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Abstract 

Choosing good candidates for the initial centroid selection process for compact clustering algorithms, such as k-means, is essential 
for clustering quality and performance. In this study, a novel hybrid evolutionary model for k-means clustering (HE-kmeans) is 
proposed. This model uses meta-heuristic methods to identify the “good candidates” for initial centroid selection in k-means 
clustering method. The results indicate that the clustering quality is improved by approximately 30% compared to the standard 
random selection of initial centroids. We also experimentally compare our method with the other heuristics proposed for initial 
centroid selection and the experimental results show that our method performs better in most cases. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology. 
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1. Introduction 

Data clustering is the process of grouping similar multi-dimensional data vectors together into a number of 
partitions. The aim is to identify and classify objects into subsets that have some meaning in the context of a particular 
problem. A detailed discussion on clustering algorithms can be found in [1]. 

k-means is one of the most popular and simplest algorithms among iterative and hill climbing clustering algorithms 
for unsupervised clustering [2]. However, its performance is highly dependent on its initial starting points (centroids) 
and converges to the nearest local optima without searching the whole solution space. The algorithm selects the initial 
solutions (cluster centroids) randomly. Due to its greedy nature, the result of clustering can differ quite a bit based on 
its randomly selected initial solutions. 

In this paper, we propose a model to overcome this particular issue of properly choosing the initial centroids for 
compact clustering problems, specifically k-means algorithm. The proposed solution is a hybrid model of PSO (Particle 
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Swarm Optimization) [3,4], SA (Simulated Annealing) [5], SS (Scatter Search) [6], k-means [2] and some other 
heuristics. We named it as HE-kmeans (Hybrid Evolutionary Methods and k-means) clustering. 

This paper is organized as follows. Previous work and methodologies are covered in section 2. Our proposed model 
is explained in detail in section 3. In section 4 we present the experimental results comparing our method with the 
previous work along with the details about the specific data sets we used. We conclude in section 5. 

2. Previous work 

Niknam et al. have proposed a hybrid model based on PSO, ACO (ant colony optimization) and k-means [7]. Their 
model is mainly concerned with combining ACO, PSO and k-means to eliminate each other’s drawbacks. The 
proposed algorithm uses the random selection procedure of the ACO algorithm to assign different global best positions 
to every distinct agent. In another study, a model has been developed by hybridizing PSO and k-means [8][9]. For that 
model, the authors proposed PSO to find the centroids of a user specified number of clusters. The algorithm was then 
extended to use k-means clustering to seed the initial swarm. Yet in another work the authors proposed PSO-clustering 
without any other combination [10]. Here PSO-clustering, k-means and fuzzy c-means [11] were compared and the 
best results were obtained with PSO-clustering. Arthur et al. proposed a model called kmeans++ to avoid poor 
clustering formed by the standard k-means algorithm [12]. 

Genetic algorithms influenced clustering research and some noteworthy contributions are made earlier [13][14]. 
Genetic k-means algorithm is proposed to enhance the standard k-means [13]. The main idea is again to avoid being 
stuck in local optima. Here authors define a biased mutation operator specific to clustering, called distance-based-
mutation. They demonstrated that the proposed model converges to the best-known optimum corresponding to the 
given data in concurrence with the convergence result. Another genetic clustering algorithm is proposed by 
exchanging neighboring centers for k-means clustering and tested on large simulated data sets [14]. In [15], an SA 
algorithm performs the selection of initial seeds and the clustering problem is reformulated from the beginning. 

Another work by Bradley et al. to get “better” local optima for clustering uses the refined initial starting points 
[16]. They choose some sample points from the data and calculate refined initial starting points. As a result, they get 
better results compared to standard k-means. Huang et al. on the other hand, proposed a modified version of standard 
k-means in order to get rid of local optima problem [17]. The method iteratively updates the weights of variables with 
the formula authors proposed. The weights indicate the importance of variables, which is essential when sampling and 
making variable selection over large scale data. 

Another work using Simulated Annealing (SA) in clustering is [18]. They used experiments to discover word 
classes of Chinese n-gram model. They showed that proposed model achieves much better results than dictionary-
based models. Scatter Search (SS) algorithm was also used in clustering problems [19]. SS is applied to the capacitated 
clustering problem. Since k-means is highly sensitive to initial centroids, the new modified version, global k-means, 
was developed with an incremental algorithm that dynamically adds one cluster center at a time and uses each data 
point as a candidate for the kth cluster center [20]. Bagirov et al. modified global k-means such that the starting point 
for the kth cluster center is computed by minimizing an auxiliary cluster function [21]. 

3. Proposed model 

     In this study a new hybrid clustering model, namely HE-kmeans, is proposed to improve the clustering quality. We 
used PSO, SA, SS and some other heuristic algorithms integrated together to implement a better performing hybrid 
model eliminating each other’s shortcomings and promoting advantages. For example, PSO algorithm may be trapped 
into local optima if the global best and local best positions are equal to the particle’s position over a number of 
iterations. Therefore, SA is combined with PSO. Moreover, there are many cases that new particles can be constructed 
out of existing ones with better fitness values. Therefore, SS part is combined to our model. In our algorithm, PSO, 
Elimination, SA, and SS are run in this order for a number of iterations (t), and then the obtained best solution (gBest), 
which is a particle consisting of the best initial centroids achieved with the algorithm, is passed to k-means so that it 
can converge faster. In the PSO step, firstly, particles are constructed randomly and after processing all data points, 
each particle’s similarity matrix and fitness values are calculated. Then, the particles with weaker fitness values are 
eliminated with  probability (1), where  is probability,  is fitness value of pth particle at tth iteration and  
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is the one at (t-1)th iteration. Next, the SA algorithm is applied to the particles to change their conventional directions. 
After this step, the SS step begins. Here the best particle elements, namely centroids, are selected from different 
particles with the condition that they do not have any common data points. From these centroids, new particles are 
constructed and the best ones are added to swarm. At the end, gBest, the global best particle, is decomposed into 
centroids and is given as the initial solution to k-means. 

3.1. PSO Module 

In PSO step the particles are constructed in a way that if k is the number of desired clusters, the random centroids are 
generated as  for each particle and they are combined or concatenated. After initializing all particles, for 
each data point the nearest centroid from all particles are calculated. Let E[p][k][n][m] denote the similarity array 
which contains shared data point count between pth particle’s kth centroid with nth particle’s mth centroid. This four 
dimensional array keeps the shared data point counts for each pair of centroids in separate particles. That is, if 
E[p][k][n][m] = c, it means that from the data points belonging to pth particle’s kth centroid, c of them also belong to 
nth particle’s mth centroid. If E[p][k][n][m] = 0, then pth particle’s kth centroid and nth particle’s mth centroids do not 
share any data points. In this step, array E is computed and each particle’s and its centroids’ fitness values are 
calculated using (2) and (3) respectively, where  is the fitness value of pth particle,  is the fitness value of pth 
particle’s kth centroid,  is the data point belonging to jth centroid,  is jth centroid of pth particle and  is some 
constant. The output of this part is the array E and the fitness values of all centroids that form the particle. The pseudo 
code for this part is given in Figure 1. 

 
 

 

(1) 
 
 
 
 

 
 

(2) 
 

 
 

(3) 
 

  (4) 
  (5) 
  (6) 
  (7) 

 

3.2. Elimination module 

Within this module, similar particles are eliminated. By similarity measure, the upper threshold of the shared data 
points between different centroids of particles is selected. It is obvious that all particles share same points among 
themselves. However, different centroids of different particles share different amount of points between each other. 
Let, denote the threshold value, where . If particles are similar, then their different centroids share 
data points that are above the threshold. So, if particles  and  are similar, then there exists some one-to-one 
mapping between the centroids of  and  such that either  
or , where  denotes the number of elements that belong to 
that centroid. In order to achieve this, the similarity array E is used. Therefore, iterating through E array it is obvious 
to detect similar particles. After detecting such particles, elimination is performed with probability we. The similar 
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particles are not eliminated directly because in the next step these particles can have different locations due to the 
nature of the SA algorithm. As can be seen from Figure 2(a), there are two particles highlighted in the circle, which are 
similar, and therefore share some amount of data above the threshold . 

 
 

Input: S={ } set of all data points and K value indicating number of clusters. 
Output: E and F, similarity matrix and fitness values 
1.  
2.  
3. .  Initialize similarity array 
4. . Assign all particle’s centroid fitness values to infinity 
5.  

5.1. Let  be pth particle’s nearest centroid to  
5.2. Let M[p][k] be two dimensional array to denote all centroids that  for  belongs to. That is, if M[p][k] = 1, then  belongs to 

pth particle’s  cth centroid 
5.3.  
5.4.  

5.4.1. Find , the nearest centroid to  from particle  
5.4.2. .  Denote previous step in array M 
5.4.3. , where is fitness value of kth centroid of jth particle, d is distance between and  and is some constant 

5.5.  where  , : 
5.5.1. . In the right hand side, ‘+’ is element-wise summation 

6. Output and the four dimensional similarity array E 

Figure 1.  Pseudo code for PSO module. 

(a) (b) 
Figure 2.(a) Simulation of SA and Elimination parts in 2 dimensions, particles with bold circles are directed  back as in SA, others are 
directed to gBest as in PSO and two particles highlighted in circle are similar ones. (b) Demonstration of tree needed to reconstruct new particles. 
Here we have two particles (0 and 1), consisting of three centroids, that is, with k=3, where f (p-k) denotes the fitness value of pth particle’s kth 
cluster. 

3.3. SA module 

This part of the model is related with Simulated Annealing (SA) algorithm [11]. After eliminating similar particles, 
it is required to determine the particles’ next iteration locations and velocities. In this part, for each particle, their 
previous fitness values and current ones are compared. If the current fitness values are lower, it is accepted because 
lower fitness value is better. Otherwise, it is accepted with some probability. The exact equation is described in (1). 
So, if p = 1, the current fitness value is lower than the previous, then particle’s next velocity and location is calculated 
using (4) and (5), where  is the velocity of ith particle,  is constant weight factor to personal best direction,  is 
the constant weight factor to global best direction,  and  are some random values between  and ,  is the 
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personal best location of the particle ,  is the global best location and  is the new location of particle . On the 
other hand, for a particular particle, if the probability is not accepted according to equation (1), then the next location 
of that particle is calculated using equations (6) and (5) respectively. That is, the velocity of the particle is calculated 
as in (4), but is multiplied with  to change its direction  to go in the opposite way. Then, the new location is 
calculated using (5). 

3.4. Scatter Search module 

Within this module, k different centroids are found and joined to construct a new particle. The important point is 
that, k different centroids cannot share any data points, since in a particle; centroids do not have any common data 
points. 

Figure 3 shows simulation of this part with k=3 and |P|=2. That is, Figure 3(a) shows the situation before the SS part. 
Here, one particle is denoted with rectangle and another with triangle. SS part computes that centroids denoted with 
0-0, 1-1 and 0-1 do not share any common data points, where p-k means kth centroid of pth particle. As a result, the 
new particle can be created as shown in Figure 3(b). Indeed, it can be seen that the constructed particle have better 
fitness value than the existing ones. 

We use the similarity array E to form a graph consisting of vertices denoted with centroids and edges having value 
of that vertex’s fitness value. Since the similarity array keeps the sharing data point count between centroids, if the 
shared element count is zero, then the corresponding centroids can be concatenated. As can be seen from  Figure 2(b), 
the source node is the double lined circle. It has  child nodes, since that is precisely the total number of 
centroids within the swarm. The source node does not share any points with any of the centroids. The aim is, to find 
some path that consists of k consecutive nodes, with the minimum sum of edge values, where the incoming edge value 
of a particular node is its fitness value. The important point is that, if Node-A has a set of non-sharing clusters as S, in 
any of its child nodes, the set of their non-sharing clusters must be subset of S, the non-sharing cluster set of their 
parent node. In that way, k consecutive nodes cannot share any data points between themselves. 

As can be seen from (7), finding the minimum length k united nodes is implemented recursively, where  is the 
child node of . The function DP takes two arguments, the number of nodes needed and the current node. Finding 
the minimum path length consisting of k nodes can be done by either taking the current node into consideration, 
running the same function for the rest of its child nodes with (k-1) needed nodes and summing them, or not taking 
the current node into the consideration and running the function with k and all of current node’s child nodes 
arguments, and giving the minimum of this results as an output. The important point here is that, the use of 
memoization is crucial in order to get the advantages of dynamic programming. That is, if some value of 
DP(k, )=c, then it is stored. When it is needed, then the answer is retrieved and used in constant time. After the 
new particles are constructed, best of them are selected according to the sum of centroids’ fitness values and is given 
to standard k-means as an input. 

 

(a) (b) 
Figure 3. (a) Particles before SS part (0 and 1), denoted with rectangle and triangle. Here, k = 3, and p − k notation stands for pth particle’s kth 
centroid. (b) Location of a newly created particle by SS part, where new particle’s centroids are denoted with plus sign. 

    The total running time of the algorithm is , where  is number of particles, k is 
the predefined number of clusters, n is number of data points,  is the predefined number of iterations of the 
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evolutionary hybrid part and  is the iteration number needed to converge in k-means.  is also the 
running time of PSO part and is the one for k-means. PSO and k-means are implemented on the data 
points and all other parts are implemented on the particles. Since the number of particles is much less than the 
number of data points, we ignore the time complexities associated with the Elimination, SA and SS parts when 
considering the overall complexity. 

4. Experimental results 

To run experiments, we used two separate data sets. For simplicity we call them DS1† and DS2‡. DS1 consists of 
17 features and 22784 instances and DS2 consists of 3 features and 855367 instances. The proposed model, HE-
kmeans, was compared with s-k-means (standard k-means) [2] and PSO+K-means [9]. In all experiments the results 
were averaged over several runs. 

Figure 4(a) shows the results of experiments that was carried on DS1 with different number of particles for HE-
kmeans and PSO+k-means [9] with k = 2. s-k-means is not dependent with any particles, so it is shown in the figure 
just to indicate the difference between the results. The experiments were carried with t = 20, iteration number of 20. 
The graph indicates that as the number of particles increases PSO+k-means and HE-kmeans tend to find better results. 
This is expected since more particles mean more search can be performed on the solution space and the probability of 
finding a better result is increased. As can be seen from the figure, the proposed model gives better results than s-k-
means and PSO+K-means. One of the reasons for this is due to the fact that, HE-kmeans has k-means and PSO 
integrated together in such a way that the algorithm utilizes all advantages of the corresponding algorithms while 
removing the drawbacks. It is probably safe to state that the local minimums of this data set was in close proximity, 
because the results between s-k-means which is based on a greedy algorithm and other two algorithms did not vary 
much. This was observed because the data set had one major minimum and most points were able to converge to the 
nearest local minimum with greedy manner. 

Figure 4(b) shows the experimental results for k =2 with different iteration values. The overall picture stays almost 
the same, however, one important noteworthy point is that as the iteration number increase, the probability of finding 
a better result is increased more in HE-kmeans. The reason is that in SS part of the proposed model, there are more 
options to form a better particle and as we will see below, considerable amount of gBest solutions indeed come from 
this part of the algorithm. 

Another experiment that was carried is the frequency of updating the gBest value in PSO+K-means and HE-kmeans 
in 10 iterations. The results show that PSO+K-means updates the gBest value 1.2 times on average in 10 iterations. 
On the other hand, HE-kmeans performs the same in 1.8 times on average. As a result, HE-kmeans tends to find better 
solutions more often. The reason for this is as follows: HE-kmeans encapsulates almost everything that PSO+K-means 
has; moreover, it has more functions to search and find new solutions. However, increasing the number of iterations, 
does not guarantee finding global best solution, because it is NP-hard problem. 

Yet another experiment was done on HE-kmeans’s parts. To be more specific, the experiment was carried 100 
times with random parameters like k = 2 or 3, data set = DS1 or DS2, iteration number = a random number between 
10 and 20, particle number = a random number between 10 and 30. We noted the part of the algorithm in which gBest 
values gets updated. Since during the SS part of the algorithm, no computation of gBest was implemented, and only 
new particles were constructed, in the next iteration, if one of these particles were chosen as gBest, we consider that 
gBest came from the SS part. The results indicate that from 100 gBest values, 11 of them came from the SA part, 47 
of them came from the PSO part and 42 of them came from the SS part. 

Figure 4(c) shows the comparison between proposed model and s-k-means for various initial tries. It is clear that, 
repeating s-k-means many times does not bring better results significantly. The reason is that, s-k-means does not 
search for solution space and starts randomly. We gave same running time for s-k-means as HE-kmeans. That is, we 
run HE-kmeans and give s-k-means several tries for the same running time. The results were similar to Figure 4(c) 
because there is a correlation between running time and number of initial tries. Moreover, the probability of s-k-

                                                           
† http://sci2s.ugr.es/keel/dataset.php? cod=158 
 
‡ http://sci2s.ugr.es/keel/dataset.php? cod=1261 
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mean’s finding better solution by just randomly selecting initial centroids than HE-kmeans is very low and it is getting 
even lower when data set is dense and have large solution space. 

 

(a) 
 

(b) (c) 
Figure 4.(a) Fitness values on DS1 with k = 2 and t = 20 for varying particle numbers. (b) Fitness values on DS1 with k = 2 and |P| = 20 for 
varying iterations. (c) Comparison of fitness values on DS1 with k = 5 between HE-kmeans and s-k-means. 

The results of the same experiments performed with DS2 are shown in Table 2, where t is the number of iterations 
and |P| is the number of particles. The overall picture is almost the same as DS1 case. Here we encountered several 
cases where PSO+K-means got slightly better results than HE-kmeans. This can be seen in 4th line of table. This can 
happen when the number of particles is small. Since both PSO+K-means and HE-kmeans begin with randomly 
distributed particles, some particles can fall into the location, which has better fitness value than others. However, as 
the number of particles increase, PSO+K-Means’ search mechanism becomes insufficient when compared to HE-
kmeans. Again, we included s-k-means to the table to show the results with k = 3 and k = 2 and compare them 
accordingly, since s-k-means does not depend on the parameters t and |P|. Table 1 shows the information about the 
running time of HE-kmeans in seconds. It is obvious that PSO+K-means would run faster than HE- kmeans and worse 
than s-k-means, therefore, we did not put an extra column for PSO+K-Means. From the table we see that, as |P| 
increases, the running time of HE-kmeans increases approximately linearly. We say approximately because, in k-
means part of HE-kmeans, the iteration number needed for convergence cannot be predicted beforehand. The same 
can be applied to the increase in the iteration number i. As the iteration number increases, the running time of HE-
kmeans increases. 
 
Table 1. Running times on DS1 for different configurations. 

Line Configuration HE-kmeans s-k-means Line Configuration HE-kmeans s-k-means 
1 k=2,i=10,|P |=2 50 35 4 k=2,|P |=10,i=10 62 35 
2 k=2,i=10,|P |=10 62 35 5 k=2,|P |=10,i=30 91 35 
3 k=2,i=10,|P |=30 76 35 6 k=2,|P |=10,i=50 133 35 

 
Table 2. Fitness values on DS2 for different configurations 

Line  Configuration  HE-kmeans  
PSO+K-
Means  

s-k-means  Line  Configuration  HE-kmeans  PSO+K-
Means  s-k-means  

1 t=10,k=2,|P |=2  7072 7101 9488 7 |P |=10,k=2,t=10  6023 6203 9488 
2 t=10,k=2,|P |=10  6023 6203 9488 8 |P |=10,k=2,t=30  5311 5377 9488 
3 t=10,k=2,|P |=30  5688 6203 9488 9 |P |=10,k=2,t=50  4611 5066 9488 
4 t=10,k=3,|P |=2  4111 4101 4712 10 |P |=10,k=3,t=10  2712 3811 4712 
5 t=10,k=3,|P |=10  2533 3211 4712 11 |P |=10,k=3,t=30  2712 3033 4712 
6 t=10,k=3,|P |=30  2533 3091 4712 12 |P |=10,k=3,t=50  2712 3033 4712 
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5. Conclusions 

In this study we proposed a hybrid model for compact data clustering problems, which integrates PSO, SS and SA 
to find “good” initial centroids for k-means. The hybrid model was constructed in such a way that the overall model 
improved the clustering quality achieved by the standard k-means algorithm without sacrificing much from the 
execution time performance of k-means. The results were compared with the original k-means algorithm and a PSO+K-
means implementation by using two separate datasets with different clustering and model parameters and our model 
outperformed the original and PSO-based k-means in clustering quality by approximately 30%. 
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