entire code. 
When they replicate, these viruses change their code by 
techniques such as substitution of equivalent instruction 
sequences, code transposition, register reassignment, and 
change of conditional jumps. The fundamental limitation of the 
pattern-matching approach for malware detection is that it is 
mainly syntactic and does not consider the semantics of the 
program flow and the instructions. 

Christodorescu et al. [5] studied a method to overcome this 
limitation by incorporating instruction semantics to detect 
malicious code traits. In their framework, malicious behavior is 
defined by hand-constructed “templates”. The problem of 
deciding whether a given piece of code contains such a 
template behavior is modeled as the “Template Matching 
Problem”. 

The Template Matching Problem turns out to be 
undecidable. Christodorescu et al. [5] gave a reduction from the 
Halting Problem to the Template Matching Problem, and stated 
that a precise solution for the general Template Matching 
Problem is impossible. 

D. Automatic Unpacking for Malware Detection 

The An obfuscation mechanism that is much used by 
modern malware is to hide the malicious portion of the payload 
as data at compile time, and then transform it into an 
executable at run time, a behavior known as “unpack and 
execute”. The unpack transformation can be something simple, 
such as an XOR by a block of random-looking data, or 
something more complex, such as decryption by a cipher like 
AES. 

Royal et al. [9] worked on detecting such polymorphic 
viruses by focusing on the result of the unpack operation. The 
idea is to compare the executable code during the run time with 
that before the run time. When a change is detected, it is 
written out for further analysis. 

The code and the data sections of a program are formally 
modeled as a Turing machine M and its input w. Then the 
unpack detection problem becomes whether w contains another 
program in it that will be emulated by M during computation. 
This problem can be formulated as the following formal 
language: 

UNPACKEXTM = {<M, w>: M is a UTM, and M simulates a 
Turing machine on its tape in its computation on w} 

Royal et al. [9] gave a theorem which stated that the 
UNPACKEXTM language is undecidable. They proved this result 
by a reduction from the Halting Problem. Hence, it turns out 
that determining precisely whether a given program contains 
some unpack-execute behavior in it is impossible. 

E. Automatically Identifying Trigger-Based Behavior 

A common feature found in modern malware is to contain 
some hidden malicious behavior that is activated only when 
triggered; such behavior is called trigger-based behavior. 
Various conditions are used for triggering, such as date and 
time, some system event, or a command received over the 
network. 

Brumley et al. [2] studied how to automatically detect and 
analyze trigger-based behavior in malware. Their approach 
employs mixed symbolic and concrete execution to 
automatically explore different code paths. When a path is 
explored, a formula is constructed representing the condition 
that would trigger execution down the path. Then a solver is 
employed to see whether the condition can be true, and if so, 
what trigger value would satisfy it. 



Like many other problems in malware analysis, an exact, 
automatic identification of trigger-based behavior turns out to 
be undecidable by a reduction from the halting problem. 
Brumley et al. [2] observed that “Identifying trigger-based 
behaviors in malware is an extremely challenging task. 
Attackers are free to make code arbitrarily hard to analyze. 
This follows from the fact that, at a high level, deciding 
whether a piece of code contains trigger-based behavior is 
undecidable, e.g., the trigger condition could be anything that 
halts the program. Thus, a tool that uncovers all trigger-based 
behavior all the time reduces to the halting problem.” 

F. NP-Complete Problems 

Although the general cases of the aforementioned problems 
are undecidable, it turns out that it is possible to obtain their 
decidable versions by assuming some bound on the time or 
memory available to the malware. Spinellis [10] showed that a 
length-bounded version of Cohen’s problem is decidable and 
NP-complete. Borello and Mé [BM08] showed that detecting 
whether a given program P is a metamorphic variant of another 
given program Q is decidable and NP-complete. Bueno et al. 
[3] showed that the space- and time-bounded versions of the 
unpacking problem are decidable, and the time-bounded 
version is NP-complete. 

Of course, a problem’s being NP-complete is not exactly 
good news. It is usually interpreted as that no efficient solution 
exists for the worst case of that problem. However, efficient 
solutions may exist for the average case, or it can be possible to 
obtain reasonably good solutions by heuristics or 
approximation algorithms. 

III. PRACTICAL SOLUTIONS 

Despite the negative theoretical results on undecidability of 
some fundamental questions in malware analysis, practical 
tools have been in action since the very early days of computer 
viruses. By tolerating some degree of inaccuracy (i.e., 
tolerating some degree of false positives or negatives, or 
allowing inconclusive results), it is possible to build algorithms 
that are very effective in practice. In this section, we 
summarize some of the tools developed for the problems 
reviewed in Section 2. 

A. Detecting Malware by Template Matching 

Despite the fact that the general Template Matching 
Problem is undecidable, it is possible to detect malware using 
template matching algorithms that are mostly accurate. 
Christodorescu et al. [5] developed a toolkit for that purpose. 
The toolkit works in two phases: First, the binary program to 
be analyzed is disassembled, a control graph is constructed, one 
per program function, and an intermediate representation (IR) 
is generated. The IR is further processed and put into an 
architecture- and platform-independent form. In the second 
phase, the IR is compared against a given set of malware 
templates. Each comparison either returns “yes” or “don’t 
know”. Suggested malware templates for comparison include 
procedures such as a decryption loop or mass mail sending. 

Christodorescu et al. [5] tested their tool on a real-world 
malware sample consisting of seven variants of Netsky (B, C, 

D, O, P, T, and W), seven variants of Bagle (I, J, N, O, P, R, 
and Y), and seven variants of Sober (A, C, D, E, F, G, and I), 
all being email worms with many diverse forms found in the 
wild. The authors tested the malware against templates 
capturing the decryption loop and mass mailing functionalities. 
The tool detected all Netsky and Bagle variants with 100% 
success. The Sober worm was not detected due to a limitation 
in the prototype implementation, related to matching calls into 
the Microsoft Visual Basic runtime library. Nevertheless, their 
test demonstrated the success of their template matching 
algorithm on diverse forms of malware. 

The tool was tested on a benign sample as well in order to 
test its false positive rates. 97.78% of the programs in the given 
sample were detected as benign after successful disassembly, 
while 2.22% could not be disassembled. 

B. Detecting Unpack-Execute Behavior 

Although the general problem of unpack-execute behavior 
is undecidable, Royal et al. [9] gave an algorithm for a bounded 
version of this problem. Let n denote the number of 
instructions of a given program P to execute before it halts. 
The program ExtractUnpackedCode(P,n) works in two phases: 

 Phase 1: Static Analysis. Program P is disassembled to 
identify code and data. Blocks of code that are 
separated by non-instruction data are partitioned into 
sequences of instructions. These sequences form the 
set I, which will be queried repeatedly in the next 
phase to detect if P is executing unpacked code. 

 Phase 2: Dynamic Analysis. Program P is executed one 
instruction at a time. The current instruction sequence 
is captured by in-memory disassembly starting at the 
current value of the program counter until some non-
instruction data is encountered. The current instruction 
sequence is compared against each instruction 
sequence in the set I. If the current sequence is not a 
subsequence of any instruction sequence in I, then it 
did not exist in P. 

Royal et al. [9] developed this algorithm into a practical 
tool for MS Windows systems, called PolyUnpack. They tested 
the tool on the OARC malware suspect repository and 
compared its performance with that of the Portable Executable 
Identifier (PEiD), a popular reverse-engineering tool which 
uses a specific set of signatures to detect unpack-execute 
behavior [8]. PolyUnpack performed very well and was able to 
identify many samples with unpack-execute behavior which 
PEiD was unable to detect. 

C. Detecting Trigger-Based Behavior 

Detection of trigger-based behavior by manual analysis is a 
virtually impossible task due to the intensive labor required. On 
the other hand, a precise automatic analysis is not possible 
either; as explained in Section 2.5, the general problem of 
automatic identification of trigger-based behavior is 
undecidable. Nevertheless, a great deal of help can be obtained 
from automatic analysis to alleviate the burden of manual 
analysis. Brumley et al. [2] designed a tool for this task. Their 
approach consisted of several phases: First, the different types 



of triggers of interest are specified. Then, different code paths 
are explored using mixed symbolic and concrete execution. For 
a path explored by this process, a formula is constructed 
representing the condition that would trigger execution down 
the path. Then a solver is employed to see whether the 
condition can be true, and if so, what trigger value would 
satisfy it. 

Brumley et al. [2] developed this approach into a program 
called MineSweeper. They tested MineSweeper on real-world 
malware containing trigger-based behavior. On every case, 
MineSweeper was able to detect the trigger condition and the 
trigger-based behavior. The analysis time varied depending on 
the complexity of the malware, from 2 to 28 minutes. In 
general, MineSweeper is not guaranteed to detect every piece 
of malware containing trigger-based behavior, but it can 
definitely be used as a tool of great assistance over the 
impractical alternative of manual analysis. 

IV. CONCLUSION 

Malware detection has been a major problem since the 
early days of computing. Theoretical results have been given 
on the inexistence of perfect detectors on various problems. 
Nevertheless, there is a great deal of work to be done using 
less-than-perfect tools. Bounded versions of the undecidable 
malware detection problems are in fact decidable. By assuming 
certain bounds on the time or memory available to the 
malware, it should be possible to develop detectors that work 
quite accurately in practice. 

 

 

ACKNOWLEDGMENT 

We would like to thank Hatice Sakarya for her help during 
the preparation of this paper. 

REFERENCES 

[1] Jean-Marie Borello, Ludovic Mé, “Code obfuscation techniques for 
metamorphic viruses”, Journal in Computer Virology, 4(3):211–220, 
2008. 

[2] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn 
Song, Heng Yin, “Automatically identifying trigger-based behavior in 
malware” In Botnet Detection, pp. 65–88, Springer, 2008. 

[3] Denis Bueno, Kevin J. Compton, Karem A. Sakallah, Michael Bailey, 
“Detecting Traditional Packers, Decisively”, Proceedings of the 16th 
International Symposium on Research in Attacks, Intrusions, and 
Defenses (RAID 2013), 2013. 

[4] David M. Chess, Steve R. White, “An undetectable computer virus”, 
Proceedings of Virus Bulletin Conference, vol. 5, 2000. 

[5] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, 
Randal E. Bryant, “Semantics-aware malware detection”, Proceedings 
of the 2005 IEEE Symposium on Security and Privacy (S&P’05), 2015. 

[6] Fred Cohen, “Computer viruses: theory and experiments”, Computers 
and Security, 6(1):22-35, 1987. 

[7] Fred Cohen, “Computational aspects of computer viruses”, Computers 
and Security, 8(4):325-344, 1989. 

[8] Jibz, Qwerton, snaker, xineohP. PEiD. peid.has.it, 2005. 

[9] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, Wenke Lee, 
“PolyUnpack: Automating the hidden-code extraction of unpack-
executing malware”, Proceedings of the 22nd Annual Computer Security 
Applications Conference (ACSAC'06), 2006. 

[10] Diomidis Spinellis, “Reliable identification of bounded-length viruses is 
NP-complete”, IEEE Transactions on Information Theory, 49(1):280–
284, 2003. 

[11] Franz X. Steinparz, “A comment on Cohen’s theorem about 
undecidability of viral detection”, Alive, vol. 1, 1991. 

 

 


