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PHOTONIC CRYSTAL ENGINEERING FOR LIGHT MANIPULATION:
LOW SYMMETRY, INDEX GRADIENT AND PARITY-TIME SYMMETRY

ABSTRACT

The great interest to the two and three dimensionally periodic structures, called
photonic crystals (PCs), has begun with the pioneer works of Yablonovitch and John
as one can efficiently control the propagation of the electromagnetic (EM) waves in
the same manner with semiconductors that affect the electron conduction. One of the
main peculiar properties of PCs is that they have photonic band gap in the
transmission spectrum similar to electronic band gap and hence, they are able to
prevent the light to propagate in certain frequency regions irrespective of the
propagation direction in space. Inside the band gaps, neither optical modes nor
spontaneous emissions exist. Breaking the rotational and mirror symmetries of PC
unit cells provides rich dispersive features such as tilted self-collimation, and
wavelength de-multiplexing effects. Another important issue in PC designs is that it
is feasible to design graded index medium if the parameters of the two dimensional
PCs is intentionally rearranged. That type of configuration is known as Graded index
photonic crystals (GRIN PCs). The implementations of GRIN via periodic structures
provide great flexibilities in terms of designing different index gradient and photonic
integrated circuit components such as couplers, lenses, and mode order converters. It
is crucial to deliver optical signal without any loss for the long distances where light
diffraction plays an important role. Hence, dealing with the alternative solution to
light diffraction phenomena using 2D axicon shape annular type photonic structure is
another topic of this thesis. In addition to conventional photonic all dielectric
structures, we have proposed gain-loss modulated parity-time (PT-) symmetric
photonic structures to obtain strong asymmetric light transmission close to the
crystallographic resonances or, equivalently, close to high-symmetry points.

Keywords: Photonic crystals, Electromagnetic waves, Effective medium theory,
Graded index media, Photonic integrated circuits, Low symmetry photonic
structures, tilted self-collimation, beam deflection, beam splitters, wavelength
demultiplexing, light focusing, diffraction free propagating, asymmetric light
transmission, gain-loss modulated medium.
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FOTONİK KRİSTAL MÜHENDİSLİĞİ İLE IŞIĞIN KONTROLÜ: DÜŞÜK

SİMETRİ, DERECELENDİRİLMİŞ KIRILMA İNDİSİ VE PARİTE ZAMAN

SİMETRİSİ

ÖZET

Tarihsel olarak, iki ve üç boyutlu Fotonik Kristaller (FK) olarak bilinen periyodik
yapılara olan ilgi, E. Yablonovitch ve S. John ismindeki bilim adamlarının periyodik
dielektrik yapılar üzerinde yaptıkları ilk çalışmalarıyla başladı. Çalışmalarında,
elektromanyetik dalgaların yayılımının, yarıiletken yapılardaki elektronların
hareketinde olduğu gibi, kontrol edilebileceğini savundular. FK’ların en önemli
optiksel özelliklerinden biri, elektronik yasaklı bant aralığına benzer şekilde iletim
spektrumunda Fotonik Yasaklı Bant (FYB) aralığına sahip olmalarıdır. Böylece,
FK’lar belirli frekans bölgelerinde yönden bağımsız olarak ışığın yapı boyunca
yayılmasını engeller. FYB bölgesinde, ne herhangi bir optiksel mod ne de fotonun
anlık ışıması oluşmaz. Bu özellikler sayesinde FK'lar pek çok fotonik devre
tasarımında kilit rol oynamaktadır. FK birim hücresindeki dönme ve ayna
simetrisinin kırılması, eğilmiş öz-kolimasyon ve dalga boyuna göre ayırıcı gibi
özelliklerin oluşmasını sağlar. FK devre dizaynında bir başka önemli konu da
FK’ların pozisyonlarının düzenlenmesiyle ortamın kırılma indis profilinin
ayarlanabilmesidir. Derecelendirilmiş kırılma indisli FK’lar sayesinde kuplör,
odaklayıcı lens ve mod mertebesi değiştirici gibi fotonik entegre devre parçaları
oluşturulabilir. Uzun mesafeler için herhangi bir kayıp olmaksızın optik sinyalinin
iletimini sağlamak önemli bir sorundur. Bu durumda ışığın saçılımı problem teşkil
etmektedir. Bu tez çalışmasında iki boyutlu aksikon şeklindeki halka tipi fotonik
yapısı kullanarak ışık dağılımına alternatif çözüm sunmaya çalışılmıştır. Geleneksel
fotonik dielektrik yapılarına ek olarak, kırılma indisi kazanç-kayıplı olacak şekilde
modüle edilen Parite-Zaman simetrisine sahip iki boyutlu fotonik yapı incelenmiştir.
Tasarlanan Parite-Zaman simetrik yapısı kullanılarak kristalografik rezonansların
yakınında veya yüksek-simetri noktalarında asimetrik ışık iletimi elde edilmiştir.

Anahtar Kelimeler: Fotonik kristaller, Elektromanyetik dalgalar, Derecelendirilmiş
kırılma indisli ortamlar, Fotonik entegre devreler, Düşük simetrili fotonik yapılar,
Eğilmiş öz-kolimasyon, Hüzme bükme/bölme, Dalga boyu ayırıcı, Işık odaklama,
Dağılımsız ilerleme, Asimetrik ışık iletimi, Kazanç-kayıp kırılma indisi
modülasyonlu ortamlar.
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1. INTRODUCTION

Nature  has  always  been  an  invaluable  source  of  inspiration  for  technological

progress in the history of human development. In most of the mankind history, we

are improving on how to control and utilize the mechanical properties of nature

materials. At the very beginning age of civilization, human being learnt how to use

and manipulate with the mechanical property of stone to make stereotype tools for

everyday life. Later on, people studied how to get metal and alloy from ore. Even

more recent invention of steam locomotive was based on how to improve the

mechanical movement which made modern civilization possible.

Although the electrical and optical properties were noticed by us long time ago, the

theoretical study of fundamental electrical and optical phenomena is not done until

around two hundred years ago due to the tiny size of electron, photon and atomic

structure. The Scottish physicist James Clerk Maxwell demonstrates

that electric and magnetic fields travel through space in the form of waves at the

constant speed of light and that electricity, magnetism and even light are all

manifestations of electromagnetism. In 1864 he collected together the laws originally

derived by Carl Friedrich Gauss, Michael Faraday and André-Marie Ampère into a

his famous equations known as Maxwell’s Equations. Later in 1898 Sir John Joseph

Thomson first discovered electrons the very small, negatively charged, sub-atomic

particles. In 1926, Schrodinger published his quantum mechanics paper to describe

how electrons behave. In the middle of 20th century, with the efforts of both

theoretical and experimental physicists, we can control the motion of electrons by

introducing defects into pure crystals or semiconductors. After we had the ability to

control the electrical properties, the electrical engineering industry development is

possible and it has profound impact on our daily life.

In 21 century the science efforts are going day by day towards miniaturization and

high speed at today’s information and communications technology. Here an

important role plays electronic  circuits  that provide us  the  ability  to  control  the
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transport  and  storage data information by means of electrons. However, the

performance of electronic integrated circuits is now becoming rather limited  when

digital  information  needs  to  be  processed and sent  from  one  point  to  another.

According to Moore’s Law originated in 1965 states that overall data processing

power for computing technologies will double every two years. It means that every

two years the density of electronic integrated circuits/transistors will be doubling.

Consequently, the size of transistors should be decreased in a same rate. Today,

transistors on integrated circuits have reached a size so small that it would take more

than 2,000 of them stacked next to each other to equal the thickness of a human hair.

The transistors on personal computers’ latest chips are only 45 nanometers wide: the

average human hair is about 100,000 nanometers thick. In the characterization and

fabricating of nanoscale electronic devices the classical physics is no more enough

and we should utilize quantum mechanics. The rules of physics in the quantum world

are very different from the way things work on the macro scale. For example,

quantum particles like electrons can pass through extremely thin walls even if they

don't have the kinetic energy necessary to break through the barriers. Quantum

physicists call this phenomenon quantum tunneling. Because electronics depend

upon controlling the flow of electrons to work, issues like quantum tunneling create

serious problems.

Replacement of electrons by photons can be an effective solution in nanoscale

technology miniaturization problems. In addition, photons can travel faster than

electrons in the medium, it can carry larger information than electrons and since

photons are not strongly interacting particles as electrons, this helps reduce energy

losses. The next question is how to use light as the information carrier instead of

electrons. Photonic crystals are ideally suited for this task.

The history of photonic crystals starts with the early idea for electromagnetic wave

propagation in a periodic medium, which was studied by Lord Rayleigh in 1887, that

corresponds to 1D photonic crystals [1]. That study showed that it is possible to find

a photonic band gap (PBG) in one-dimensional periodic structures.  After 100 years,

in 1987, two independent works appeared that are considered as the starting point of
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the research field. One was the paper was by Yablonovitch, titled “Inhibition of

spontaneous emission of electromagnetic radiation using a three dimensionally

periodic structure” [2]. Yablonovitch’s idea was to understand controlling the

spontaneous emission by modifying the photonic density of states of the medium

using periodic dielectrics. The second paper by Sajeev John was titled “Strong

localization of photons in certain disordered dielectric super-lattices” [3]. John’s aim

was to understand how a random refractive-index variation affects photon

localization. Both scientists claimed that the interaction of photons with the dielectric

structures can create unique properties in the electromagnetic spectrum. This can be

possible if the structure has wavelength-scale geometrical features along with a high-

contrast refractive index variation instead of uniform/homogenous medium. Such

materials with unique electromagnetic properties such as electromagnetic band gap

are later named as “photonic crystals” (PCs). Periodic photonic crystals have

periodic ‘potentials’ due to lattices of macroscopic dielectric media in place of

atoms. If the dielectric constant of the materials in the crystal are different enough,

then, the absorption of light is minimal, then scattering at the interfaces can produce

many of the same phenomena for photons (i.e. light modes) as the atomic potential

does for electrons. One solution to the issue of optical control and manipulation is

thus the photonic crystal, a low-loss periodic dielectric medium.

Photonic crystals are very tempting for use in a new generation of integrated circuit

design because of their unique ability to confine light within certain regions of space.

One of the basic characteristics of PCs is that the refractive index variation may

appear in one, two, or even three-dimensions.

The PC concept has been extensively studied in the photonics field since 1987

because of its ability to control the flow of light. One of the most attractive aspects of

PCs is that the light-matter interaction in PCs enables unique optical conditions that

cannot be observed in standard optical waveguides, e.g., slow-light, graded-index PC

design, optical cavities with high Q-factor, super-prisms, self-collimators, sensitive

bio-chemical PC based sensors, specific light sources, and lasers [4-15].

Furthermore, light motion inside PCs can be analyzed by scale-invariant Maxwell’s
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equations, so that structural PC unit-cell parameters can be easily tuned either to

millimeter or micron-scale [16-19]. One of the important applications  of  photonic

crystals  is the  possibility to design compact  integrated  optical  devices [20,  21]

that operate entirely with light. Replacing relatively  slow  electrons  with  photons

as  the  carriers  of  information  can dramatically  increase  the  speed  and  the

bandwidth  of  advanced  communication  systems, thus revolutionizing the

telecommunication industry.

1.1. Photonic Crystals: Properties of the Periodic Photonic Structures

Photonic crystals are periodic arrangements of materials with different refractive

index. This spatial distribution gives rise to a periodic dielectric function that, as for

the periodic potential generated by regular arrays of atoms and molecules, produces

an energy band structure in which band gaps may occur. The presence of photonic

band gaps forbids the propagation for specific frequencies and in certain directions.

This feature makes the photonic crystals an excellent framework to engineer the

materials for the optical control and manipulation.

Figure 1.1. Examples of (a) 1D, (b) 2D and (c) 3D PCs.
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Fig. 1.1 shows three different examples of realization of photonic crystal structure in

(a) 1D, (b) 2D and (c) 3D periodicity. The spatial period can be named as lattice

constant and it can be chosen on the order of the wavelength of the incident light

involved in the optical process. The discrete translational symmetry of a photonic

crystal makes possible to classify the electromagnetic modes with respect to their

wavevectors k. The modes can be expanded in Bloch form consisting of a plane

wave modulated by a periodical function that takes into account the periodicity of the

crystal [4]. Therefore, for example, the magnetic field into a PC can be written as

     RrueruerH ikrikr
k  (1.1)

where R is the spatial vector that accounts for the lattice periodicity and it is named

lattice vector. Defining the reciprocal lattice vector G as the vector that satisfies the

relationship exp(iG · R) = 1, from Eq. (1.1) it follows that a mode with wavevector k

and a mode with wavevector k + G are the same mode. This means that it is

convenient to restrict the attention to a finite zone in reciprocal space (space of k) in

which it is not possible to get from one part to another of the lattice by adding any G;

this zone is known as the Brillouin zone. Fig 1.2 shows an example of (a) square

lattice, of its (b) reciprocal space, and of the corresponding (c) Brillouin zone. The

periodicity is obtained by using materials with different dielectric constants.

Figure 1.2. (a) The Real space, (b) the corresponding reciprocal space, and (c) the Brillouin zone of a
square lattice.
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1.2. Analysis of PC Structures in Frequency and Time Domains

The characterization and detailed analysis of PCs in both frequency and time domain

can be performed by exploiting various numerical approaches. The plane wave

method (PWM) and finite-difference time-domain (FDTD) method are widely used

techniques for the investigation of PCs.

In order to design photonic crystals to take advantage of their unique properties, a

calculation method is necessary to determine how light will propagate through a

particular crystal structure. Specifically, given any periodic dielectric structure, we

must find the allowable frequencies for light propagation in all crystal directions and

be able to calculate the field distributions in the crystal for any frequency of

light. There are several capable techniques, but one of the most studied and reliable

method is the PWM method. The method based on the time-harmonic

decomposition of the eigenmodes and the dielectric constant. It was used in some of

the earliest studies of photonic crystals [22-25] and is simple enough to be easily

implemented.

On the other hand, FDTD provides EM field fluctuation in spatial space with respect

to time. The transmission and reflection efficiencies of finite structures can be

evaluated easily and the wave propagation trough the medium can be observed in

time. As a result, this method maybe more favorable to direct comparison with

experiments. In addition, frequency dependence and loss can be included in this

method [26, 27]. Using FDTD method one can also calculate dispersion relation of

the PCs. However, utilizing FDTD method is a very tedious process as the selection

of the initial excitation field is important to excite all possible modes. Similarly, the

detection points shouldn’t be placed at a high symmetry point. Moreover, if the

structure has very sharp edges then uniform meshing may not predict the

characteristics well enough. It may be needed to use non-uniform meshing and as a

result, the size of the computational domain increases. For this reason, the

combination of these two methods depending on the case is beneficial for the study

of periodic dielectric structures. As a result, I performed the designs and analysis of

PC structures employing these two methods.
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1.3. Outline of the Thesis

The thesis is organized as follows. The general information and historical

background of the photonic crystals are briefly introduced in the introductory

section, chapter 1. Also in chapter 1, the necessary numerical tools for the study of

the PCs are presented: the plane wave expansion method and the finite-difference

time-domain technique are touched in that chapter.

The chapter 2 deals with the benefits of symmetry reduction in highly symmetric

periodic photonic media. The main idea of the chapter 2 is to search for anomalous

optical characteristics so that these types of PCs can be used in the design of novel

optical devices by intentionally introducing reduced-symmetry to the PCs. Breaking

either translational or rotational symmetries of PCs provides enhanced and additional

optical characteristics such as creation of a complete photonic bandgap, wavelength

demultiplexing, super-collimation, tilted self-collimation, and beam

deflecting/routing properties. Utilizing these characteristics allows the design of

several types of photonic devices such as beam deflectors, splitters, routers and

wavelength demultiplexers.

In section 2.1 we present optical properties of crescent-shaped dielectric nano-rods

that comprise a square lattice periodic structure named as crescent-shaped photonic

crystals (CPC). The circular symmetry of individual cells of periodic dielectric

structures is broken by replacing each unit cell with a reduced symmetry crescent

shaped structure. The created configuration is assumed to be formed by the

intersection of circular dielectric and air rods. The degree of freedom to manipulate

the light propagation arises due to the rotational sensitivity of the CPC. The

interesting dispersion property of designed CPC occurs due to the anisotropic nature

of the iso-frequency contours that yield tilted self-collimated wave guiding.

Furthermore, this feature allows focusing, routing, splitting and deflecting light

beams along certain routes which are independent of the lattice symmetry directions

of regular PCs. The propagation direction of light can be tuned by means of the

opening angle of the crescent shape.
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In section 2.2, we have investigated the optical properties of a new type of PC named

star-shaped PC (STAR-PC) with anomalous iso-frequency contours. Intentionally

introducing low-symmetry in the primitive unit cell gives rise to progressively tilting

flat contours, which are observed in the fifth band of the transverse magnetic mode.

Due to the intrinsic dispersive feature of the proposed PCs, i.e. tilted self-collimation,

the incident signal with different wavelengths can be successfully separated in a

spatial domain without introducing any corrugations or complexities inside the

structure. We show numerical investigations of wavelength selective characteristic of

the proposed PC structure in both time and frequency domains. The STAR-PC

approach can be considered a good candidate for the wavelength division

applications in the design of compact photonic integrated circuits. For the purpose of

wavelength separation implementations, the proposed structure may operate within

the wavelength interval of 1484.5nm - 1621.5nm with a broad bandwidth of 8.82%.

The corresponding inter-channel crosstalk value is as low as -19 dB and the

calculated transmission efficiency is above 97%.

In chapter 3, the detailed investigation of light propagation within the

inhomogeneous, i.e. “Graded index (GRIN) medium”, medium using ray and wave

theory is reported. Consequently, in section 3.1 we proposed the design of an

inhomogeneous artificially created graded index medium to enrich the optical device

functionalities of light by using periodic all-dielectric materials. Continuous GRIN

profile with hyperbolic secant index distribution is approximated using 2D PC

dielectric rods with a fixed refractive index. The locations of each individual cell that

contain dielectric rods of certain radii are determined based on the results of the

frequency domain analysis. The desired index distribution is attained at long

wavelengths using dispersion engineering approach. The frequency response of the

transmission spectrum exhibits high transmission windows appearing at both larger

and smaller wavelengths regions. Two regions are separated by a local band gap that

blocks the incident light for a certain frequency interval. Light manipulation

characteristics such as focusing, de-focusing and collimation are systematically and

quantitatively compared for artificially designed GRIN medium within low and high

frequency regimes. We show different field manipulation capabilities and focal point
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movement dynamics of the GRIN medium by special adjustment of the length of the

structure. In addition, an analytical formulation based on ray theory is derived to

investigate the focusing, de-focusing and collimation properties of proposed GRIN

medium. The analytical approach utilizes Ray theory and computational tools are

based on plane wave expansion and finite-difference time-domain methods.

Implementing the GRIN medium by periodic optical materials provides frequency

selectivity and strong focusing effects at higher frequency region. The designed

structure can be used in integrated nanophotonics as a compact optical element with

flat surfaces.

In section 3.2, we have worked on a novel mode conversion method using

asymmetric GRIN (A-GRIN) PC structure. Proposed optical configuration enables

transformation of the propagating mode from fundamental to higher order modes by

utilizing A-GRIN structures. Refractive index variations of two different asymmetric

gradient profiles, i.e. Exponential and Luneburg lens profiles have been

approximated by two-dimensional photonic crystals. The basic structure is composed

of constant radii with different lattice sizes. The designed GRIN mode converters

provide relatively high transmission efficiency in the spectral region of interest and

achieve the transformation in compact configuration. Numerical approaches utilizing

the finite-difference time domain and plane wave expansion methods are used to

analyze the mode conversion phenomenon of proposed GRIN PC media. Analytical

formulation based on Ray theory is outlined to explore both ray trajectories and

physical concept of wavefront retardation mechanism.

In chapter 4, we presented the design of a photonic structure for the generation of in-

plane 2D limited diffraction beam. We have numerically investigated the

characteristics of the light propagation passing through a two-dimensional square

lattice annular type photonic crystal shaped in an axicon configuration. Careful

selection of the operating frequency as well as the optimization of the apex rod

position creates less diffracted beam whose transverse intensity profile closely

resembles zero-order Bessel function. The created beam dramatically resists against

the spatial spreading over a propagation distance of 50 micro-meters, after focusing
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with a spot size of ~0.23 micro-meters. The self-healing capability of the generated

limited diffraction beam is demonstrated by placing obstacles with different sizes and

shapes along the optical axis. The two features that accompany with such beams, i.e.,

diffraction-limited propagation and re-construction ability after encountering

obstructions may strengthen its usage in manipulation of light propagation in various

environments.

In chapter 5, we proposed a simple realistic two-dimensional complex parity-time-

symmetric photonic structure that is described by a non-Hermitian potential but

possesses real-valued eigenvalues. The concept is developed from basic physical

considerations to provide asymmetric coupling between harmonic wave components

of the electromagnetic field. The structure results in a nonreciprocal chirality and

asymmetric transmission between in- and out-coupling channels into the structure.

The analytical results are supported by a numerical study of the Bloch-like mode

formations and calculations of a realistic planar semiconductor structure.

Finally, chapter 6 summarizes the achievements in the thesis.
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2. REDUCED SYMMETRY IN PERIODIC PHOTONIC CRYSTAL

CONFIGURATIONS

Meanwhile, research into non-periodic and disordered PC structures has attracted the

much attention [28]. The interaction of photons with these types of structures allows

exciting optical phenomena to be obtained; light scattering in disordered media may

provide strong photon localization [29]. Disordered structures have potential in some

applications such as random lasing, Anderson localization, sub-wavelength imaging,

and novel light-source designs [30]. In a recent work, a compact spectrometer with

high resolution was designed by intentionally introducing disorder into the photonic

medium [31]. Utilizing random gain medium for lasing action is another research

topic that exploits light scattering and amplification in disordered materials [32-35].

Periodic structures may be disadvantageous in some cases because of their high-

symmetry. For example, high-symmetric structures are very sensitive to structural

deformation. Moreover, the operating bandwidth may be quite small for the high-

symmetric PC case. Besides, structural degradation during the fabrication process

can be considered as another possible problem, since it causes deviation from the

ideal cases. Lastly, unusual optical characteristics may be expected while reducing

the symmetry of PC structures.

In addition to periodic and disordered PC configurations, quasi-crystals are a topic of

much interest and have been intensively studied. Translational symmetry is broken in

quasi-periodic structures, whereas rotational symmetry is kept intact [36]. Although

random and disordered PCs do not have any spatial symmetry property, quasi-

periodic structures possess a reduced symmetry characteristic; these types of periodic

structures have high rotational symmetry and, therefore, anomalous characteristics

may arise, especially in transmission spectra and photonic band gaps [37-40]. Due to

the high rotational symmetries of quasi-crystals, their forbidden band gaps and light

transport properties are superior to regular PCs [41-47]. Furthermore, using these

types of PC designs, unique properties appear in transmission, reflection, refraction,

localization, radiation of photons, symmetry in Fourier space, nonlinear optical, and

diffraction characteristics. For example, enhancement of the light radiation in
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polymer light-emitting diodes has been achieved by using quasi-periodic PC

structures [48].

Band diagram engineering has been performed, paying special attention to enlarging

the gap opening and maximizing the gaps’ overlap. On the other hand, both band

movements (slope and form change of the dispersion curves) and degeneracy point

splitting, at the symmetry points of the irreducible Brillouin zone, occur depending

on symmetry-reduction in PC unit-cell. Iso-frequency contour engineering is an

additional mechanism to inspect photonic periodic structures. For the low symmetry

unit-cells, iso-frequency contours may indicate unique optical properties for photons.

Symmetry reduced photonic media have great potential for several important

concepts such as light propagation, reflection, refraction, slow-light, diffraction-free

beam propagation, and wavelength de-multiplexing. In the present review, we

discuss recent progress in the field by referencing papers, mainly by the current

authors, and speculate on feasible, future research directions.

Square lattice PCs have translational symmetry with respect to lattice vectors, a1 and

a2 so that the dielectric permittivity of the periodic structure can be defined by,

ε(r)=ε(r+la1+ma2), in which l and m are integers. As shown in Fig. 2.1(a), for the

square lattice PC cylinders, the corresponding lattice unit vectors are, xaa ˆ1 and

,yaa ˆ2 where x̂ and ŷ are the base vectors in the spatial domain and a is the lattice

constant. In addition to translational symmetry, two-dimensional PCs may have other

types of symmetries such as mirror and rotational symmetries. If the PC design is

invariant under the mirror reflection along the x-axis by the operation, σx then the

corresponding dielectric constant function does not change depending on sign of x,

i.e., ε(x,y)= ε(-x,y) Similarly, if the PC structure has a mirror symmetry under an

operation, σy, then the dielectric permittivity function is invariant to the change of

sign y, ε(x,y)= ε(x,-y)The mirror symmetry operators, σx and σy are given as insets in

Fig. 2.1(a). The rotational symmetry operation is another symmetry operation to be

considered. It is denoted by Cn which means the PC structure can be rotated by 2π/n

radian in a counterclockwise direction about the origin without altering its geometry.
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Figure 2.1(a) shows schematic representations of two examples of rotational

symmetry operations, namely C2and C4.

The band structure of a crystal provides significant information about its optical

properties. When the PC lattice has rotational or mirror symmetry, then the band

structures also have that symmetry. In such a case, we do not need to consider every

k point in the Brillouin zone. The smallest region within the Brillouin zone is called

the Irreducible Brillouin zone, where the symmetries in frequency bands cannot be

taken into account. Figure 2.1(b) shows a schematic diagram of the first Brillouin

zone of the square lattice PC, in which the Irreducible Brillouin zone is represented

by the shaded region. On the other hand, when either the mirror or rotational

symmetry of the structure is broken at a unit-cell scale, by reducing the symmetry of

PC rods, the photonic band calculations in the Irreducible Brillouin zone are not

sufficient anymore. Instead, every k-point at the edges of first Brillouin zone should

be considered, and, thus, the band structure of low-symmetric PCs should be

calculated along the [Γ-X-M- X1- M1- X2- M2- X3- M3- X- Γ] path, which is

shown by the arrows in Fig. 2.1(b). In such a low-symmetric PC case, maxima and

minima of photonic bands at high-symmetry points in the Brillouin zone may shift

accordingly, which results in the variation of the band gap boundaries.

Figure 2.1. (a) Symmetry operations for the square-lattice PCs. (b) The corresponding Brillouin zone.
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2.1. Crescent Shaped Dielectric Periodic Structure For Light Manipulation*

2.1.1. Introduction

The research in the field of photonic crystals was emerged in 1987 [4]. Since that

time, highly symmetric periodic dielectric structures with a large refractive index

contrast have been heavily investigated with an ultimate aim of achieving complete

photonic band gap (PBG) that may appear in the dispersion diagram [4, 23]. The PC

acts as a mirror reflecting the entire incident light wave whose wavelength falls

inside the PBG region. The band gap features of pure periodic 3D and 2D PCs were

soon demonstrated [25, 49]. Perturbing the periodicity of the PC may host artificially

created optical modes that are surrounded by the upper and lower boundaries of

PBG. Waveguides, sharp corners and cavities have become the ingredients of

photonics research [50-52].

Meanwhile, it has been realized that the unperturbed structure also possesses rich

spectral characteristics such as self-collimation, negative refraction, super-prism and

super-lens [8, 53-55]. All these listed peculiar dispersion properties may not need

structural defects. The two cases (unperturbed periodicity vs. broken periodicity)

comprise various device applications frequently demanded for photonic devices.

Considering all of the previously investigated common PC configurations, we can

conclude that PCs are highly symmetric structures and do possess fixed structural

patterns. The two mostly explored and utilized PCs are square- and hexagonal- (also

known as triangular) lattice photonic structures. The ingredient element of PC is

usually circularly shaped unit cell although there are other types of unit cell shapes

such as rectangular, elliptical or annular ones [56-60]. The ultimate aim of these

studies is to achieve complete PBG for all polarizations (TE and TM) and design

polarization insensitive optical devices [61-63].

*This section is based on: H. Kurt, M. Turduev, and I. H. Giden, "Crescent shaped dielectric
periodic structure for light manipulation," Optics Express, vol. 20, pp. 7184-7194 (2012).
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In a rather different perspective, the re-oriented unit cells of the PCs may give rise to

the implementation of graded index mediums [64, 65]. The implementations of

GRIN via periodic structures provide great flexibilities in terms of designing

different index gradient and photonic integrated circuit components such as couplers,

lenses and super-bending device [66-71].

In this section, we propose a novel type of PC structure named as crescent-shaped

photonic crystals. To the best of our knowledge, this structure has not been studied as

a periodic dielectric structure, yet. In this study, the designed CPC enables us to

arbitrarily route light beams by exploiting the engineered dispersion diagrams. There

is no need to infiltrate any type of anisotropic material and the approach does not

possess asymmetric PC patterns.

In the CPC structure, the geometrical adjustments are implemented at the level of

unit cells not that of structural lattice arrangements. This brings extensive parametric

tunabilities in realization of ultra-compact photonic integrated devices. Moreover,

although CPCs are formed by isotropic materials, designed structure exhibits

anisotropic optical properties similar to optical birefringence. The other unique

feature of the CPC structure is due to the fact that the operating frequency of the

structure can be easily shifted to any spectral region due to the scalability of the

Maxwell’s equations and availability of different lossless dielectric materials.

There have been various mechanisms that may induce optical anisotropy for light

propagation in PCs. The anisotropy introduced into the periodic medium can be

either in terms of selecting specific materials (dielectric parameter) or structural

configuration (unit cell’s shape or type) [72-79, 56, 58, 59, 61]. The optical

properties of the former approaches can be dynamically tuned by an external applied

electric field. The infiltrations of liquid crystals in 2D PCs involving anisotropic

media were studied for tuning their photonic band structures [71, 76]. The lower

symmetry periodic structures have been investigated for different applications. The

rectangular lattice PC was used in the study of angular super-prism effect in Ref. 80

and broad angle self-collimation characteristic was explored in Ref. 81. PCs made of

parallelogram lattice structure were investigated for light focusing device that utilize
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self-collimation phenomenon [82]. The self-collimated waveguide bends with

different angles have also been implemented [83]. Special attention should be given

while joining the rotated blocks of parallelogram lattice PC because the junction

planes with complex geometries may be induced [82]. Similarly, the interface at the

bend region should be carefully handled for the self-collimated waveguide bends

[83]. As a result, these approaches may provide limited capabilities for beam

deflecting and routing applications. However, the proposed structure in the present

work enables us to easily integrate different blocks made of square-lattice crescent

PC. The effects of symmetry reduction in PC were heavily explored with a goal of

obtaining larger band gaps. We should emphasize that lower symmetry structures

with complex configurations such as crescent-shape have not been investigated for

the dispersion contours engineering and light manipulation applications. Instead of

altering lattice type or introducing material anisotropy into periodic medium, we

preferred to modify the circular shape of dielectric cylinders. The engineering of the

iso-frequency contours (IFCs) can be performed at a level of unit cell and composite

structures can be realized in such a way that the interfaces are free from complex

geometries. It is possible to use other complex shape unit elements such as modified

version of the crescent shape, U or V shapes instead of crescent one. However, it is

expected that the degree of rotation of IFCs and focusing power may become

different in each case. That aspect of the interpretation needs additional work which

is kept for a future study.

2.1.2. 2D Crescent Shaped Photonic Crystals and Dispersion Analysis

In this work, we purposely break the circular (rotational, four-fold) symmetry of the

unit cell by replacing it with a crescent shaped structure. The expectation is to

enhance light manipulation capability inside the photonic structure without

depending on artificially introduced structural defects. The geometrical shape of the

individual cell provides the construction of complex photonic structures that may

yield distinct spectral features as we show in the present work. It is versatile to tune

the focal point locations and deflection angle of a beam via rotationally manipulating
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the structure. We show that the photon manipulation (propagation direction and

focusing point) is greatly tailored due to the anisotropic nature of the IFCs.

Introducing certain amount of rotational degree to each individual cells yields

shifting of focal points along both x- and y-axes. It is worth noting that while

rotational symmetry is lifted, we keep the translational symmetry intact. The beam

flows along the direction which is dictated by the IFCs according to the following

relation [84],
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where kx and ky represent wave-vector components along x and y directions,

respectively.

The orientation of the CPCs strongly influences the direction of light propagation

inside the medium. Fig. 2.1.1(a) shows the geometry of corresponding unit cell for

two-dimensional (2D) CPCs. When it is spatially distributed in a square-lattice

pattern, Fig. 2.1.1(b) appears as the schematic of the structure. The combination of

two circular rods (one is made of dielectric and the other is air) in an overlapped

form gives rise to a crescent shape. The regarding opto-geometric parameters

describing the structure are denoted in the same figure as well. The refractive index

of the CPCs is taken to be n=3.13 and the radii of the dielectric/air rods are denoted

by R1 and R2. Their values are R1=R2=0.30a, where a is the lattice constant. The

related unit cell filling factor, f is defined by the formula
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 In the case of R1=R2=0.30a the value of the filling

factor becomes 0.1722. The opening angle of the crescent shape is defined byand is

altered by rotating the composite cell in clock-wise (CW) and counter-clock-wise

(CCW) directions as shown in Fig. 2.1.1(a). The center to center distance of each

circle is represented by D and this parameter is set to D=R1=R2=0.30a. The

dimensions of the complete structure is denoted by (Li)x(Wi).
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PWE method is performed in order to extract the dispersion characteristics of the

CPC structure [85]. In our case, the photonic band structure calculations are traced

along the Brillouin zone edges starting at the Г point as can be seen in Fig. 2.1.1(c).

In the spatial beam routing applications, we may not need any type of structural

defects. In such a case, the shapes of the IFCs become crucial. Traditional PCs

composed of cylindrical rods or holes provide symmetric IFCs with respect to x- and

y-directions. On the other hand, lifting the symmetry of the predefined structure by

radially shifting the location of inner air-rod brings anisotropic shape to the IFCs.

Hence, the light propagation direction can be arranged by solely controlling crescent

open-angle θ. The first band of the IFCs is isotropic due to validity of the effective

medium theory [86]. The anisotropy occurs with respect to θ for the second and

higher bands. For these higher order bands, there are three basic spectral

characteristics. They are self-collimation, super-prism and focusing properties. The

capability of the adjusting self-collimation direction (in this case it occurs not only

along x- or y-directions but also along a certain angle) and the focal point of the light

beam are the additional benefits of low-symmetry unit cell implementation. As a

result, there is no need to alter the structure orientation or the incidence angle to

adjust the focusing location.

Figure 2.1.1. (a) The designed crescent-shaped PC (CPC). The refractive index of the dielectric rod is
n=13.13 and the radii of two rods are R1=R2=0.30a. The distance between the circles is
D=R1=R2 (b) Finite size square lattice CPC structure is created. (c) Brillouin zone of the
structure.
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Fig. 2.1.2 is a collection of dispersion curves when θ traces values from 0° to 90° in

CCW direction. Frequency domain approach is employed while calculating IFCs. As

we change the crescent open-angle θ, different spectral regions appear in the

dispersion plots. Figs. 2.1.2(a)-(c) correspond to different frequency contours chosen

at fixed operating frequencies for each region: (1) a/λ=0.416, θ=(0°, 5°, 10°, 20°, 30°),

(2) a/λ=0.39, θ=(40°, 50°, 60°), and (3) a/λ=0.412, θ=(70°, 80°, 90°). The three

different frequencies are selected based on their IFC shapes so that strong focusing

behavior is promoted.  It can be clearly observed from Figs. 2.1.2(a)- 2.1.2(c) that

CPC has tilted IFCs for the second band and the tilt amount can be regulated by only

adjusting the crescent open-angle. It can be deduced from these figures that the

orientation of the tilting amount directly depends on the steering of CPC opening. As

the direction of light propagation is perpendicular to IFCs, the shift of focal point

tracks an opposite path with respect to the crescent opening angle. These curves are

selected to be representative cases of anisotropic IFCs that provide manipulation of

focal point. In the next part of the paper, we present time-domain outcomes of the

numerical studies.

2.1.3. FDTD Analysis of the Crescent Shape PC

The computational analysis of this section is based on time domain methods by

employing two-dimensional FDTD [27]. In order to eliminate the back reflections

coming from the ends of the finite computational window, the boundaries are

surrounded by the perfectly matched layers [87]. We launched a source with a

Gaussian distribution in the time-domain. For the numerical studies, transverse

magnetic (TM) guided mode is used and the concerned non-zero electric and

magnetic field components are Ez, Hx, and Hy. Then, the operational frequencies are

chosen according to the different regimes of anisotropic IFCs as demonstrated in

Figs. 2.1.2(a) - 2.1.2(c).
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Figure 2.1.2. The operating frequency contours of the different crescent open-angle, θ. The operating
frequencies are a/λ=0.416 in (a) a/λ=0.39 in (b) and a/λ=0.412 in (c). The media file
presents IFCs of different crescent open angle that varies from 0° to 90°.

The steady state electric field (Ez) intensity distributions of the CPC structures for the

TM mode are shown in Figs. 2.1.3(a) - 2.1.3(c). The α parameter denotes the angle

between the optical axis and focal point. The location of the focus is represented by

F. We noticed that the α value can be changed by altering θ. To exemplify, the

crescent open angle is -30° in Fig. 2.1.3(a) and focal point occurs at above the optical

axis. On the other hand, θ is 30° in Fig. 2.1.3(b) and then α becomes negative. The

crescent open-angle θ parameter can be set as an input control parameter that is

scanned between -90° to 90°. When the crescent open-angle θ is at 0°, the focal point

location in y-direction is not changed and centered at the optical axis. An oscillation

occurs in the structure and a strong focusing is observed at the end face of CPC

(point F1). The position of focal point is close to end face of CPC, as shown in Fig.

2.1.3(c). Due to interference of the side lobes, there occurs another secondary focal

point which is represented by F2. Three important remarks can be inferred from Figs.

2.1.3. First, the closeness of the focal point to CPC’s end face is an indication of

strong curvature (focusing power) due to special form of IFC. Second, the degree of

anisotropy determines the amount of focal shift along y-direction, i.e. the values of α.

Finally, the output angle  depends on the input angle θ in a rather different manner.

The functional dependency between the two parameters can be summarized in three

sections as follows: first case is θ=0°→α=0°, the second case is 0° <θ≤ 90°→ f(θ)=-α,

and finally the third case is -90° ≤θ<0° → f(θ )=+α. This dependency is summarized
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in Fig. 2.1.3(d). The maximum shift of focal point occurs when θ=-20°. If one desires

to obtain focal point residing on the optical axis, then θ=-0°, ±90°.

Figure 2.1.3. The steady state e-field intensity distribution of CPC structure is shown. (a) θ=-30° (b)
θ=30° and (c) θ=0° (d) The schematic view of the locations of focal points and the output
angle α variations for different θ values.

Figure 2.1.4. The dependency of α to θ parameter is sketched. There are three operational frequencies
used for each region. The different colors designate the three regions.

In Fig. 2.1.4, the different operational frequency regions are displayed by different

colors. The center frequencies of the input pulse for each region are set to

ω1=0.416(2πc/a), ω2=0.390(2πc/a) and ω3=0.412(2πc/a), respectively. We can see

that variance of α with respect to θ resembles a sinusoidal pattern. The maximum
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lateral shift of focal point occurs at θ=±20° for a selected operating frequency. It can

be seen from the figure that α initially increases quickly and then starts to decrease

slowly as we increase θ. When we consider the employed discretization process in

FDTD small discrepancy occurs while reading the locations of focus points. With a

finer spatial resolution, odd-symmetric version of the (θ-α) graph can be obtained.

Figure 2.1.5. (a) Iso-frequency contours corresponding to the second band of the CPC with a crescent
open angle θ=-30° The observed tilted self collimation characteristics along different
propagation directions are presented in (b) and (c). The yellow boxes in (b) and (c)
show the location of CPC. The normalized frequency is taken to be 0.416.

In addition to manipulating the focusing location, there is also a self-collimated

behavior of the CPC. Similar to the previous results, we analyzed the IFCs of TM

mode for the second band as shown in Fig. 2.1.5(a). The black dashed arrows in Fig.

2.1.5(a) represent the directions of the group velocities and blue arrows represent the

wave vectors. The asymmetric characteristic of the CPC has direct impaction on

IFCs. As a result, the calculated IFCs for the second band are deformed from a

square shape to a tilted square as shown in Fig. 2.1.5(a). The steady state e-field is

extracted by using 2D FDTD method to observe the tilted self-collimation properties

of the CPCs when θ=30° and the results are presented in Figs. 2.1.5(b) and 2.1.5(c).

To show this effect along tilted direction, the source wave is allowed to propagate

along ГX1 and ГX directions, in Figs. 2.1.5(b) and 2.1.5(c), respectively.  The flat

contours can be used to laterally confine light in the CPC structure. In fact, for a

range of incident wave-vectors, the propagation will be normal to the IFC. The flat

portion of the contour allows input source to propagate inside periodic CPC without

diffraction.
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2.1.4. Discussions and Selected Applications

In the current work, we propose a novel type of photonic structure, called “CPC”,

and by means of this structure, we are able to design miniaturized optical medium

that control both the propagation direction and focusing behavior of the

electromagnetic fields. The great capability of CPC to adjust the focusing and

deflection of light beams is due to lowering the symmetry of the proposed structure.

The two fundamental light manipulation schemes were investigated: focusing and

self-collimation effects. In addition to these features, one can implement beam

splitters, routers and deflectors as well. The design methodologies are briefly

depicted in Figs. 2.1.6(a) and 2.1.6(b). This can be achieved by advisedly combining

differently-positioned CPCs with various crescent open-angles. For instance, suppose

that the upper half of the structure lying above the optical axis has negative value for

θ and the lower part has a positive value for θ, as shown in Fig. 2.1.6(a). Then, the

composite structure can act as a beam splitter. Half of the beam can be directed

upwards and the other part is molded in the reverse direction. On the other hand, if

the θ value is adjusted as gradually varying along the propagation direction

(sweeping from 0° to 90°), then beam routers can be implemented, which is

schematically demonstrated in Fig. 2.1.6(b). The details of these proposals are kept

the outside of the current study. However, we present an example that shows a two-

step tilted light collimation process. To achieve this, a composite version of the

structure can be obtained by cascading two pieces of CPC as shown in Fig. 2.1.7.

While the first part has negative θ, the second part may have positive θ. The

consequence of this combination yields self-collimated beam propagation having

both positive and negative tilt angles. The source is placed at the left-side of the

structure (the position is indicated by an arrow). The central part of the light beam

follows the path that is highlighted with white arrows. When light travels inside the

first part of the composite CPC, it bends upward. The second part of the structure

routes the light wave downward. Due to the equal values of θ for both sections, the

incidence and reflectance angles of the beam at the interface are equal to each other.
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One of the observations that can be deduced from Fig. 2.1.7 is that e-field

concentrates strongly at the sharp edges of each crescent shaped cells.

Figure 2.1.6. The representation of the construction methods of CPCs for various application areas: (a)
the design of beam-splitting and (b) beam-deflectors and routers.

Figure 2.1.7. A composite CPC set up and steady-state electric field distribution. The cascade
structure is obtained by combining two-block of CPC, one is negative θ and the second
part has positive θ. The blue and red colors correspond to minimum and maximum
values of e-field’s amplitude. Black arrow shows the location of source and the dashed-
white one demonstrates the path of the propagation

The idea of splitting input power equally into two branches can be achieved by the

help of the lower symmetry of CPC. The numerical investigation of Fig. 2.1.6(a) was
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performed and the result is shown in Fig. 2.1.8(a). The source is placed in the middle

of the structure at the left side. The normalized operating frequency is selected to be

ω1=0.421(2πc/a). The light is divided into two self-collimated branches as can be

observed from the plot. The amount of spatial separation between the two lobes at

the end of the structure can be adjusted by means of CPC’s length. The transverse e-

field profile is represented in Fig. 2.1.8(b). Almost identical peaks show the

successful splitting of light beam by using the designed CPC. By adjusting the

location of input source, light splitting with variable intensity ratio can be achieved

as well. In addition to that, splitting angle can be controlled by altering the opening

angle of the crescent shape cells. The media file in Fig. 2.1.8(a) designates the

propagation of the input light throughout the splitting structure.

Figure 2.1.8. Beam splitter configuration. The upper and lower parts of the CPC have opposite angle
θ=±20°. (a) The steady-state intensity distribution of electric field throughout the
structure. (b) The transverse intensity profile at the end of the structure.

One of the interesting properties of the CPCs is that although the material of the

structure is itself isotropic, the formed structure may exhibit anisotropic

characteristics due to its asymmetric shape of IFCs. For normalized frequencies

above 0.40, the anisotropy ratio ar, defined as ar=ng(ГX)/ ng(ГM) is higher than 1.50

and ar=ng(ГX)≠ng(ГX1) [26]. This implies that CPCs can display different optical

properties for different propagation directions of the same polarized light wave and

can be approximated as an anisotropic media. Usually, the anisotropic feature of
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materials belongs to certain type of crystals that the nonlinear optics applications

heavily use them [88]. The proposed structure may offer an alternative way to create

similar optical effect (form birefringence) that can be realized by structural

manipulation of pure transparent periodic dielectric materials. The response of the

structure should be investigated for both polarizations. The scope of the present work

is intended not to cover this property of the CPC.

Thanks to the recent development in the fields of applied physics and photonics, the

difficulties on the fabrication of complex shaped PCs can be surmounted [89-92].

Thus, it is expected that the fabrication of theoretically designed CPCs can be

realized by the state-of-the-art fabrication methods featured in semiconductor

devices. E-beam lithography, focused ion beam lithography and atomic layer

deposition technique can be among the choices. Besides, one can always introduce

symmetry reduced configurations that may demand less difficulty for fabrication

steps but still show similar effects for light beams.

Converting the normalized values such as lattice constant, structure dimensions etc.,

in terms of measurable physical quantities gives us following results. When we tune

frequency at 1550nm (for the normalized frequency ω1=0.416(2πc/a)), then the

lattice constant a and the radius are 644.8nm and 193.4nm, respectively. The

structure dimension becomes as W1=6.448μm×L1=7.737μm. The focal point

maximum shifting distance in the y-direction is equal to 1.289μm. The focal lengths

for θ=30°, 0°, and -30° are 1.2675μm, 0μm and 1.2675μm, respectively. Even though

we outline the findings of square lattice dielectric crescent shapes in air background

similar behavior can be obtained by utilizing the complementary structure (i.e., air

crescent shapes in dielectric background) patterned either by triangular or square

lattice type.
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2.2. Wavelength Demultiplexing by Star Shaped Photonic Crystal*

2.2.1. Introduction

Photonic crystals are periodic structures that are artificially designed in one-, two- or

three-dimensions [2]. Regular symmetrical PCs display intrinsic dispersive

characteristics in allowed frequency regimes, which can be listed as self-collimation

[8], superprism and superlens [93] effects as well as absolute band gaps [4].

Conventional PCs are usually circularly shaped, whereas other types of unit cells are

in various shapes such as rectangular, elliptical or annular [56-59]. In fact,

introducing low-symmetry in the primitive cells present additional features in the

dispersion contour engineering [94, 95] and enables enhancement of the photonic

band gap properties [96]. Additionally, different optical applications have been

investigated by employing low-symmetry in the PC structures, including:  beam

splitters [94], routers [97] and polarization insensitive waveguide designs [98]. In our

present work, we propose a new type of PC structure named star-shaped photonic

crystals (STAR-PC). To the best of our knowledge, this configuration has not

previously been studied as a wavelength selective periodic dielectric structure. The

designed STAR-PC enables us to manipulate the flow of light beams by exploiting

the engineered dispersion diagrams at higher bands. By engineering iso-frequency

contours, the proposed medium becomes sensitive to the incident wavelength

changes and, in turn, can be thought as an alternative solution for the wavelength

division applications. Wavelength Division Multiplexing (WDM) has been

considered a promising concept for high capacity optical communication systems.

This technology allocates each optical waveguide to different wavelengths by

multiplexing them onto a single channel [99, 100]. An opposite system, which works

in the reverse direction, is referred to as Wavelength Division Demultiplexing

(WDDM).

*This section is based on: M. Turduev, I. H. Giden, H. Kurt, "Extraordinary wavelength
dependence of self-collimation effect in photonic crystal with low structural symmetry,"
Photonics and Nanostructures – Fundamentals and Applications, vol. 11(3), pp. 241–252,
(2013).
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Different techniques have been proposed especially for the design of WDDM

systems, such as: arrayed waveguide gratings [101], Bragg gratings [102], multilayer

thin film stacks [103], photonic crystal fibers [104], and graded index planar

structures [105-107].

PCs can be modeled as a wavelength demultiplexer due to their intriguing dispersive

properties, such as superprism [108] and negative refraction characteristics [109].

Utilization of planar PC waveguides [110], resonators [111], cavity, and defect-based

PC filters [112] are among the other techniques that can be used as WDDM device.

Moreover, one dimensional dielectric stack has been utilized to create a compact

wavelength demultiplexer [113].

This study aims at investigating the wavelength selective capabilities of a newly

proposed PC structure, STAR-PCs. We achieve a PC based wavelength-dependent

spatial division without using specific materials, complex compounds, or introducing

specifically optimized defects in the designed structure. Wavelength selectivity based

on defects may expose difficulties on efficient input and output light couplings. Each

defect should have different and finely tuned structural forms; consequently, there

may be some stringent requirements for the fabrication process.

Wavelength division implementations using PC structures are mostly realized by

employing dispersive property of PCs known as superprism. This phenomenon

allows the separating of multiple wavelength channels with different separation

angles [93]. Since the time that the superprism idea was proposed, researchers have

gathered great interest in optimizing the superprism behavior to design feasible

wavelength division devices [114-116].  However, wavelength division by means of

superprism effect has limited wavelength resolution [117]. Spatially broadening the

propagating beam brings the enlargement of structural dimensions in order to

minimize inter-channel cross-talks [118].

To the best of our knowledge, this is the first time that the self-collimation concept is

applied for the design of wavelength selective media. Self-collimated light beams
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propagate with almost no diffractions inside the PC structure, i.e. the spatial profile

of the beam is almost preserved while it propagates inside the structure. Mixing of

the adjacent channels can be avoided if the propagating beam has a small divergence

angle. By means of diffraction-free beam propagation, enough spatial shifts between

each channel can be introduced when the length of the device is increased.

2.2.2. Geometrical Design of STAR-PC and Spectral Analyses of

Extraordinary Self-collimation Effect

The unit cell of low-symmetric STAR-PC in air background is shown in Fig.

2.2.1(a). The concerned structural parameters are demonstrated in the same figure.

The proposed configuration has four vertices and eight edges. The width of each

edge is denoted by W and the rotation angle of the unit cell in clock-wise (CW)

direction is expressed by α, where in our case it equals to 0°. Internal angle of each

vertex is fixed at φ=45°. The schematic diagram of the square lattice STAR-PC with

length L and width H are demonstrated in Fig. 2.2.1(b). The related lattice constant is

defined by “a” and the refractive index of proposed PC is fixed to n=3.46 (Si-rods).

Although the rotational symmetry is broken, the translational symmetry remains

intact. Throughout this paper, the width of the edges is determined by W=0.30a. The

dielectric filling factor is, then, equal to F=3W2=0.27.

Figure 2.2.1. (a) Unit cell of proposed STAR-PC. It is composed of dielectric material (Si with the
refractive index of 3.46) in air background. (b) Square lattice STAR-PCs covering a
space of length L and width H and (c) corresponding Brillouin zone.

Breaking the structural symmetry in the unit cell causes striking effects on dispersion

characteristics [8-10]. We have applied the plane-wave expansion method in order to
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obtain the band structure (dispersion relations) of Bloch modes and the IFCs

regarding the designed STAR-PC structure. The dispersion analysis is performed by

using MIT Photonic Bands (MPB) software [85]. Since the designed low symmetry

STAR-PC has a complex geometrical shape, the total number of 16384 plane waves

was used in the calculation to obtain convergent results. The PWM calculations are

traced along all the edges of Brillouin zone due to low symmetry of the unit cell, as

shown in Fig. 2.2.1(c). IFCs are created to quantify the allowed wavevectors in the

designed structure and analyze the propagation behaviors of light beams through

STAR-PCs.

Figure 2.2.2. (a) Calculated IFCs of the fifth TM-band of square lattice STAR-PCs. and (b) detailed
representation of the same band IFCs for the studied frequencies.

The propagated beam follows the direction which is determined by the IFCs

according to the relation )k()y,x(v kg 
 , where k corresponds to wavevector and

)k( denotes the related angular frequency. Here, the group velocity gv of light

inside the structure represents the velocity of energy transport in the direction

perpendicular to the IFCs. Only transverse magnetic (TM) mode is considered. That

means the electric-field has only z-component. The first band in the dispersion

diagram behaves like an isotropic medium for lower frequencies. The magnitudes of

the wavevector in the ΓM and ΓX directions are almost identical which results in

circular shape IFCs. For the second TM band IFCs of STAR-PC, self-collimating

phenomenon appears due to flattening of dispersion curves in the ΓX direction,
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which has already been studied in detail in Ref. 2. For higher bands, however,

considerably different IFCs occur from that of conventional circular PC rods due to

the lack of symmetry in the unit cell. The nontrivial structure of the cell, while

affecting the first bands very little (as the first bands depend basically on the

symmetry of lattice), can modify the higher bands more sensibly. The higher the

bands, the stronger they are influenced by the symmetry of the cell. Hence, the

corresponding fifth band IFCs, where wavelength division property emerges, are

calculated and shown in Fig. 2.2.2(a). Interested IFCs for the study of wavelength

selectivity behavior are represented in Fig. 2.2.2(b) and the corresponding Brillouin

zone of STAR-PC is given as an inset. The designed structure is determined to be

single-mode over the range of wavelengths by calculating and inspecting the

dispersion diagram of the STAR-PC.

Interested wavelengths are carefully selected from the fifth band IFCs in Fig.

2.2.2(b). The tilt amount in the nearly flat IFCs increases while the normalized

frequency gets larger. Therefore, light beam can follow different paths (directions)

inside the periodic structure due to the self-collimating effect. This property enables

spatially resolving the incident light beams with different wavelengths at the output

of the structure.

Two dimensional (2D) FDTD simulation has been conducted via a freely available

software MEEP developed at MIT to examine the wavelength division behavior of

the STAR-PCs [27,119]. A grid of 30/ayx  is implemented as a mesh size in

2D-FDTD calculations. Two types of input sources are used: either a continuous

source which is needed in order to obtain spatial intensity distributions of the

proposed structure, or a pulse with a Gaussian profile in time domain for computing

the transmission spectra. The computational domain is surrounded by perfectly

matched layers in order to eliminate back reflections at the boundaries. A square

lattice structure having H=180a and L=400a is designed. A continuous source

located in front of the structure is launched to excite the designed STAR-PCs.
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The designed configuration is sequentially illuminated by a normal incident light

beam with predefined wavelengths. The spatial size of the continuous source is taken

to be 3a. FDTD results represented in Fig. 2.2.3(a) correspond to a collection of

spatial intensity electric field distributions for selected three wavelengths within the

interested region. The cascaded slices taken at the output of the field distributions are

illustrated to demonstrate spatial shifts of the output signal. As can be seen in the

same figure, the lateral beam shifting appears at the output interface due to the effect

of tilted IFCs shape at the fifth TM band. The figurative representation of n-channel

wavelength selective device is depicted as an inset in Fig. 2.2.3(a). As previously

stated, the incident light with different wavelengths can be easily separated into the

different channels without any structural corrugations or defects owing to dispersion

characteristic of STAR-PC at the fifth band. The operating frequencies range from

approximately a/λ=0.520 to a/λ=0.568 with a broad bandwidth of 8.82%. The

concerning lattice constant is fixed to a=843.2nm to allocate the desired wavelengths

in optical communication range. In this case, the determined wavelengths {λ1, λ2, λ3}

are chosen in the range, where the wavelength selectivity property appears, and set to

1621.5nm, 1550nm and 1484.5nm, respectively. These wavelengths are selected in

order to achieve high channel separation (low crosstalk). The calculated inter-

channel crosstalk is around 19 dB, which implies low-level interference between the

adjacent channels. We have calculated the input coupling efficiency that is above

97% and observed almost negligible insertion losses which are investigated in detail

in the next section. These results demonstrate that our approach can be a prominent

choice for the design of wavelength selective integrated devices.

Spatial separation of output signals in terms of their wavelengths may be considered

another challenging issue. By means of diffraction-free beam propagation, enough

spatial shifts between each channel can be introduced when the length of the device

is appropriately arranged. The light beam is deflected from the optical axis

(represented as a dashed line) by a propagation angle θ while travelling through

STAR-PCs. The graph in Fig. 2.2.3(b) explains the relationship between the

deviation angle θ and the wavelength λ of the input signal. A total amount of Δθ=6°

angle variation is observed in the wavelength range of 1484.5nm-1621.5nm. That
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Figure 2.2.3. (a) The spatial intensity electric field distribution of square lattice STAR-PC with the
structural parameters of (L, H) =(337.2μm,151.7μm). Inset shows illustration of n
channel wavelength selective device. (b) Propagation angle θ within STAR-PC in terms
of operating wavelength λ (in nm).

result corresponds to a dispersion angle ratio of Δθ/Δλ=0.044 (deg/nm). The almost

linear relation between wavelength and inclination angle is apparent in the graph.

This phenomenon strengthens the implementation of STAR-PCs as a wavelength

selective medium.

Figure 2.2.4. Fifth TM band IFCs of the rotated STAR-PCs. Corresponding angles are (a) 0°, (b) 15°,
(c) 30°, and  (d) 45°, respectively.

33

Figure 2.2.3. (a) The spatial intensity electric field distribution of square lattice STAR-PC with the
structural parameters of (L, H) =(337.2μm,151.7μm). Inset shows illustration of n
channel wavelength selective device. (b) Propagation angle θ within STAR-PC in terms
of operating wavelength λ (in nm).

result corresponds to a dispersion angle ratio of Δθ/Δλ=0.044 (deg/nm). The almost

linear relation between wavelength and inclination angle is apparent in the graph.

This phenomenon strengthens the implementation of STAR-PCs as a wavelength

selective medium.

Figure 2.2.4. Fifth TM band IFCs of the rotated STAR-PCs. Corresponding angles are (a) 0°, (b) 15°,
(c) 30°, and  (d) 45°, respectively.

33

Figure 2.2.3. (a) The spatial intensity electric field distribution of square lattice STAR-PC with the
structural parameters of (L, H) =(337.2μm,151.7μm). Inset shows illustration of n
channel wavelength selective device. (b) Propagation angle θ within STAR-PC in terms
of operating wavelength λ (in nm).

result corresponds to a dispersion angle ratio of Δθ/Δλ=0.044 (deg/nm). The almost

linear relation between wavelength and inclination angle is apparent in the graph.

This phenomenon strengthens the implementation of STAR-PCs as a wavelength

selective medium.

Figure 2.2.4. Fifth TM band IFCs of the rotated STAR-PCs. Corresponding angles are (a) 0°, (b) 15°,
(c) 30°, and  (d) 45°, respectively.



34

The newly proposed STAR-PC has four-folded (C4) discrete rotational symmetry

with intact translational symmetry. Dielectric distribution profile and rotational

symmetry of the unit cell play a crucial role in the determination of the shape of IFCs

[120]. As evident in Fig. 2.2.4, only the rotation of the four-folded symmetric

primitive cell of STAR-PC in CW direction has a considerable influence on the

contours’ shape. An intrinsic wavelength sensitivity characteristic appears only for

α=0° case, as shown in Fig. 2.2.4(a). However, in other cases, such as

α={15°,30°,45°}, whose IFCs are shown in Figs. 2.2.4(b)- 2.2.4(d), this anomalous

property either disappears (30° case) or loses its wavelength sensitivity strength (15°

and 45° cases).

2.2.3. Discussion: Working Principle, Structural Imperfection Analyses, and

Performance Comparisons

It is widely known that self-collimated light beams propagate with almost no

diffractions inside the PC structure. Up until now, wavelength division

implementations using PC structures are mostly realized by employing the

superprism effect that produces high sensitivity to changes in both wavelength and

incident angle. However, this propagating mode is subject to severe broadening due

to diffraction. As far as we know, this is the first time that the self-collimation

concept is applied for the design of wavelength selective media. Since the spatial

beam profile is almost preserved as it propagates inside the structure, high crosstalk

between adjacent channels can be avoided. By the help of the sub-diffractive beam

propagation enough spatial shifts between each channel can be introduced provided

that the length of the device is properly adjusted.

The designed structure operates in the fifth TM band and is a single mode over the

operating frequency interval that is colored by a rectangle with dashed-line, as shown

in Fig. 2.2.5(a). It should be noted that due to low symmetry in the primitive STAR-

PC cell, the calculations of the photonic band structures should be traced along the

[Г-X-M-X1-M1-X2-M2-X3-M3-X-Г] path of the Brillouin zone as demonstrated in

Fig. 2.2.5(b). The shaded area in Fig. 2.2.5(a) indicates the linear band region with a
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group velocity of vg=0.28c in the frequency interval from a/λ=0.520 to a/λ=0.568,

where c is the speed of light in vacuum. As shown in Fig. 2.2.5(a), a linear slope at

Figure 2.2.5. The representation of dispersion diagrams for STAR PC along the (a) Γ-X propagation
direction and (b) all edges Г-X-M-X1-M1-X2-M2-X3-M3-X-Г of Brillouin Zone.
Corresponding Brillouin Zone is given as an inset in the same plot.

the fifth TM band is observed with respect to wavevector points.  Investigating the

dispersion bands with respect to all k-points in Fig. 2.2.5(a), one can see that the fifth

TM band stays a single mode for all k-values. Thus, the modal dispersion due to

multi-mode propagation within the same interval is inhibited. The linear structure at

the fifth band supports the existence of the self-collimation characteristic for the

designed structure [121]. For the analytical explanation of self-collimation effect in

our PC design, the angular frequency of the studied TM band can be expressed as

follows [122,123]:

where TM
n denotes the angular frequency of nth TM band of the proposed

configuration and di (i=0, 2, 4, ...) parameter represents the diffraction coefficients.

Only even powers of the wavevector k=(kx, ky) are considered since the designed

structure possesses reciprocity. To calculate diffraction coefficients we can consider

smaller values of ky. Then kx can be expressed in terms of ky for a fixed angular

frequency .constTM
n  In that case, the flat region of the interested spatial
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dispersion curve which denoted by kL in Fig. 2.2.6(a) in the propagation direction

(n=5th band of the IFC) can be approximated by the corresponding equation:

Equation 2.2.2 is more precisely the approximation of the spatial dispersion for beam

propagation along the ΓX direction for the fifth TM band.

The second-order diffraction parameter d2 in Eq. 2.2.2 determines the type of

diffractive behavior of propagating beam. In general, three types of diffraction exist,

which directly depend on the values of d2: positive (normal) diffraction, negative

(anti-) diffraction and zero diffraction. In fact, the second-order diffraction

coefficient d2 is defined as the curvature of the transverse dispersion curve and it

explains zero diffraction point phenomenon at a fixed frequency on a point in the k-

domain. Thus, the non-diffractive propagation can be achieved only by an incident

beam having infinitely broad beam widths. On the other hand, in the case when d2 is

set to zero (within the non-diffractive regime) the 4th order diffraction coefficient d4

informs us of the finite transverse size of the light source that propagates without

spatial broadening inside the PC structure.

Figure 2.2.6. (a) and (b) representation of  the IFCs of selected frequencies of square lattice STAR-PC
and 15° degree counter clockwise rotated one for the fifth TM band, respectively.
Corresponding STAR-PC unit cell schematic views are given as insets.

  .kdkddkk yn,yn,n,yx  4
4

2
20 (2.2.2)
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In order to calculate the diffraction coefficient parameters for the proposed low

symmetric STAR-PCs, IFCs of the fifth TM band are employed. Then, ky

dependence of angular frequency TM
n is analyzed for fixed kx values. The

determined second order diffraction coefficient d2 ranges from 0.05737 to 0.07246

within the operating bandwidth, which corresponds to a nearly sub-diffraction regime

[41]. To clarify the magnitude of the calculated second order diffraction coefficient

inside the operating frequency interval we have also evaluated d2 coefficient for the

first band. The frequency interval from a/λ=0.0919 to a/λ=0.195 corresponds to d2

values of 3.18 and 2.52, respectively. When we evaluate the same coefficient for the

fifth band in the case of non-tilted IFCs the evaluated values become 0.05737 and

0.07246 for the normalized frequencies a/λ=0.520 and a/λ=0.568, respectively. The

non-tilted IFCs appear after the unit cell is rotated 15° in the counter-clockwise

direction as depicted in Fig. 2.2.6(b). The two operating regimes, i.e., diffraction and

sub-diffraction provide us an idea about the possible diffraction coefficient values

[124]. In the case of zero-diffraction, the value of d2 approaches to zero. The reason

to have non-tilted IFCs in the calculation of d2 coefficient is the concern about the

diffraction/self-collimation feature of the STAR-PC without worrying about the

frequency selectivity of the structure. It should be noted that, as shown in Figs.

2.2.6(a) and 2.2.6(b), the diffraction analyses are carried out for the selected

operating frequency contours within the flat region, which is denoted by kL in the

same plots.

Figure 2.2.7. (a) Schematic representation of designed wavelength selective medium with ray
trajectories of individual channels. (b) The magnified view of the ray paths at
propagation distances of L and 2L in (b) and (c), respectively. (d) Dependence of
FWHM of the propagating beam on the propagation distance.
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diffraction/self-collimation feature of the STAR-PC without worrying about the
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By means of diffraction-free beam propagation enough spatial shifts between each

channel can be introduced when the length of the device is purposely increased. The

tilted self-collimation property observed in the fifth TM band provides light

propagation while experiencing limited diffraction inside the PC structure. Therefore,

we can formulate the dependence of the vertical beam shifting on the propagation

angle and propagation distance as follows: θn=θn-1+Δθn, n=1,2,3... and

Δyn=L(tan(θn)-tan(θn-1)). Figure 2.2.7(a) is the pictorial demonstration of the lateral

separation at different wavelengths after propagating certain distances. The vertical

shifting of the separated wavelengths depends on the propagation distance as well as

the propagation angle, which can be inferred from last two expressions. In both

expressions, spatial broadening of the beam is neglected. Figures 2.2.7(b) and

2.2.7(c) demonstrate the separations of incident signals at two propagation distances,

L and 2L, respectively. Due to the self-collimation phenomenon of the STAR-PC

structure, the incident beam propagates with limited diffraction behavior. The values

of full width at half maximums (FWHMs) of beam inside the structure at different

locations are observed in Fig. 2.2.7(d). FWHM increases by a factor of 1.29 when

beam propagates from 100a distance to 200a. On the other hand, doubling the length

of the structure induces a vertical shifting of 2Δy. This implies that the spatial

separation of different wavelengths can be accomplished by extending the lateral

dimension of the proposed STAR-PC structure.

Figure 2.2.8. Representation of the transmission efficiency plot including the input and output
coupling losses.
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Another important factor is the efficient excitation of the relevant mode and ensuring

that the collimated mode stays single mode. To underpin that feature of the STAR-

PC structure we conducted additional numerical simulations with the Gaussian

source located at the outside of the PC structure. The group index of the band at the

flat section is ~3.60. Therefore, it is expected that insertion loss is small and the

absence of internal reflection at the output face would produce relatively high power

transmission. Figure 2.2.8 demonstrates the input coupling efficiency of STAR-PC

when the source is located at the outside of the structure. That transmission graph

explains that the special form of the unit cell provides higher coupling efficiency in

the frequency range between a/λ=0.515 and a/λ=0.570. The measured input coupling

efficiency is over 97% within the operating range and almost all the incident power

can be transmitted inside STAR-PC. The zigzag-shaped unit cell of the STAR-PC

structure here may lead to efficient direct coupling of incident beam from the air

[125]. Therefore, we can conclude that the insertion loss is almost negligible in the

case of STAR-PCs, as can be seen in Fig. 2.2.8.

Figure 2.2.9. (a) IFCs of fifth TM band of the STAR-PC by varying the filling factor that is increased
by (a) 3% and (b) 5% from the original filling factor F=0.27. Similarly (c) and (d)
present the cases of 3% and 5% decreasing the filling factor. Regarding filling factor
values depicted as an inset in the same plots.
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It is worthy to check the sensitivity of structure against structural imperfections

possibly caused by the fabrication process. For this reason, we have altered the filling

factor of the STAR-PC unit cell by changing the width of the edges W. Figure 2.2.9

demonstrates the response of the fifth band IFCs to the changes of filling factor

which deviates from the original one, i.e. F=0.27. Firstly, in order to increase

corresponding dielectric filling factor F of the STAR-PC we increase the width of the

edges W in Fig. 2.2.1(a). Figures 2.2.9(a) and 2.2.9(b) represent the cases where

dielectric filling factors of STAR-PC unit cell are increased by 3% and 5%,

respectively. The increment in the dielectric amount of the PC unit cell gives rise to

the shifting of the operating frequency toward lower frequency regions. In the

opposite case, Figs. 2.2.9(c) and 2.2.9(d) represent the IFCs of the STAR-PC having

diminished filling factors of F=0.2619   (-3%) and F=0.2565 (-5%), respectively.

Table 2.2.1. Operating frequency changes with respect to the filling factor F deviation.

Change
amount
in F(%)

Filling
factor

(F)
W(a)

Operating
frequencies

(a/λ)

Operating
wavelengths

(nm)

Band
width
(%)

N
o 

ch
an

ge

0 0.27 0.3000 0.520
0.544
0.568

1621.5
1550.0
1484.5

8.82

In
cr

ea
si

ng 3 0.2781 0.3044
0.516
0.540
0.564

1634.1
1561.4
1495.0

8.88

5 0.2835 0.3074
0.512
0.536
0.560

1646.8
1573.1
1505.7

8.95

D
ec

re
as

in
g 3 0.2619 0.2954

0.528
0.552
0.576

1596.9
1527.5
1463.8

8.69

5 0.2565 0.2924
0.532
0.556
0.580

1584.9
1516.5
1458.8

8.28

As evident in Figs. 2.2.9(a) - 2.2.9(d), the fifth band IFCs preserve its original

rotated/tilted form and we can only observe small deviations on the range of
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operating frequencies. We have realized that the tilted self collimation property is

still applicable with an acceptable tolerance limits of ΔF=±5%. The calculated results

are collectively represented in detail in Table 2.2.1. While F is varied between

0.2781 (+3%) and 0.2835 (+5%), the operating frequencies change from 0.516 to

0.564 and from 0.512 to 0.560, respectively. Furthermore, the increment of filling

factor leads to 1.5% variations in the WDM operating bandwidth. In the case of

filling factor decrease by 3% (F=0.2619) and 5% (F=0.2565), the operating

frequencies deviate between 0.528 and 0.580. The result in the table implies that

even though there may be undesired deviation of the STAR-PC unit cell size during

the fabrications process, the rotated form of the fifth band IFCs can be still

preserved. Moreover, the tilted self-collimation property (flatness is not affected) and

light beam deflecting angle θ also remained unchanged. Hence, even though there is

a deviation in filling factor in the limit of ±5% by appropriate tuning of the operating

frequencies, wavelength separation can still be achieved.

Figure 2.2.10. The analyses of the sensitivity of designed STAR PC to any kind of rounding of the
tips. (a) The schematic view and the corresponding fifth band IFCs of STAR PC unit
cell without corrugations. (b) and (c) are of corrugated cases, in which the regarding
filling factors are reduced by 3% and 5%, respectively. Regarding Brillouin zone
boundaries are given as insets in the same plots.

In order to investigate the imperfection condition, i.e. sensitivity to any types of

rounding at the STAR-PC vertices, the following scenario is considered. Figure

2.2.10(a) shows the schematic of the proposed STAR-PC in its original form with

corresponding fifth band IFCs. In the cases of Fig. 2.2.10(b) and 2.2.10(c), the
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vertices of the STAR-PC are intentionally flattened so that regarding filling factors

are reduced by 3% and 5%, respectively. While comparing with the original one as in

Fig. 2.2.10(a), the intrinsic forms of dispersion contours do not sense the structural

deformations at the tips of STAR-PC.  Hence, the rotated shape of the fifth band IFC

remains unchanged. Since flattening of the edges of the unit cell means reducing the

dielectric filling factor, the operating frequency range moves to higher frequencies

than expected. The unit cell symmetry plays an important role in constructing the

shape of the dispersion contours in higher bands [120]. In our case, even though the

vertices of STAR-PC are intentionally deformed so that filling factor is varied in the

limit of 5%, the overall C4 rotational symmetry in proposed PC structure is

maintained. These results imply that our proposed design is durable to the possible

undesired imperfections that may occur during manufacturing process.

It is necessary to include a comparison of the present work with other related

demultiplexing approaches in terms of bandwidth, crosstalk, and implementation

issues such as source alignment and oblique incident case. Wavelength division

using PC structures are mostly realized by employing dispersive property of PCs

called the superprism effect [93]. This phenomenon allows the separating of multiple

wavelengths with different separation angles according to the anomalous dispersion

curves. However, wavelength division by means of superprism effect has a limitation

due to the diffraction of the light upon propagation [117]. On the other hand, the

presented demultiplexing approach maintains spatial mode distribution of the

separating beam intact within the STAR-PC, whereas, in the superprism based

demultiplexing devices, the incident source's spatial mode profile becomes

deformed, which may adversely affect efficient coupling to output channels. In the

case of the superprism based WDM configurations, additional focusing apparatus

such as superlenses are required to overcome the diffraction of output signals and

make them collimated [108]. Reduced crosstalks between adjacent output channels

are another concern to be carefully considered. Superprism based devices are highly

exposed to diffractions so that the regarding crosstalks inevitably take higher values

[109, 115]. The related crosstalk in our design, however, gets a value around 19 dB

due to anomalous sub-diffractive property of STAR-PCs. In terms of bandwidth
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values, the present work possesses large bandwidths reaching maximum value of

8.82 %. On the other hand, Gerken et al. studied a concept to obtain wavelength

multiplexing and demultiplexing devices by exploiting group velocity effects in thin-

film filters [126]. Although high spatial shift at the exit interface is achieved, the

structure operates within the narrower bandwidth wavelength region that equals to

1.67 %. Finally, it is desirable to have easy implementation of design in practice.

There should be no strict restriction in terms of the source location and incident angle

value. In this regard, there is no alignment issue of the input source position in the

current work and oblique incidence angle satisfying the condition |α|<= 12.62° is

essential for proper operation of the WDM structure [127]. On the other hand, in case

of GRIN PC based WDM device, the incident angle deviation can be considered as

an important issue [106,107]. Thus, the regarding ray path in the GRIN medium

depends highly on the light incident angle and the source location.
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3. THE GRADED INDEX PHOTONIC CRYSTALS

The terms gradient index and graded index in literature are often used to describe an

inhomogeneous medium in which the refractive index varies from point to point

[128, 129]. The GRIN media occur commonly in nature. Examples are the crystalline

lens and the retinal receptors of the human eye, and the atmosphere of the earth. The

atmosphere of the earth has a refractive index that decreases with height because the

density decreases at higher altitudes. Many unusual atmospheric phenomena, a

mirage being the best-known example, result from the bending of the rays of light by

this gradient.

There are three basic gradient index types [130]. The first is an axial gradient where

the refractive index varies in a continuous way along the optical axis of the medium.

The second is a radial gradient where index profile varies continuously from the

optical axis to the periphery along the transverse direction in such a way that iso-

indicial surfaces are concentric cylinders about the optical axis. The last type is the

spherical gradient where index changes symmetrically around a point so that iso-

indicial surfaces are concentric spheres. Historically, Maxwell [131] was among the

first who considered inhomogeneous media in optics, when, in 1854, he described a

lens with gradually varying of refractive index, known as Maxwell's fish eye, of

spherical symmetry with the property that points on the surface, and within the lens

are sharply focused at conjugate points. In 1905, Wood [132] designed a cylindrical

lens by a dipping technique whereby a cylinder of gelatin is produced with refractive

index axial symmetry.

Next 40 years later, Luneburg [128] investigated ray propagation through

inhomogeneous media and he also analyzed light propagation through a GRIN

medium with hyperbolic secant refractive index profile. In 1951 Mikaelian [133]

analytically described using of hyperbolic secant refractive index profile to provide

focusing effect of cylindrical rod type lens. It is proved that in a GRIN medium, the

optical rays have curved trajectories. By an appropriate choice of the refractive index
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distribution, a GRIN medium can have the same effect on light rays as a

conventional optical component, such as a prism or a lens. The possibility of using

GRIN media in optical systems has been considered for many years, but the

manufacture of materials has been the limiting factor in implementing GRIN optical

elements until the 1970s [129]. In the last years, however, many different gradient

index materials have been manufactured. The revival of GRIN optics has not been

casual; it is connected to a considerable degree with the enormous development of

optical communications systems, integrated optics, and micro-optics. However, these

recently evolved fabricating processes are limited by the small variation of the index,

the small depth of the gradient region, and the minimal control over the shape of the

resultant index profile. Merging of two different disciplines such as Graded Index

Optics and Photonic Crystals can be considered as a plausible solution for such types

of fabricating and designing difficulties. In this chapter of the thesis we have

proposed PCs based GRIN configurations to analyze focusing and mode order

transformation phenomena.

3.1. Design of Flat Lens-Like Graded Index Medium by Photonic Crystals:

Exploring Both Low and High Frequency Regimes*

3.1.1. Introduction

The interaction of photons with the dielectric structures creates unique properties in

the electromagnetic spectrum if the structure has wavelength-scale geometrical

features along with a high-contrast refractive index variation instead of

uniform/homogenous medium.

*This section is based on: M. Turduev, I.H. Giden, H. Kurt, "Design of flat lens-like graded
index medium by photonic crystals: Exploring both low and high frequency regimes," Optics
Communications, vol 339(15), pp.22-33 (2015).
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When the structural appearance of dielectric medium possesses certain type of spatial

periodicity, then, these artificial structures are termed as photonic crystals [2]. The

manipulation of photons becomes relatively easy due to the crystalline nature of the

PCs. Since the pioneering works in Refs. [2] and [3] the PCs become increasingly

popular, especially, in the applications of photonic integrated circuits. In the

dispersion relation, certain number of forbidden frequency intervals can be created so

that no matter what is the incidence angle, the electromagnetic wave is blocked to

penetrate inside the structure. Within the forbidden frequency interval, cavity and

waveguide modes can occur if artificially created defects are introduced inside the

periodic structure. Therefore, utilizing photonic band gap peculiarity gives birth to

the broad range of PC applications such as optical mirrors, switches, and filters [4].

Moreover, due to the high tunability of the dispersion behaviors in allowed frequency

regions, some of the anomalous properties of PCs which are highly dispersive prism,

super-prism, self-collimation, self-guiding, routing, negative refraction phenomena

can be revealed [8, 55, 93,134-136].

In the last fifty years, the ability of controlling the flow of light further improved by

introducing the idea of a graded index optics (GRIN) [128,129,137]. The GRIN

medium can be characterized as an inhomogeneous medium in which refractive

index varies in gradual manner along radial, axial or spherical directions [130]. In

general, we witness GRIN media in nature via different means: some examples are

crystalline lens of the eye, the atmosphere of the earth and the mirage effect. As

mentioned before, the possibility of employing GRIN media in optic and photonic

systems has been attracted a great attention of scientists in that area. The widely

employed version of a GRIN medium can be found in the fiber optic technology that

is known as GRIN fibers [138-140]. The index distribution imitates a quadratic form

(parabolic refractive index profile) that has maximum value at the core of the fiber

and decays to a lower refractive index value along the radial direction. The unique

feature of GRIN fibers is the nature of rich modal dispersion relation. The non-

uniform index distribution enables different order of modes to travel different

distances at equal times. As a result, modal dispersions can be compensated in a

GRIN fiber [141-144].
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It is known that light-rays follow curved trajectories in a GRIN medium.

Consequently, curving the light path gives birth to the optical effects same in

conventional optical elements with curved interfaces such as focusing, diverging or

collimation. As a matter of fact we should mention the great work of  J. C. Maxwell

who was the first that considered GRIN media as an optical lens known as Maxwell's

fish eye in 1854 [131]. After decades, the ray propagation through the GRIN media

is mathematically formulated and deeply analyzed by Luneburg [128]. These

pioneering works paved the way for future developments in the field of GRIN optics

and its optical applications [137].

Several methods of producing and manufacturing GRIN materials such as ion

diffusion, chemical vapor deposition, copolymerization and monomer diffusion,

silver ion exchange, etc., have been developed. However, several challenging issues

can arise during fabrication processes such as limitation of the index gradient

variation, the small depth of the gradient region and high precision control over the

shape of the resultant index profile. In order to overcome such types of difficulties,

PCs based GRIN configurations can be considered as an alternative solution.

It is feasible to design a GRIN if the parameters of the two dimensional (2D) PCs is

rearranged appropriately. These structures are known as graded index photonic

crystals and can be designed by engineering of PC parameters, such as gradual

changing of filling factor, lattice period, and/or material index [67, 70, 145]. In

recent years, the GRIN PC structures have been contributed to numerous nano-

photonic and optical applications that prolong from optical mode couplers [66, 146]

to the design of effectively focusing lenses [67-69,147]. Moreover, revealing the

mirage effect, efficiently guiding and manipulating the flow of light can be achieved

by the help of GRIN PC concept [65, 71, 148-149].

In this study, a novel type of GRIN PC lens structure whose refractive index

distribution is adapted to the hyperbolic secant (HS) function is introduced. In order

to design such a GRIN PC medium the location of dielectric rods with constant radii

are modified according to the desired index distribution. Dispersion engineering
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method has been applied to attain the appropriate effective refractive index form.

Focusing, defocusing and collimation behaviors of the proposed HS GRIN structure

is deeply investigated by analytical approach based on the geometrical optics, i.e.,

ray theory where the corresponding analytical conditions for focusing, collimation

and diverging cases are mathematically formulated. Moreover, proposed GRIN PC

structure is investigated under both low and high frequency regions which yield

novel outcomes in terms of light manipulation such as strong and selective focusing

of light properties. Frequency and structural length dependence of focusing

properties of GRIN PC are extensively analyzed and affirmative conclusions are

conducted.

In our previous publications, we have indicated the presence of a high transmission

window and its potential for different applications such as waveguide coupler,

bending and mode transformer designs [150-152]. On the other hand, when the

literature is carefully searched, one can encounter to the limited amount of works

where GRIN concept is also investigated under non-homogenization region

[106,153-155]. In particular, the super-bending and mirage effect in GRIN PCs are

explained by using photonic band anisotropy phenomena, which occurs at higher

bands, i.e., engineering of regarding IFCs by modification PC unit cell parameters

(dielectric filling ratio) [153]. Furthermore, a special attention is paid for light

propagation within the GRIN PC at short-wavelengths in Ref. 154. In the same work,

contrary to long-wavelength regime of GRIN PC, the dispersive phenomenon at high

frequency bands is considered, where the concept of light path curving with changing

wavelength is exploited. Also this approach is experimentally demonstrated for

optical wavelengths [106]. Recently, flat lensing concepts occurring at higher bands

are deeply investigated [156-158]. The focusing feature is explained by means of

convex-curved frequency contours of the PC structures that yield near field focusing.

To the best of our knowledge, the lensing and waveguide property of proposed HS

GRIN PC at non-homogenization region are deeply studied for the first time in the

present work considering light focusing behavior and aberration dependency aspects.
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The findings of the current work are expected to have important implications in

many fields especially in the photonics area. For instance, the discrete lenses can be

replaced by more compact flat devices. The bulky lenses have curved surfaces, small

focusing power and are susceptible to alignment problems. The designs can be easily

transformed into other frequency regimes. Another critical point is that only the

nonlinear optics and fabrication procedures which are complex and expensive may

create graded index materials. However, the proposed approach in the present work

has a potential to take over the design tasks of GRIN media. In that way, previous

remarks will directly influence the aforementioned research fields positively. Lastly,

findings of the present work can be applied to acoustic waves with graded sonic

crystals.

3.1.2. Geometrical Explanation of Light Propagation through the GRIN

Medium Using Ray Theory

In general, Ray theory works as a powerful tool when the scientists in optics and

photonics area deal with propagating light waves in inhomogeneous media such as in

graded index medium. In order to geometrically explain the progression of light

waves through the object whose dimensions are much greater than the wavelength,

the Ray theory can be considered as a plausible solution. Unlike wave optics, ray

theory does not assume any wave characteristic of light and treats the propagation of

light as a straight-line except for changes of the propagation direction induced by

reflection or refraction. In particular, Ray theory does not describe phenomena such

as interference, diffraction, and polarization effects which require wave theory

description. The theory dictates that light ray follows a line or curve that is

perpendicular to the light's wave fronts. As long as the wavelength is very small

compared with the size of structures with which the light interacts then Ray theory

gives an excellent approximation.

It is known that when light propagates in GRIN at large wavelength scale, it

experiences refraction and reflection gradually [129, 159-160]. Therefore, its
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behavior can be adequately described by rays obeying a set of geometrical rules. In

this section, we want to give a rapid insight on the modeling of light propagation

through an optical system, i.e., GRIN medium, by the help of Ray

theory/Geometrical Optics.

The ray behavior inside a GRIN medium can be explained by Ray equation. It

determines the electromagnetic wave propagation by the use of geometrical optics

approximation and it can be mathematically expressed by the following equation:

where n is the refractive index of GRIN medium, r is a vector representation of

position (x, y) and 22 dydxds  is the differential arc length along the ray path.

Moreover, the light rays can be considered as the orthogonal trajectories to the

geometrical wave fronts. So that relation between surface of equal phase and ray

(wave and ray optics) can be expressed by Eikonal equation as follows:

where S is an Eikonal function and 


is a gradient operator. The surfaces where

Eikonal function S is constant represent the surfaces of equal phases, viz. geometrical

wavefronts, which in turn dictate the shape of the propagating electromagnetic field.

In this study, two types of graded index configuration are considered: a GRIN

structure having continuously varying refractive index distribution and PC based

GRIN medium whose index profile is approximated to that of continuous medium at

a long wavelength region. The detailed design approach and regarding numerical

results of the latter configuration are reported in the next sections. The Ray theory

approach is applied for the case of continuous GRIN medium in order to better
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understand the nature of the light propagation. The refractive index distribution of

the continuous GRIN medium is adjusted to have a Hyperbolic Secant (HS) profile

and it is formulated by the given equation:

where n0 is the refractive index at the optical axis and α is a gradient parameter that

represents the depth of the index distribution. Throughout the study we abbreviated

the GRIN media having hyperbolic secant index profile by HS GRIN. The reason

why HS refractive index profile is preferred is that compared to more common form

of GRIN profiles such as quadratic (parabolic) one, HS profile demonstrates the

following advantages: First, it is a more general form of quadratic profiles which can

be approximated by a parabolic function. Second, the Eikonal equation featuring

light propagation can be solved free of any types of approximation and third the

designed structure is free of aberration for meridional rays [130]. Besides the

mentioned advantages, the HS profile parameters n0 and α are also easily tunable. In

the light of the above statements, one can deduce that optimum structural parameters

could be determined without challenging restrictions for HS GRIN medium.

Figure 3.1.1. (a) Ray propagation in a GRIN medium having an HS index profile n(y) and (b) the
schematic view of back focal length ΔF calculation at the output.

In order to calculate the ray trajectories in a continuous HS GRIN medium the

optical ray path calculation is schematically represented in Fig. 3.1.1(a). As can be

seen in the figure, the ray is described by its position y and the slope y (derivative

),y(hsecn)y(n  0 (3.1.3)
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with respect to x). The initial ray position 0y and its slope 0y at the input plane

00 x are connected with the ray position y and slope y at the plane x by solving the

Eikonal equation (Eq. 3.1.1) [130] for the continuous HS GRIN medium (details of

the derivation can be seen in Appendix A):

where )(xy is a trajectory that is obtained by the incident position 0u and incident

angle 0u and )(xy provides the slope information of the trajectory. Note that the

propagation of rays in an HS index medium obtained in hyperbolic coordinate (u) by

using following transformation )sinh( yu  (see Appendix A). The ray trajectories

are obtained without any approximation and the full analytical solution is also given

in Appendix A. The optical rays follow a curved trajectory while exiting the structure

as illustrated in Fig. 3.1.1(b). The same plot also explain the plane wave excitation

mechanism of GRIN medium by showing incidence angle (θi=0) and size of the

beam. When the light ray enters the free space after exiting the HS GRIN structure it

refracts obeying Snell's law and travels in a straight line. As illustrated in Fig.

3.1.1(b), the output ray intersects with the optical axis (OA) and the distance between

that point and end face of the structure is defined as the back focal length ΔF, which

is formulated by the following (the detailed derivations are given in Appendix):

where (xe, ye) is the position of the ray at the end face of the HS GRIN medium and

according to Fig. 3.1.1(b) the length parameter d is set to xe. Incident angle θ1 of the
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light ray at the (xe, ye) position and the refracted angle θ2 are given as an inset in the

same figure.

The ray trajectories are calculated by the derived Eqs. 3.1.4 and 3.1.5 and the

regarding ray paths are plotted inside the continuous HS GRIN medium as shown in

Fig. 3.1.2. As can be seen in Fig. 3.1.2(a) the light rays oscillate in a sinusoidal

manner along the optical axis [132, 161] and thus, the critical parameters such as the

oscillation period and the amplitude of the oscillation can be calculated. In Fig.

3.1.2(a) the period parameter is defined as Pitch (P) and given as insets in the same

figure. Light rays oscillate along the optical axis with a pitch of  2P where 

is a gradient parameter of the HS refractive index profile. Hence, knowing the pitch

enables to obtain focusing, collimation and diverging effects by appropriately

arranging the length of the HS GRIN medium. The ray trajectories for focusing and

collimation cases are illustrated in Figs. 3.1.2(b) and 3.1.2(c), respectively. When the

length of the HS GRIN structure is terminated at the positions with Lx<0.25P, the

incident rays converge and focus at the output of structure, in which case the back

focal length ΔF is calculated by Eq. 3.1.6. If the lens length is exactly equal to

Lx=0.25P then the focal point appears at the back end face of the structure and in this

case ΔF is equal zero. In this regards, one can say that the exact length size Lx=0.25P

is like a transition parameter between focusing and diverging property of HS GRIN

structure. On the other hand, if the length parameter Lx is fixed at  Lx=0.50P, then,

the output rays follow trajectories parallel to optical axis as can be observed in Fig.

2(c). In the case of collimation, the slope )( xLy at the distance Lx=0.50P equals to

zero and hence, ΔF goes to infinity according to Eq. 3.1.6, which describes

collimating behaviour of the configuration. The detailed conditions for focusing, de-

focusing and collimation behaviours of the HS GRIN medium is explained in the

next sections. The overall ray theory calculation implies that a GRIN medium can be

utilized for the light converging, diverging and collimation purposes by adjusting the

thickness of the GRIN structure.
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Figure 3.1.2. (a) Calculated ray trajectories in a HS profile GRIN medium. Special cases for the
designed configuration such as (b) focusing and (c) collimation when the structure is
appropriately terminated at distances Lx<0.25P and Lx =0.50P, respectively.

Geometrical optics can provide enough information about light-ray behavior through

the GRIN structure to provide the design of a GRIN element with adequate

performance. However, it is also necessary to analyze the performance of the GRIN

structure physically by utilizing wave theory concept.

It is known that producing the continuous GRIN media can be considered as a

challenging issue due to fabrication difficulties during the diffusion process, the need

of planar faces and restriction or limitation of the index gradient (usually smaller

gradient occurs). To overcome these difficulties, the use of PCs for the

approximation of continuous GRIN media is considered. Hence, design approach of

the approximation continuous GRIN medium by PCs and time-domain analyses as

well as focusing performances are investigated in the next section.

3.1.3. Design Approach of Hyperbolic Secant Index Profile GRIN PC Medium

Photonic crystals can be considered as a powerful compound in order to imitate

continuous GRIN media that have any index profiles. There are several methods that

can be followed to design GRIN PC medium. One method is based on appropriate

arrangement of the radii of the dielectric rods (air holes) in air (dielectric)

background so that filling factor of the elementary PC unit cell can be varied [64].

However, this process needs precise and small increments on the rod radii.

Moreover, it can also limit the range of index deviation that can be needed. The
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second method lies on the infiltration of air holes with different substances or

requirement of different types of material to construct the GRIN PC. Finally, the last

method which seems to be more practical than the mentioned approaches is

appropriate adjustment of size of PC unit cells while keeping the material type and

rod radii the same [70]. Therefore, in the presented study the modulation of the

lattice spacing is utilized in order to approximate continuous GRIN media by PCs.

For that purpose, as a first stage, the dispersion relations of PC unit cells with

different lateral sizes are calculated by exploiting plane wave expansion (PWE)

method [85]. Calculated dispersion diagrams of the first band in the ГX direction are

depicted in Fig. 3.1.3(a). As can be seen in the figure when the dimensions of the

unit cells increases in the transverse y-direction the related bands move to higher

frequencies. Note that the vertical dimension of the unit cells ranges from 0.40a to

2.0a with a 0.20a step size. The lattice constant is represented by a. Moreover, the

distance between rods along the propagation x-direction is fixed to a, i.e. gradient of

effective index profile changes along only the transverse y-direction, and the radii of

the rods are equal to r=0.20a. Corresponding variations of cell sizes are depicted in

Fig. 3.1.3(a) as an inset. As stated before it is practically difficult to implement rods

with different materials, hence we keep refractive indices of them at n=3.13

(considered as Alumina rods).

In the next stage, as presented in Fig. 3.1.3(b) the corresponding group index (ng)

curves for each band are extracted by using the slope information of the regarding

first bands. In Fig. 3.1.3(b) one can observe that for lower frequencies, ng curves are

linear and closely spaced, which provides a slight variation in group indices. As a

final stage, the proposed structure having a specified effective refractive index

profile is designed at a fixed frequency lying in the region where small alterations

occur in the group indices. It is worth noting that in order approximate the

continuous GRIN medium with HS index profile, the proposed GRIN PC structure is

designed at the normalized frequency of a/λ=0.10. In order to demonstrate the
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Figure 3.1.3. (a) The dispersion diagram of the first band along the Г-X direction is shown. (b) Group
index curves corresponding to the each dispersion bands shown in (a). Also the
direction of ГX is depicted by giving irreducible Brillouin zone as an inset in (a).

extensions of the obtained group indices the ng curves are zoomed out in the design

frequency region around a/λ=0.10 and it is given as an inset in Fig. 3.1.3(b). As can

be seen, the calculated group indices at frequency of a/λ=0.10 cover values between

1.39 and 2.28. To obtain GRIN PC structure with any type of stair-step index

distribution within those index values one needs intermediate index values to

generate smooth variation. Hence, interpolation method is applied to determine

intermediate points by fitting the calculated ng profile of rectangular cells that have

lateral sizes which deviates from 0.40a to 2.0a. Then, the concerning structure is

formed by sequentially placing the rectangular cells having those intermediate ng

values in such a way that the desired step-stair index distribution is revealed. Note

that the effective medium theory coincides with the exploited dispersion engineering

method at the long wavelength regimes, i.e. below the normalized frequency of

a/λ=0.10 [71]. Determination of the long wavelength region boundary is crucial, in

other words, the lattice constant “a” should be much smaller than the wavelength to

ensure staying in the effective medium region. Therefore, within those long

wavelengths (λ >10a), the proposed HS GRIN PC scheme can be considered as an

effective homogeneous medium.

In this study, it is aimed to design GRIN PC medium by mimicking of continuous

GRIN medium which has HS index profile. For this reason, firstly the schematic

view of continuous HS GRIN medium with the important parameters such as length

Lx and width Ly are presented in Fig. 3.1.4(a). Corresponding refractive index profile
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plot is given in Fig. 3.1.4(b) where the refractive index varies in the range of 1.30

and 2.20. We should note that the mathematical formulation of relevant refractive

index distribution n(y) of the continuous HS GRIN medium is given in previous

section in Eq. 3 and HS GRIN PC designed by keeping HS index profile parameters

equal to n0=2.2 and α=0.112a-1. Exploiting the previously described method to

engineer GRIN PC structure, one can easily approximate continuous GRIN medium

by PC rods. The designed GRIN PC medium and its imitated stair-step (discrete)

version of HS effective index profile are presented in Figs. 3.1.4(c) and 3.1.4(d),

respectively. The important parameters such as lateral Ly and longitudinal Lx

dimensions of the proposed HS GRIN PC medium are given in Fig. 3.1.4(c). As can

be inferred from the stair-step effective index profile in Fig. 3.1.4(d), effective index

changes from 1.44 to 2.20. It increases toward the optical axis due to the decrement

of the lattice spacing between adjacent rods. The dimension of the considered HS

GRIN PC structure have total width of Ly=20a. The longitudinal dimension Lx of the

design may vary depending on intended purposes (focusing, diverging or collimation

lens designs) which will be explained in detail in the next sections. While comparing

both index profiles in Figs. 3.1.4(b) and 3.1.4(d), the shape and gradient of the both

profiles match quite well which approves that the imitation method properly works.

We should note that the main purpose of giving of continuous HS GRIN medium

schematic in this section in Fig. 3.1.4(a) and 3.1.4(b) is only to show how properly

index distribution is approximated by the help of PCs. Hence, in overall numerical

calculations in the next sections the only latter one (designed GRIN PC) is

conducted.

Figure 3.1.4. (a) Schematic representation of the continuous HS GRIN medium and its (b) refractive
index distribution. (c) Schematic view of designed GRIN PC structure and  its (d) stair-
step (discrete) version of the hyperbolic secant index profile at a fixed frequency of
a/λ=0.10.
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respectively. The important parameters such as lateral Ly and longitudinal Lx

dimensions of the proposed HS GRIN PC medium are given in Fig. 3.1.4(c). As can

be inferred from the stair-step effective index profile in Fig. 3.1.4(d), effective index

changes from 1.44 to 2.20. It increases toward the optical axis due to the decrement

of the lattice spacing between adjacent rods. The dimension of the considered HS

GRIN PC structure have total width of Ly=20a. The longitudinal dimension Lx of the

design may vary depending on intended purposes (focusing, diverging or collimation

lens designs) which will be explained in detail in the next sections. While comparing

both index profiles in Figs. 3.1.4(b) and 3.1.4(d), the shape and gradient of the both

profiles match quite well which approves that the imitation method properly works.

We should note that the main purpose of giving of continuous HS GRIN medium

schematic in this section in Fig. 3.1.4(a) and 3.1.4(b) is only to show how properly

index distribution is approximated by the help of PCs. Hence, in overall numerical

calculations in the next sections the only latter one (designed GRIN PC) is

conducted.

Figure 3.1.4. (a) Schematic representation of the continuous HS GRIN medium and its (b) refractive
index distribution. (c) Schematic view of designed GRIN PC structure and  its (d) stair-
step (discrete) version of the hyperbolic secant index profile at a fixed frequency of
a/λ=0.10.
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The designed HS GRIN PC structure is numerically modeled in 2D and its time-

domain analyses are conducted by the help of FDTD method [119]. The

computational domain is concerned only in 2D spatial domain and the third

dimension is taken to be uniform. The boundaries of the computational domain are

surrounded by perfectly-matched layers (PMLs) [87] in order to eliminate undesired

back-reflections. Furthermore, in all numerical simulations only transverse magnetic

(TM) polarization employed where the concerned non-zero electric and magnetic

field components are Ez, Hx, and Hy, respectively. Through all the FDTD

calculations, a grid size arranged to be 32/ayx  . Also, two types of input

sources: either a continuous source or a pulse with a Gaussian profile in time is used.

The former one is needed to obtain spatial intensity distributions of the lensing

features of the HS GRIN PC. On the other hand, the latter type of input source is

preferable to compute the power transmission spectrum of the proposed structure.

Hence, a pulse with a Gaussian profile is launched to the front side of the HS GRIN

PC. A detector is located at the end of the structure in order to measure the

transmission spectra. Note that, the structural length of the investigated HS GRIN PC

structure is fixed to 100a. Since, the length of 100a should be enough to present

spatial domain characteristics at chosen operating frequencies. The transmission

efficiencies are calculated and normalized by taking the ratio of detected and incident

power. The carefully inspection of transmission spectrum in Fig. 3.1.5 shows that

there are two high transmission regions as well as forbidden gaps throughout the

whole frequency bands. The first frequency window is placed between a/λ=0.10 and

a/λ=0.20 where transmission efficiency oscillates between %95 and %60,

respectively. This oscillation in the graph originated from the back-reflections at the

front and back faces of the HS GRIN PC structure which is called as Fabry-Perot

oscillations. On the other hand, the second window shows more stable transmission

efficiency between the frequencies of a/λ=0.43 and a/λ=0.55 where corresponding

efficiency deviates between %80 and %99. While comparing two high transmission

windows one can deduce that the relatively low transmission in the spectrum for

small normalized frequencies (below a/λ=0.20) is due to the leakage of light along

the transverse direction (some of the light cannot reach the end face of the GRIN
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medium, weak guiding causes some amount of power to be lost). The almost perfect

transmission occurring of HS GRIN PC at higher frequencies is worth noticing. In

order to demonstrate operating frequency bands where numerical analyses will be

implemented the related transmission windows are denoted as low and high

frequency regions in Fig. 3.1.5.

Figure 3.1.5. Calculated transmission efficiency of the HS profile GRIN PC structure is given. High
transmission regions are defined by shading and denoted by low and high frequency
regions in the figure.

As mentioned above a homogenization procedure is implemented at the low

frequency region. For that purpose, the design frequency is arranged to a/λ=0.10 as

can be declared in the inset of Fig. 3.1.3(b). Afterwards, the FDTD analyses are

utilized in order to calculate the regarding transmission over a broad bandwidth and

to explore possible additional transmission windows for the designed GRIN

structure. We expect transmission windows as well as band gaps due to the fact that

the lattice periodicity along the propagation direction is kept intact. As can be seen

from Fig. 3.1.5, two high transmission windows are observed within the frequency

interval a/λ=0.10-0.20 and a/λ=0.43-0.55 where transmission efficiencies oscillate

between %60 and %99, respectively. It is worth to note that the design of the GRIN

medium is performed only considering the low frequency region. On the other hand,

the designed medium is tested both for low and high frequency regions. Therefore,
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we do not extract and report effective refractive index values for the high frequency

window in this work.

Next, FDTD method is carried out to inspect the electromagnetic field propagation

inside the HS GRIN PC structure that is tested under both low and high frequency

intervals. In order to observe the oscillation dynamics of the propagating beam, the

length of the structure is taken to be relatively long and it is equal to 100a. There are

two reasons to investigate the electromagnetic field interaction with the GRIN PC

structure: the calculation of pitch lengths for the GRIN PCs and their dependence on

the frequency variations. For that purpose, the structure is illuminated by continuous

source having a Gaussian profile. Then, the regarding steady state fields are extracted

and shown in Fig. 3.1.6. The incident beam propagates in the direction of arrows

which are given as insets in Figs. 3.1.6(a) - 3.1.6(h). We investigated the variation of

the oscillation periods which can be defined as pitch lengths and previously denoted

by P for different frequency values picked up from lower and higher frequency

regimes as indicated in the transmission spectrum in Fig. 3.1.5. In order to observe

the movement of the first and the second focal points (that points are critical for

pitch-length calculations) inside the structure, the HS profile GRIN PC is excited by

an incident source at the normalized frequencies selected in the low and high

frequency intervals. Figures 3.1.6(a) - 3.1.6(d) represent the steady-state field

distributions at lower frequencies, i.e. at a/λ={0.10,0.12,0.14,0.16}, respectively. At

lower bands, while the frequency is increased slowly from a/λ=0.10 up to a/λ=0.16,

the focal point shift is almost negligible for the selected frequency values. The

recorded half-pitch (P/2) values are around 30a. In addition, Figs. 3.1.6(e)-3.1.6(h)

are prepared in order to observe how frequency variations at higher bands affect the

first focusing characteristic of GRIN PC medium. The corresponding frequency

values of propagating beams in Figs. 3.1.6(e) - 3.1.6(h) are

a/λ={0.46,0.48,0.50,0.52}, respectively. In higher frequency levels, the response of

the GRIN PC focusing characteristics to different incident wavelengths slightly

varies staying within the values of 28a and 30a. While the incident frequency

increases, the focal point shifts to right-side. On the other hand, stronger focusing

takes place when the incident frequency is increased, which means the regarding spot
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size decreases and propagating beam becomes tighter. The focusing property is more

complex at the cut-off frequencies (band edges).

Figure 3.1.6. List of steady state electric field distributions for lower and higher frequency regions. In
lower frequency bands, the operating frequencies are set to (a) a/λ=0.10, (b) a/λ=0.12,
(c) a/λ=0.14 and (d) a/λ=0.16. On the other hand, the incident beam operates at (e)
a/λ=0.46, (f) a/λ=0.48, (g) a/λ=0.50 and (h) a/λ=0.52 within the higher frequency
interval. Half-pitch is represented in (a) for convenience. Arrows denote the light
propagation direction.

In order to better understand half-pitch size dependence on wavelength variations

within the long and short wavelength regimes, the graphs in Figs. 3.1.7(a) and

3.1.7(b) are prepared. As can be inferred from Fig. 3.1.7(a), slight oscillations in the

half-pitch size from P/2=28a to P/2=30a occur within the frequency range of

a/λ=0.10-0.17. That region is indicated by a dashed rectangle in Fig. 3.1.7(a). On the

other hand, since the transmission window is surrounded by cut-off frequencies

(lower and upper bounds), operating near the frequencies of a/λ=0.18-0.20 makes the

half-pitch lengths highly wavelength dependent (P/2 reduces down to 23a).

The higher frequency region shows rather complicated behavior. One feature is that

P/2 value increases while operating wavelength decreases, which can be seen in Fig.

3.1.7(b). At the same time, the spatial field distribution covers smaller area as shown

in Figs. 3.1.6(e) - 3.1.6(h), which implies the compression of beam spot size inside
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the HS GRIN PC. At some frequencies, there also appears a region as in lower

frequencies where the P/2 value stays nearly constant and that interval is enclosed by

a dashed rectangle in Fig. 3.1.7(b). The P/2 value varies from P/2=29a to P/2=30a

within the frequencies of a/λ=0.46-0.53. In the light of above results, several

important remarks can be inferred from the graphs in Figs. 3.1.7(a) and 3.1.7(b): at

some wavelengths, the pitch value remains nearly constant. In other words, the

oscillation period remains unchanged for frequency variation at these intervals. The

P/2 value becomes nearly constant (P/2=30a) at around a/λ=0.51, where the least

aberration effect is observed. The increase in the P/2 value signifies the reduction in

the strength of structural focusing characteristics. When the incident light has

wavelength that is close to the edges, in the cases of a/λ=0.40-0.45 and a/λ=0.54-

0.56, the light propagation provides complex periodical oscillation at the proximity

of cut-off regions. Therefore, the calculated half-pitch value is highly dependent on

operating wavelengths as can be seen in Fig. 3.1.7(b). Although field localizations at

both low and high frequency regimes display different characteristics, designed

GRIN PC medium may provide similar P values, which can be observed in Figs.

3.1.7(a) and 3.1.7(b). Hence, GRIN PC medium provides rich light manipulation

characteristics depending on the operating wavelength.

Figure 3.1.7. The variations of half-pitch value (P/2) depending on the operating frequencies are
shown for low and high frequency regions in (a) and (b), respectively.
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3.1.4. Discussion and Evaluation: Collimation, Focusing and De-focusing of

Designed HS GRIN PC

In previous section, we observed the oscillation pattern of the propagating beam by

looking at the time-domain snap shots of the electric-fields in Fig. 3.1.6. The incident

light first converges and reaches the smallest beam width. After that de-focusing and

focusing follows each other. At the transition regions while moving from de-focusing

to focusing or vice versa the beam width reaches fullest spatial width. This fact

allows us to study special cases such as collimation, focusing and diverging

behaviours in considered HS GRIN PC configuration. Therefore, we specially

terminated the lengths of the GRIN media based on the previously extracted P/2

values. Then the planar HS GRIN PC structure can focus, collimate or de-focus the

incident light while exiting the medium.

In this section, we presented the collimation, focusing and de-focusing behaviours of

designed structure by exploiting the oscillatory nature of the light travelling within

the GRIN medium. The HS GRIN PC medium has been tested under two different

frequencies, which are selected as representative values at lower and higher

frequency regimes such as a/λ=0.10 and a/λ=0.48, respectively. It is worth noting

that these operating frequencies are chosen with respect to the graphs in Figs.

3.1.7(a) and 3.1.7(b). As previously defined, the propagating beam oscillates along

the optical axis of the GRIN medium with a period/pitch "P". Knowing the pitch, it is

possible to obtain conditions for collimation, focusing and de-focusing behaviours

when the structure is illuminated by a line source right in front of the structure. For

the special cases the following conditions should be satisfied:



64

where Lcoll, Lfocus and Lde-focus are length of the HS GRIN PC structure for the

collimation, focusing and de-focusing cases, respectively. In addition, m is an integer

and equals to m=0,1,2,3...

Figure 3.1.8. Special cases of the proposed HS GRIN PCs for low and high frequency bands are
represented. In (a), (b) and (c), collimation, focusing and de-focusing behaviours
operating at a fixed frequency of a/λ=0.10 are shown, respectively. (d), (e) and (f)
correspond to the same characteristics for the normalized frequency of a/λ=0.48. The
lengths of the structures are defined as Lcoll, Lfocus and Lde-focus and depicted as an inset in
the figures.

In order to observe collimation, focusing and de-focusing effects, the lengths of HS

GRIN PCs Lx are intentionally terminated according to Eq. 3.1.7. Figure 3.1.8

represents the regarding steady-state electric field distributions of HS GRIN PC

structure for collimation, focusing and de-focusing cases operating at the normalized

frequencies of a/λ=0.10 and a/λ=0.48. To be more specific, the length of the design is

set to a half of period Lcoll=30a and Lfocus=10a for the collimation and focusing cases

at the lower frequency of a/λ=0.10, whose snapshots of field profiles are represented
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in Figs. 3.1.8(a) and 3.1.8(b), respectively. Moreover, the de-focusing condition

appears when the structure is terminated at the length of Lde-focus=25a and the

corresponding steady state field profile is shown in Fig. 3.1.8(c). While analyzing the

same task at higher frequency of a/λ=0.48, the lengths of the proposed PC structure

are adjusted to Lcoll=29a for collimation and Lfocus=10a for focusing conditions. The

corresponding field distributions are presented in Figs. 3.1.8(d) and 3.1.8(e). Finally,

Fig. 3.1.8(f) is prepared to demonstrate de-focusing behaviour of the proposed

configuration where its length is set to Lde-focus=25a. Elaborating on the above

figures, one can observe that in the case of collimation effect in Figs. 3.1.8(a) and

3.1.8(d) the wave fronts of incident beam converges and diverges. When beam

reaches the end of the structure it has flat wave fronts so that collimated beam

appears at the output. For the focusing case, converging wave fronts is obtained at

the exit of the structure and hence, a real focal point exists at the output as presented

in Figs. 3.1.8(b) and 3.1.8(e). On the contrary, in the de-focusing case a virtual focal

point occurs inside the structure and the propagating beam starts to diverge at the exit

as shown in Figs. 3.1.8(c) and 3.1.8(f). Considering Fig. 3.1.8, another important

remark is that increasing the normalized frequency from a/λ=0.10 to a/λ=0.48 creates

similar oscillations. Operating at higher frequencies, the half of pitch stays almost

constant at around P/2=30a and field distribution around the transverse direction

diminishes for smaller wavelengths. In other words, the same type of source with a

different frequency gets strongly confined as compared to the lower frequency cases.

The simple way to explain such phenomenon is that the propagating beam's

wavelength reduces at higher frequencies and thus, guided mode gets intensively

modulated by the underlying periodic lattice. The light oscillates at a smaller

transverse space and hence, the transverse field confinement becomes stronger at

a/λ=0.48 than a/λ=0.10.
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Figure 3.1.9. The spatial e-field distributions of GRIN PCs having different lengths such as (a) Lx=2a,
(b) Lx=4a and (c) Lx=6a are investigated at operating frequency of a/λ=0.10. Similarly,
field distributions are presented for the operating frequency of a/λ=0.48 where the
lengths of the structures are taken the same.

One can replace conventional focusing optical elements such as focusing apparatus

(lenses) with a GRIN medium. The additional benefits of artificially designed HS

GRIN structure are flat front and back surfaces, frequency selectivity of the structure

and strong focusing capability. Thanks to the above results, we have shown the

designed HS GRIN PC performs as an optical element that can be implemented for

focusing purposes. In the next steps, detailed investigation of the focusing

characteristics is performed. The focal point dynamics are investigated depending on

different structural lengths and the output field patterns are compared for the lower

and higher operating frequency cases. As mentioned before the structure length

should satisfy the condition given in Eq. 3.1.7 to provide focusing effect. Previously

the oscillation periods, i.e. pitches are obtained for propagating beams at the low and

high frequencies of a/λ=0.10 and a/λ=0.48, respectively. Then the corresponding P/2

values are 30a and 29a, respectively. Therefore, considering the focusing condition
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in Eq. 3.1.7 the lengths of the HS GRIN PC structures are adjusted. Figure 3.1.9

provides a collection of spatial intensity profiles for different lengths of GRIN PC

structure equal to Lx={2a, 4a, 6a} at selected frequencies of a/λ=0.10 and a/λ=0.48.

The regarding field patterns at the frequency of a/λ=0.10 are presented in Figs.

3.1.9(a) - 3.1.9(c), respectively. Under the same structural parameters, the HS GRIN

PC is excited with a source having a higher normalized frequency of a/λ=0.48 and

the corresponding field distributions are illustrated in Figs. 3.1.9(d) - 3.1.9(f). The

distance from the output surface of the HS GRIN PC to focal point is defined as the

back focal length ΔF and it is defined in Fig. 3.1.9. According to the field

distributions, one can deduce that while increasing the structural length focal point

moves closer to the output surface and thus, the corresponding ΔF decreases at both

low and high frequencies. It can also be inferred from Figs. 3.1.9(d) - 3.1.9(f) that the

smaller wavelength senses the structural modification even more and the effective

index gradient of the GRIN PC medium may increase. For the higher frequency

region, there are no side lobes and the field focusing creates more like a pencil-beam

as can be seen in Figs. 3.1.9(d) - 3.1.9(f).

To provide quantitative analyses of the focusing behaviour at the two different

operating frequencies of a/λ=0.10 and a/λ=0.48, cross-sectional intensity profiles are

taken at the focal points of field distributions in Fig. 3.1.9 along the transverse y-

direction. The corresponding cross-sectional intensity profiles at the fixed frequency

of a/λ=0.10 for different structural lengths are obtained and superimposed in Fig.

3.1.10(a). Based on the cross-sectional intensity plots, the determined full width of

half maximum values at the focal points equal to FWHM={5.78a, 5.56a, 3.98a}.

That alteration in FWHM values implies that while the focal point moves towards the

end facet of the HS GRIN PC structure and side lobes start to appear, the focusing

capability of the configuration strengthens, i.e. corresponding spot sizes becomes

smaller. In the limit when Lx approaches to P/4 then beam width becomes smallest

and ΔF should take zero value. The analytical derivations based on Ray theory

confirm these observations.
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Figure 3.1.10. The cross-sectional intensity profiles of the focal point in the cases of (a) low frequency
of a/λ=0.10 and (b) high frequency of a/λ=0.48 for different structural lengths of
Lx={2a, 4a, 6a}.

In the high frequency case of a/λ=0.48, the structural lengths are kept the same as in

Fig. 3.1.10(a) and the calculated cross-sectional intensity plots are depicted in Fig.

3.1.10(b). As expected from Figs. 3.1.9(d) - 3.1.9(f), the spot size of the focused light

is smaller at higher frequency of a/λ=0.48 than lower frequency due to higher

confinement and strong modulation mechanism. The corresponding FWHM values

are shown in Fig. 3.1.10(b) and equal to FWHM={3.14a, 2.56a, 2.02a}. While

comparing the calculated cross-sectional intensities at lower and higher frequencies,

even though the HS GRIN PCs has the same length of Lx=6a, the FWHM at the

higher frequency of a/λ=0.48 is 1.97 times narrower than that at a/λ=0.10. We should

note that these comparisons are made in the spatial domain. In the next paragraph we

have tabulated the values in terms of wavelength.

In order to finely explore the focusing properties of the HS GRIN PC medium, we

extracted two features: ΔF and FWHM values variations with respect to Lx at two

different frequencies a/λ=0.10 and 0.48, respectively. The structural length Lx

dependences of the back focal lengths ΔF and corresponding FWHM values are

analyzed and the result are demonstrated in Table 3.1.1. As stated before to provide

focusing condition Eq. 3.1.7 can be considered. For this reason, the lengths of the HS

GRIN PC structures are changed between 1a and 15a with step size of 2a.

Table 3.1.1 presents variations of FWHM and ΔF in terms of both unit distance (a)

and wavelength (λ). There are general trends applicable for both wavelength regions:
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ΔF values decrease as we increase the length Lx. Consequently, the corresponding

FWHM value reduces. As depicted in Table 3.1.1, for a longer wavelength when Lx

changes from 1a to 15a corresponding ΔF values reduce from 6.0a to 0.05a.

Meanwhile, when Lx is between 11a and 15a, ΔF becomes nearly zero. We should

point out that the initial values of ΔF at two selected frequencies are very different,

6.0a vs. 22.95a. Similarly in the case of a/λ=0.48, the length Lx varies from 1a to 15a

and regarding ΔF value decreases from 22.95a to 0.50a. It can also be observed from

Table 3.1.1 that ΔF for low frequency approaches to zero when Lx is greater than 11a

whereas in the case of high frequency at a/λ=0.48 the HS GRIN PC still succeeds the

focusing task with ΔF greater than zero. Similar trends are valid for ΔF if we present

the results in terms of wavelength units. When we present FWHM values in terms of

both unit distance and wavelength, different trends appear as Lx changes.

For instance, in the case of distance units "a" low frequency region has a larger

FWHM compared to that of in high frequency case (7.26a vs. 3.99a). On the other

hand, if we calculate FWHM in terms of λ units, opposite trend emerges, so that

FWHM values turn out to be 0.72λ and 1.92λ for low and high frequencies,

respectively. The further increasing length of the structure reveals strong suppressing

of beam spot size. The minimal FWHM values are gathered for the structural length

of Lx=15a, which are determined as 3.18a and 1.41a (corresponds to 0.31λ and 0.67λ

in terms of λ units) for the selected two frequencies of a/λ=0.10 and a/λ=0.48,

respectively. It is worth noting that low frequency region provides sub-wavelength

focusing when Lx lies between values of 3.0a and 15a. On the other hand, there is no

indication of sub-wavelength focusing for high frequency region. As a result it can

be deduced that the lower frequencies provide larger spot-size conversion ratio than

higher frequency case. This is an important distinction of HS GRIN PC medium

operating at longer wavelengths. To maintain the same spot-size conversion ratios at

lower and higher frequencies, the required lengths of structure are smaller/larger for

the low/high frequency parts. The ability to manipulate focal point dynamics with

respect to GRIN length becomes fruitful when we investigate the structure at both

lower and higher frequency region.
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Table 3.1.1. FWHM and ΔF values at two different normalized frequencies, a/λ=0.10 and 0.48 are
presented when Lx varies from 1a to 15a.

Lx
a/λ=0.10 a/λ=0.48

FWHM
(a) ΔF (a) FWHM

(λ) ΔF (λ) FWHM
(a) ΔF (a) FWHM

(λ) ΔF (λ)

1a 7.26a 6.00a 0.72λ 0.60λ 3.99a 22.95a 1.92λ 11.01λ
3a 5.30a 4.25a 0.53λ 0.42λ 2.52a 12.40a 1.21λ 5.95λ
5a 4.43a 1.90a 0.44λ 0.19λ 2.36a 11.30a 1.13λ 5.42λ
7a 4.13a 1.40a 0.41λ 0.14λ 1.85a 6.95a 0.89λ 3.33λ
9a 3.03a 0.20a 0.30λ 0.02λ 1.64a 4.65a 0.79λ 2.23λ
11a 3.12a 0.15a 0.31λ 0.015λ 1.43a 1.55a 0.69λ 0.74λ
13a 3.11a 0.15a 0.31λ 0.015λ 1.42a 0.45a 0.68λ 0.21λ
15a 3.18a 0.05a 0.31λ 0.005λ 1.41a 0.10a 0.67λ 0.04λ

3.2. Mode Transformation Using Graded Photonic Crystals With Axial

Asymmetry*

3.2.1. Introduction

Photonic crystals are periodic dielectric structures which have an extraordinary

ability to control the flow of light at optical wavelength scales [4]. The uniqueness of

these structures is that they exhibit photonic band gaps (PBGs), i.e. frequency bands

in which propagation of light are suppressed [4]. PC structures with fairly large

PBGs are of paramount importance in designing polarization independent photonic

designs [57, 95-96]. Besides, large PBGs are also required in a variety of optical

applications such as waveguides [50,162] and defect-mode microcavities [163]. Such

types of designed PC devices can be assembled into a single integrated device, which

in turn provides additional improvements in terms of system size, power

consumption, controllability, reliability, and cost.

*This section is based on: M. Turduev, B. Oner, I. Giden, and H. Kurt, "Mode
transformation using graded photonic crystals with axial asymmetry," J. Opt. Soc. Am. B 30,
1569-1579 Jun (2013).
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Those composite devices are named as photonic integrated circuits (PICs). In PIC

applications, it is important to manipulate and transform the fundamental state of

propagating mode to the higher order modes. This transforming property can be used

in mode multiplexing-demultiplexing, mode filtering, and multiport optical switching

applications [164]. There have been reported some mode conversion studies by phase

matching, i.e. introducing structural restrictions to the waveguide dimensions in the

transverse direction [165-167]. Another mode conversion method is multichannel

branching using adiabatic transition regions where fundamental mode is transformed

adiabatically and output signals are observed in the separated branches [168]. Non-

adiabatic technique for mode conversion by using the irregular metallic waveguide

structure is also demonstrated in Ref. 169.

While comparing both methods, the adiabatic transformation can be efficiently

achieved over a relatively long distance while the other approach (non-adiabatic) is

highly sensitive to variations in the input signal. Nevertheless, in both cases

fabrication disorders might be a serious problem. The mode conversion process may

also be accomplished by using asymmetric waveguide gratings [170, 171] or Y-

junctions [172]. In a recent study, an add-drop filter has been implemented involving

a linear mode conversion cavity and control of excitation symmetry for an odd TE-

like mode [173, 174]. Another study experimentally reported that the second

harmonic generation could be useful to control and generate spatial mode of the

beams [175]. In addition, the design of a mode selector device that supports

propagation of the first anti-symmetric mode of conventional silicon waveguide is

reported in Ref. 176. The role of the mode selecting device is blocking all modes

except the desired specific one (predefined modal pattern). Finally, a further mode

conversion approach was suggested by Leuthold and his colleagues where modes of

different orders were transformed one into another after propagation in a specially

designed multimode waveguide [177].

Interestingly, the above mentioned schemes for mode order conversion are designed

by homogenous medium and more often mode conversion is applied only for guided

modes. In this study, we propose a novel method for mode conversion operation by
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using two-dimensional asymmetric graded index (A-GRIN) structures. GRIN PC

structures are the compositions of PCs whose refractive index, the lattice period of

the unit cells or the filling factor gradually alter along the propagation or transverse

to propagation direction [70, 64]. The use of GRIN PCs can be an effective approach

for achieving mode-order conversion task. Considering GRIN PCs’ gradually

varying effective refractive indices and controlling the property of group and phase

velocities due to anomalous dispersion characteristic make such structures powerful

tool for the mode conversion structure design. In recent years, the GRIN PC

structures have been contributed to numerous nano-photonic and optical applications

that prolong from optical mode couplers [66, 146] to the design of effectively

focusing lenses [67, 69, 147]. Moreover, revealing the mirage effect, efficiently

guiding and manipulating the flow of light can be achieved by the help of GRIN PC

concept [65, 71, 148-149].

In this paper, a novel type of 2D A-GRIN PC structure is proposed to achieve mode

conversion by manipulating discrete PC structure. The designed mode conversion

structure is a dielectric medium whose effective refractive index gradually varies

along the transverse y-direction. We analyzed two different 2D A-GRIN PC media as

candidate environments for mode converters. The locations of PC rods have been

adjusted in order to obtain an Exponential and Luneburg lens refractive index

profiles. Only transverse-magnetic guided mode is considered and generated

even/odd modes are denoted as TM0/TM1. Phase profiles of outputs for the specified

GRIN PC based mode converters have been compared with that of the externally

excited sources. Moreover, mode conversion concept is deeply investigated by

analytical approach based on the relation between ray theory and wave optics. The

conversion performances of the mode converters have been analyzed and affirmative

conclusions have been conducted. Note that the effective medium theory (EMT) that

is valid at the long wavelength regimes has been applied to attain the appropriate

index distribution [71]. It is important to determine the boundary of the long

wavelength region. The lattice constant a should be much smaller than the

wavelength to ensure staying in the effective medium region. As a result, in the

presented study the design frequency satisfies the long wavelength regime.The
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proposed mode converter approach is compact and has flexibility due to its two-

dimensional periodical adjustment of the structure. The designed medium can be

positioned in front of the incident light at a certain location to adjust the desired

phase retardation between the upper and lower sections of the even mode. The

multimode nature of the GRIN medium allows broadband operation. It is expected

that input and output coupling of light is not a formidable task due to easy beam

width alteration in GRIN medium. Finally, planar front and back surfaces of the

medium provide some misalignment tolerances [150].

3.2.2. Problem Definition: The Need of Mode Conversion Device

In modern telecommunication systems based on optical devices, optoelectronic

components and optical fibers, it is crucial to deliver information over a long range

distance with high speed and protection ratio. To achieve those requirements,

scientists are forced to design cheap, compact, efficient, reliable and multifunctional

integrated circuits known as PICs. It comprises multiple optical elements which have

either different or common operating tasks.  The role of PICs is tremendous in

designing interconnection devices in optical communication systems. Moreover,

controlling the spatial field distribution of light wave and providing efficient optical

coupling between two distinct layers are unavoidable challenges in PIC designs. In

addition, operating within the fundamental mode regime is a general requirement for

the optoelectronic devices and semiconductor lasers. To guarantee stable

fundamental mode operation, special care is taken to suppress higher order modes

which are considered unfavorable for the systems to work properly. However, in

some cases, operating in higher-order mode regime can be more useful than the

fundamental mode regime. To exemplify, in Ref. 178 coupling strength of lateral

gratings operate more effectively in the multi-mode regime because the lateral profile

of the higher-order modes shows an adequate overlap with the grating area. Another

benefit of the higher-order modes in the case of high power laser generations is

demonstrated in Refs. 179 and 180. Moreover, dispersion properties of higher-order
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spatial modes in optical fibers can be used to compensate the positive dispersion in

conventional single-mode fiber spans [181]. In this regard, the design of optical

mode converters as an interface becomes a crucial task in order to allow efficient

conversion of fundamental mode signal into a predefined higher-order mode or vice

versa. Such an interface could be employed as a junction between two different types

of waveguides or photonic crystal fibers.

In this study, a novel method exploiting A-GRIN concept is proposed to solve the

mode conversion problem. The schematic of the proposed A-GRIN based mode

converter and the corresponding index profiles are shown in Fig. 3.2.1. A-GRIN

medium is designed such that the value of refractive index beginning from the upper

edge of the structure increases until reaching to the optical axis (OA) according to a

predefined index profile, which is depicted in Fig. 3.2.1. The index variation of the

lower part of the structure is a duplication of the upper region. The introduced

asymmetry exhibits high index-contrast between the edges of the upper and bottom

part in proximity of the optical axis. Consequently, the incident beam centered at the

optical axis exposes to different modulations by the upper and lower parts of the

structure and thus incident beam divides into the two branches. Since upper and

lower halves of beams propagate with different phase velocities, the proposed

structure demonstrates phase shifting, i.e. phase retardation, phenomenon at the

output.

Figure 3.2.1. Schematic representation of mode converting structure with corresponding refractive
index variation plots. Inhomogeneous and asymmetric GRIN media are shown on the
left and the transverse profiles of the Exponential and Luneburg Lens refractive index
profiles are presented on the right.
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We consider two different index profiles which are shown in Fig. 3.2.1. The first one

is an Exponential index variation while the second one is inspired from the Luneburg

lens index profile. As known, implementing the mode conversion process by A-

GRIN continuous media can be considered as a challenging issue due to fabrication

difficulties during the diffusion process, the need of planar faces and restriction or

limitation of the index gradient (usually smaller gradient occurs). To overcome these

difficulties, the use of PC for the approximation of continuous GRIN media is

considered. Details of these profiles and calculation steps to determine the effective

index distribution will be explained in the next section.

3.2.3. Mode Converter Structure: Design Approach by Asymmetric GRIN PC

In this study, the design of A-GRIN structure is achieved by relocating PC dielectric

rods. Continuously graded refractive index media can be approximated by changing

the locations of the PC dielectric rods having fixed refractive indices. To achieve this

firstly, the dispersion diagrams of PC unit cells with different lateral sizes are

calculated by exploiting plane wave expansion method in the frequency domain [85].

Obtained dispersion relations of the first band are shown in Fig. 3.2.2(a). The related

bands move to higher frequencies while the unit cell size increases (lateral dimension

increases and longitudinal dimension is kept constant). Note that the lateral

dimension of the unit cells ranges from Δy=0.40a to Δy=2.0a with a 0.20a step size.

The lattice constant is represented by a. Moreover, the distance between rods along

the propagation x-direction is denoted by Δx and fixed to a, i.e. gradient of index

profile changes along only the transverse y-direction, and the radii of the rods are

equal to r=0.20a. Corresponding variations of cell sizes are depicted in Fig. 3.2.2(a)

as an inset. Due to the difficulty of implementing rods with different materials in

practice, we keep refractive indices of them at n=3.13. Each rectangular cell consists

of cylindrical alumina rods residing in air background. The second stage in the

design is calculation of the group indices of each band (ng) by using the slope

information of the relevant curves presented in Fig. 3.2.2(a). The obtained group
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index variation is illustrated in Fig. 3.2.2(b). For longer wavelengths (lower

frequencies), curves are closely spaced and thus provide a slight variation in group

indices which can be understood from the Fig. 3.2.2(b). However, when we move

towards the edges (cut-off region) the dispersive effect provides a nonlinear behavior

in group index plots. Each curve enters the cut-off region at different frequencies and

strong dispersion occurs at around these regimes. As a final stage, the proposed

structure having a specified refractive index profile is designed at a fixed frequency

lying in the region where small alterations occur in the group indices. We should

note that A-GRIN structure is designed at the normalized frequency of a/λ=0.10. The

ng curves are zoomed out in the design frequency region around a/λ=0.10. The

zoomed plot given as an inset in Fig. 3.2.2(b) demonstrates the extension of the

calculated indices. The calculated group indices at determined normalized frequency

a/λ=0.10 covers values between 1.39 and 2.28. To obtain GRIN PC structure with

any type of stair-step index distribution within those index values (ranging from 1.39

to 2.28) one needs intermediate index values to generate smooth variation in the

desired index profile. Hence, interpolation method is applied to determine

intermediate points by fitting the calculated ng profile of rectangular cells that have

lateral sizes from Δy=0.40a to Δy=2.0a. Then, the concerning structure is formed by

sequentially placing the rectangular cells having those intermediate ng values in such

a way that the desired step stair index distribution is revealed. It should be noted that

there is a restriction on the displacement of dielectric rods. Since the diameter of

each rod is 0.40a, the minimum separation between adjacent rods should be greater

than 0.40a to inhibit touching each other. In this regard, the minimum distance starts

from Δy=0.44a.
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Figure 3.2.2. (a) The dispersion curves corresponding to the first band are shown. (b) Group index
(ng) dependency of each dispersion bands is shown. The index variation at a/λ=0.10
is also given in same plot as an inset.

As mentioned before, two different index profiles for mode converter design are

considered. Specifically, they are Exponential and Luneburg lens index profiles. The

Luneburg lens profile is mathematically expressed as follows:
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where the regarding parameters are b=4.84, δ=3.15 and half of maximum length of

the structure in the lateral y-direction ymax=10.36a. An Exponential profile formula is

given in Eq. 3.2.2 as follows:
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where the expressed parameters are denoted by n0=2.20 (refractive index at the

optical axis), gradient parameter α=0.0526a-1, and half of maximum length of the

structure in the lateral y-direction ymax=10.36a. Note that the parameters (b, α, δ) are

determined after performing sequential optimization process for fixed ymax and n0
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values. In Fig. 3.2.3(a), the schematic view of the proposed A-GRIN PC structure

having Luneburg lens index profile is presented and related parameters are depicted

also in the same plot. The height and width of the structures are equal to h=20.72a

and w=5.20a, respectively. Also, the input and generated output mode profiles are

figuratively superimposed in the same figure. To reduce the Fresnel reflections at the

front and back interfaces, additional layers are introduced with smaller radii r=0.10a.

Figure 3.2.3(b) shows continuous and approximated stair-step index distribution for

both continuous GRIN and GRIN PC based configurations, respectively. In a similar

fashion, the schematic of A-GRIN PC having Exponential index profile and

regarding effective refractive index profile is presented in Figs. 3.2.3(c) and 3.2.3(d),

respectively.

Figure 3.2.3. Schematic view of proposed GRIN PC structures where (a) and (b) demonstrate GRIN
structure with the Luneburg lens index profile and its index distribution plots
(continuous and discrete versions (stair-step plots)), respectively. Similarly, the
Exponential index profile GRIN PC structure is represented in (c) and the related index
variation plot is shown in (d).

All the effective index plots in Fig. 3.2.3 demonstrate that the effective refractive

index of the A-GRIN PC decreases towards the upper part of the structure due to the

increment of lattice spacing between the adjacent rods. The opposite case occurs for
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the lower section of the structure. In the case of exponential index distribution that

varies from 1.42 to 2.20, the first rectangular cell placed at the optical axis (at the

location y=0a) has a lateral size of Δy=0.44a and the last placed rectangular unit cell

possesses a lateral size Δy=1.88a (at the location y=10a). On the other hand, the A-

GRIN structure with Luneburg lens index profile comprises of rectangular unit cells

with lateral sizes ranging between Δy=0.44a and Δy=1.93a. Based on the above

described method, the minimum effective refractive index values for the generated

A-GRIN media with the Exponential and Luneburg lens profiles are calculated as

1.42 and 1.45, respectively. However, the highest refractive index value is the same

for both profiles and equals to n=2.20. The main difference between the two index

profiles is the gradient variation. The shape of the Exponential profile dictates that

profile’s gradient increases by moving from y/a=-10 to y/a=0 which is represented in

Fig. 3.2.3(d). On the contrary, the gradient of the Luneburg lens profile in the same

direction decreases.

Time-domain data is obtained by the help of FDTD method to calculate transmission

efficiency and analyze mode conversion performances [27,119]. Perfectly matched

layers construct the boundaries of the structure in order to serve as an absorbing

boundary condition [119]. Moreover, only TM polarization has been assumed thus

non-zero electric and magnetic fields are Ez, Hx, and Hy, respectively. A grid size of

32/ayx  is implemented as a mesh size in FDTD calculations. We should

note that two types of input sources: either a continuous source or a pulse with a

Gaussian profile in time is used. The former one is needed to obtain spatial intensity

distributions of the mode conversion features of the A-GRIN PC. On the other hand,

the latter type of input source is preferable to compute the power transmission

spectrum of the proposed structure. A detector is located at the end of the structure in

order to measure the transmitted light. The corresponding transmission efficiencies

for the two different A-GRIN PC cases are detected and normalized by calculating

the ratio of the detected and incident power. The result is presented in Fig. 3.2.4. We

should note that the computational domain is concerned only in 2D spatial domain

and the third dimension is taken to be uniform. The inspection of the transmission
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plots in Fig. 3.2.4 shows that the high transmission region lies between a/λ=0.193

and a/λ=0.204. In case of Exponential profile transmission efficiency is around 80%

while for the Luneburg lens case the calculated transmittance is around value of

70%. Slight fluctuations in the transmission plots are originated due to the reflections

between the front and back faces of the A-GRIN PC structures. Operating within the

selected low frequency region introduces additional leakage of light along the

transverse y-direction (some amount of light cannot reach the end face of the GRIN

PC medium, weak guiding causes some amount of power to be lost). Hence, for both

cases the transmission efficiencies are not reaching the maximum transmittance

level.

Figure 3.2.4. Calculated transmission efficiencies of A-GRIN PC structures with Exponential and
Luneburg lens index distributions.

3.2.4. Discussion and Evaluation of the Numerical Simulation Results

The difference between the lateral and longitudinal dimensions of the individual PC

cell provides the construction of the anomalous spectral features. Desired

manipulation of light propagation can be achieved by properly arranging the
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individual cells’ dimensions. Moreover, to qualitatively analyze light propagation

behavior inside the PC structure the information about the phase and the group

velocity is deployed. In this regard, the frequency domain analyses should be

performed at the individual cell level where the importance of the iso-frequency

contours (IFCs) is invaluable. These contours are the intersections of band surfaces

and planes at the particular frequencies. The calculation of the IFCs will give us

information about group velocity and/or phase velocity characteristics of propagating

light within the PC structure. In order to calculate dispersion relations of Bloch

modes within the designed GRIN PC structure we have utilized PWE method. The

propagating beam follows the direction normal to the IFCs and has a group velocity,

which is determined according to the relation )(kωv kg  , where k corresponds to

wave-vector [4]. On the other hand, the phase velocity kω(k)pv  characterizes the

speed of propagating wavefronts. Note that the phase velocity and group velocity are

scalar and vector quantities, respectively.

We start with the computation of the dispersion contours for the individual PC cells

with different lateral sizes Δy to compute dispersion relation of the whole GRIN PC

structure. Figure 3.2.5(a) is a collection of intentionally selected dispersion curves

for PC unit cells having lateral sizes of Δy={0.44a, 0.57a, 0.71a, 0.98a, 1.26a}at a

fixed normalized frequency a/λ=0.20. The reason for selection of that frequency will

be explained later in the text. The selected frequency contours correspond to the first

band of TM polarization mode. Related individual cells are figuratively depicted in

the same plot as an inset. We know that in a square (a×a) unit cell PC the phase and

group velocities are independent of the orientation since the IFCs are in a circular

shape. However, in case of GRIN PCs, due to the gradually changing size of the

rectangular cell along y-direction, both phase and group velocities are inconstant and

depend upon incident waves' direction [65, 182]. Therefore, changing the aspect ratio

induces prominent transformation of IFCs from circular to the elliptical shape

dispersion surfaces, which can be observed in Fig. 3.2.5(a). These shape

transformations can be explicated as a variation of the effective index amount in

rectangular cell. Note that the aspect ratio ρ is defined as the ratio of the longitudinal
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size Δx to the lateral size Δy of the a rectangular PC unit cell. The aspect ratios of the

selected unit cells described in Fig. 3.2.5 are determined as ρ=Δx/Δy={2.27, 1.75,

1.40, 1.02, 0.79}. In Fig. 3.2.5(a), the straight solid line is defined as a construction

line, which indicates the conservation of tangential component of the wavevector

inside PC medium. The normal vectors that are illustrated by arrows at the

intersection between the construction line and dispersion curves determine the flow

directions of light inside the structure for different rectangular cells. It can be

deduced that the gradual change in aspect ratio produces expected but yet

dramatically change in IFC shapes (minor and major axes of contours swap) and thus

leads to transformation of the light direction. The sequence of the lateral size Δy

alternation of rectangular PC unit cells is in opposite direction for the lower region of

the A-GRIN PC mode converter structure. Similarly for upper region, the

corresponding collection of selected dispersion curves at fixed frequency a/λ=0.20

are presented in Fig. 3.2.5(b). While moving from the optical axis toward the lower

edge of the structure the corresponding aspect ratio decreases; thus, the elliptical

contours become narrower according to the longitudinal axis.

It is worthy of note that the IFC analysis is implemented to contribute the physical

explanation of light trajectories inside the inhomogeneous PC medium. The contours

represent the corresponding curves of each rectangular cell picked up at both upper

and lower part of the structure. The layer is designated as an interior part of the

configuration. Even though the input source is incident only along the Γ-X direction,

right after light interacts with the first layer of the A-GRIN structure, non-zero ky

component arises. As a result, we draw a representative construction line for a fixed

ky value (positive and negative values for upper and lower sections, respectively) and

inspect the change occurring in the gradient of the contours. That information gives

us an insight about the light paths.
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Figure 3.2.5. Plots (a) and (b) demonstrate the collections of IFCs of different lateral sizes (rectangular
cells are depicted as an inset) rectangular PC cells. The corresponding Δy ranges from
0.44a to 1.26a and vice versa regarding to the optical axis (upper and lower part of the
structure), respectively. The arrows which are normal to corresponding IFCs in same
plots represent light flow direction. (c) The corresponding light propagation directions
within each cell are superimposed by the help of two different types of arrows (solid and
dashed). The medium has an Exponential index profile.

By inspecting the collected IFCs (for the upper and lower regions) we can

demonstrate the direction of flow of light inside the GRIN PC structure by means of

group velocity vector directions. Designed A-GRIN PC mode converter structure and

figurative interpretation of the interior part of the configuration is schematically

presented in Fig. 3.2.5(c). The interior part is illustrated in such a way that the

rectangular PC unit cells with different lateral Δy sizes correspond to the rectangular

cells with different gray color level. The representation in this form is intended to

schematically demonstrate effective index variation in A-GRIN PC structure. The

qualitative analyses of IFCs testifies that the propagating beam inside the PC

structure separates into two branches and follows different optical paths (solid and

dashed arrows) as shown in Fig. 3.2.5(c). The propagation of light within the PCs

can be represented by Bloch waves. Even though strong scattering is imposed to

propagating Bloch waves by the periodic structure, they have definite propagation

directions. The propagation direction after any interface is determined by a boundary

condition, hence it is required the tangential component of the wave-vector k to

remain constant. In this regard, we can conclude that the phase velocity directly
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determines the behavior of light at the boundary because of its direct relation with

the k-vector through kkωvp /)( expression.

Light propagation in inhomogeneous medium can also be characterized by

geometrical optics or ray theory. As already known the ray behavior within the

inhomogeneous medium can be explained by the eikonal equation. The eikonal

equation determines the electromagnetic wave propagation by the use of geometrical

optics approximation. The eikonal equation can be mathematically expressed as

follows:

where n represents refractive index, r is a vector representation of position (x, y) and
22 dydxds  is the differential arc length along the path of the ray. Furthermore,

the geometrical light rays can also be defined as the orthogonal trajectories to the

geometrical wavefronts. So that relation between surface of equal phase and ray

(wave and ray optics) can be expressed as follows:

where n is the refractive index of the inhomogeneous medium, S is an eikonal

function and 


is a gradient operator. The surface where eikonal function is

S=constant represents the surfaces of equal phases or geometrical wavefronts, which

in turn dictate the shape of the propagating electromagnetic field.

In order to calculate the ray trajectories in a continuous A-GRIN medium we

figuratively represent in Fig. 3.2.6(a) the illustration of ray path calculation. As can

be seen in the figure, the ray is described by its position y and the slope y

(derivative with respect to x). The ray position y0 and the slope ẏ0 at the input plane

x0=0 are connected with the ray position y and slope ẏ at the plane x by solving the

Eikonal Eq. 3.2.3 [130] for the half of space ( 0y ) of continuous GRIN medium

,n
ds
drn

ds
d







(3.2.3)

,22
nS 


(4)
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having Exponential refractive index profile (details of the derivation can be seen in

Appendix):

where )(xy is a trajectory that defines the incident position 0u and incident angle 0u

and )(xy provides the slope information of the trajectory. Note that the propagation

of rays in an Exponential index medium obtained in exponential space (u) by using

following transformation u=Aeαy (see Appendix B). The ray trajectories are obtained

without any approximation and the full analytical solution is given in Appendix B.

The calculated ray paths within the exponential asymmetric continuous GRIN

medium are depicted in Fig. 3.2.6(b). As stated before, geometrical wavefronts

orthogonal to ray trajectories are also depicted as an inset in Fig. 3.2.6(b) by dashed

curved lines which explain the relation between ray and wave optics. Because of

lateral asymmetry of the proposed GRIN medium as a mode converter, according to

the optical axis in Fig. 3.2.6(b), ray trajectories show that the propagating wave

through the proposed GRIN mode converter can be divided into the two different

branches of rays with different wavefronts. This behavior of the beam coincides with
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contours. The ray paths in Fig. 3.2.6(b) are obtained according to the Eqs. 3.2.5 and
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of the refractive index at different positions, we use the “Optical Path Length” as a
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where n(s) is the local refractive index as a function of distance s along the ray. The

difference in refractive indices induced by lateral shift h/2 (upper part n(y) and lower

part n(y+h/2) shown in Fig. 3.2.6(b) as an inset) imposes on travelling of light with

different optical path lengths. The discrepancy on the optical path lengths in turn

results in wavefront deformation and wave phase retardation of the propagated beam.

Moreover, based on expressions (3.2.3), (3.2.4) and (3.2.7), we can conclude that the

eikonal and, therefore, the phase of the geometrical field undergo changes dictated

by the optical path length. In addition, we can give a mathematical expression of the

phase difference by

where k=2π/λ is the wave-vector and λ is the vacuum wavelength of the incident

beam. Consequently, asymmetric configuration of the proposed A-GRIN structure as

a mode converter splits the propagating beam into two branches as shown in Fig.

3.2.6(b). Propagating light rays within the upper and lower parts of the structure

experience different optical path lengths.

Figure 3.2.6. (a) Ray propagation in a GRIN medium with n(y) index profile (b) ray paths and
regarding geometrical wavefronts in an asymmetric GRIN structure with an
Exponential index profile.
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This peculiarity provides the phase difference between them. Note that to introduce

and clarify the physical concept of the A-GRIN mode conversion process, detailed

analytical investigation of the only exponential index profile structure is performed.

Next, we will discuss this phenomenon and demonstrate phase shifting in detail by

utilizing time-domain analyses.

In this study, the mode conversion performances of the Exponential and Luneburg

lens index profile A-GRIN PC structures are investigated. To obtain A-GRIN PC

structures homogenization procedure is implemented at the low frequency region

(a/λ=0.10) where a slight group index variation occurs depending on the variations of

PC unit cell lateral Δy sizes. Afterwards, the FDTD analyses are utilized in order to

calculate the regarding transmission over a broad bandwidth as demonstrated in Fig.

3.2.4. By choosing the lattice spacing in x-direction equal to a=310 nm we can obtain

operating wavelength as λ0=1550nm which is frequently used for optical

communication. In this case, the length of the converters can be determined as

w=1860nm. Besides, the heights of the Exponential and Luneburg lens profiles

become h=6.423μm. As stated in Fig. 3.2.4, a high transmission is observed within

the frequency interval a/λ=0.193-0.204. Hence, the operating frequency is selected as

a/λ=0.20 that lies inside that interval. According to the transmission efficiency

results, we launch an even mode continuous source with a Gaussian profile at a

normalized frequency of a/λ=0.20 where high transmittance is observed and acquire

the corresponding instantaneous spatial field profiles in Figs. 3.2.7(a) - 3.2.7(c).

Figure 3.2.7(a) shows the field pattern of incident even mode source while Figs.

3.2.7(b) and 3.2.7(c) represent the transformed even to odd mode field profiles by

exploiting A-GRIN media with Exponential and Luneburg lens index profiles,

respectively. The dashed and solid arcs in Figs. 3.2.7(a) - 3.2.7(c) represent the radial

sections. The reason for the selection of circular shaped cross sections is to represent

the corresponding phase differences among the radiating lobes. As can be deduced

from the radial phase profile in Fig. 3.2.7(d), for the incident even mode source, no

phase differences occur among upper and lower power lobes. On the other hand,

while exciting A-GRIN structure by an even source, π phase shift is produced for the

cases of both Exponential and Luneburg lens refractive index distributions so that
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efficient even to odd mode conversion occurs, depicted in Figs. 3.2.7(e) and 3.2.7(f),

respectively. The calculated phase profiles strengthen the use of A-GRIN

configurations for the design of compact and efficient mode order converter devices.

It should be remarked that in even to odd mode conversion process only even mode

source, not odd mode source is incident to the A-GRIN PC structure.

Figure 3.2.7. Instantaneous electric fields of an (a) incident even mode source without structure and
converted even to odd mode source utilizing asymmetric GRIN PC structures with (b)
an exponential and (c) Luneburg lens index profiles. In plots the OA indicates the
optical axis and the signs “+” and “–” represent the mismatch in the phase fronts of the
decomposed propagating beam. The radial phase profiles of (d) an ideal incident even
mode source and configurations with (e) exponential and (f) Luneburg lens profiles.
Phase profiles are extracted over predefined radial sections.

One may question the reason for the selection of two different frequencies, a/λ=0.10

and a/λ=0.20. Since effective medium theory is applied in the design of A-GRIN

structure, we have conducted that stage of the work by selecting an appropriate

frequency such as a/λ=0.10. The important criterion here is to stay inside the

effective medium region. After that, the created asymmetric photonic structure is

tested under a broadband interval thanks to the FDTD method. It is seen that higher

frequencies such as a/λ=0.20 provides superior performance in terms of mode
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conversion. Hence, the design and operating frequencies are differently selected. As

seen in Fig. 3.2.2, PC is highly dispersive at around a/λ=0.20 so that it is difficult to

implement a gradual variation for the refractive index profile. Small lateral size

change of the unit cell induces large refractive index variation.

Figure 3.2.8. Instantaneous electric fields of an (a) ideal even mode source without any structure, (b)
an Exponential index A-GRIN PC and (c) Luneburg lens index A-GRIN PC. The
corresponding phase profiles of the three cases are presented in (d), (e) and (f),
respectively.

The A-GRIN PC structure also performs well for transforming odd mode to even

mode. To obtain backward mode conversion process, A-GRIN structures are

illuminated by an incident odd mode source at the backplane of the configurations.

The spatial intensity profile snapshots (instantaneous e-fields) at the predefined time

steps are collected in Fig. 3.2.8. In this case, to show odd to even mode conversion

process, different type of representation is preferred. The regarding phase differences

along the longitudinal directions are also extracted in each case. The instantaneous

field pattern of the ideal even source is shown in Fig. 3.2.8(a). An ideal even source

spatial and phase profiles are given in order to compare with generated ones by odd

to even mode conversion process. The instantaneous spatial distribution of the
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propagating ideal source with odd mode for Exponential and Luneburg lens profile

A-GRIN PC structures are presented in Figs. 3.2.8(b) and 3.2.8(c), respectively. The

emanating wavefronts of the higher order mode source experience transformation

induced by A-GRIN PC configuration and the odd mode is converted back to even

mode with slight wavefront deformations. To quantitatively evaluate the odd to even

mode conversion efficiency, i.e. inverse conversion efficiency, we extract the phase

information along the dashed lines in Figs. 3.2.8(d) - 3.2.8(f). In Figs. 3.2.8(a) -

3.2.8(c) the dashed lines denoted as CS1 and CS2 define cross-section locations. As

can be seen in Fig. 3.2.8(f), phase profiles at the cross-section locations of an ideal

even source are completely overlapping to each other. Besides, the phase profiles of

the converted beam in the back planes of A-GRIN structures having the Exponential

and Luneburg lens index profiles are taken at the same location and demonstrate high

overlap performance.  Hence, the regarding FDTD results show that an odd to even

mode conversion can also be performed with a high efficiency. It is also important to

note that in inverse odd to even mode conversion process, only odd mode source is

incident to the A-GRIN PC structure.

It is worthy of note that in present work efficiently converted odd mode is coupled

into air. Nevertheless, one can manage to guide the converted mode into either a

regular dielectric waveguide or GRIN PC waveguide by concatenating an

appropriate block structure behind the A-GRIN design. By means of such a lens

component, the unguided exiting beam having odd mode becomes guided while

maintaining its odd mode phase pattern.
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4. TWO DIMENSIONAL LIMITED DIFFRACTION BEAM GENERATION

BY ANNULAR PHOTONIC CRYSTALS*

4.1. Introduction

The wavelike behavior of light can be elucidated with the diffraction of

electromagnetic waves that occurs whenever a light beam encounters an aperture or

an obstacle. The degree of spatial spreading of light is inversely proportional to the

dimensions of the aperture.  It is well known that the plane wave is a diffraction-free

mode solution of the wave equation derived from Maxwell’s equation. Diffraction is

responsible for spreading of Gaussian intensity profile of light beam generated on a

laser or a similar light source as it propagates through free space. Hence, the on-axis

intensity decays quickly upon traveling a certain propagation distance. The Rayleigh

range rZ is used as a criterion for determining the spreading of a Gaussian beam

along its propagation direction. This parameter is a measure of the distance over

which a Gaussian beam increases its cross-sectional area by a factor of two:

 /2
0rZ , where 0 is the beam waist size at the focal point and λ is the

wavelength of light.

Durnin et. al., was the first who pointed out that one could obtain a set of solutions

for the free-space scalar wave equations that were “non-diffracting” [183]. It was

shown in the same study that zero-order Bessel function could be used to obtain an

exact solution to the free-space wave equation expressed as:

0),,(1
2

2

2
2 











 tzrE
tc

, (4.1)

where c is the speed of light, 2 is the Laplace operator.

*This chapter is based on: H. Kurt and M. Turduev, "Generation of a two-dimensional
limited-diffraction beam with self-healing ability by annular-type photonic crystals," J. Opt.
Soc. Am. B, vol. 29, pp. 1245-1256 (2012)
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Searching for a possible solution to the aforementioned second order differential

equation other than the plane wave solution gives us the following electric field (e-

field) expression,

)())(exp(),( 00 rkJzktiEtrE rz  . (4.2)

The phase term oscillates at an angular frequency  and e-field propagates along the

z -direction with a wave vector component zk . The amplitude of the solution along

the transverse to propagation direction varies according to 0J zero-order Bessel

function of the first kind. The wave vector components obey the relation

2)( 2/1222  zyx kkkk , where the transverse wave vector is defined as

2/122 )( yxr kkk  and .)( 2/122 yxr  If we look at the power intensity variation of

the solution upon propagation, we realize that it is proportional to )(2
0 rkJ r which is

independent of the z propagation direction. Hence, the diffraction-free nature of

such a solution becomes apparent. However, this solution exists in 3D space and to

generate an idealized Bessel beams necessitates an infinite amount of energy which

is physically impossible. In practice, however, one may approximately generate

quasi-Bessel beams using finite apparatus [184-195]. The integral form of 0J can be

written as follows [196]:





 0

0 ))cos(exp(1)( drikrkJ rr . (4.3)

A series of side lobes accompany the narrow central lobe which conveys some part

of total power. We should note that plane wave is a special case of the above

solution, i.e., 0rk , 0.10 J . The radial intensity of the Bessel beam decreases as

the argument of the Bessel function, )( rkr increases. For the interval ckr 0 , the

solution is a propagating wave. The evanescent wave corresponds to the interval

ckr  . Finite-apertures contribute diffraction due to limitation on the radial

extent of the Bessel beam. In addition to being limited-diffraction over certain
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extend, Bessel-like beams exhibit self-healing property as well. If they encounter an

obstacle in their propagation path, they can re-construct themselves [185, 197-200].

Integrated photonic circuitry populates the use of planar light-wave technology. The

functionalities of optical elements usually occur in the plane and the out-of-plane

direction has usually uniform variation with a limited height’s of certain types of

slabs. The 2D counterpart of less diffracted beams generated in 2D space may

contribute to some important applications in semiconductor lasers and optical on-

chip data transfer. As a result, there is also need to create limited diffraction beams in

2D. In other words, discrete optical elements occupying huge volumes in 3D can be

used to create pseudo-nondiffracting beams which can be useful in many applications

including microscopy, optical tweezers, imaging, nonlinear optics and laser

micromachining [185, 201-205]. In the 2D counterpart, by compromising from the

third dimension, diffraction can be tailored in-plane using configurations that occupy

compact areas at will. This is one of the motivations of the current work. Suppressing

light spreading in 2D can also be achieved by utilizing different approaches such as

surface modes and tapered waveguide exits [206-213]. All these methods more or

less aim a similar goal, i.e., carrying optical source to longer distances without

serious diffraction. In 2D configuration where the out-of-plane direction x is

assumed to be uniform, the following conversions occur: kr=kr, kx=0, and

222  zy kkk .

In this study, computational domain is concerned only in 2D spatial domain and third

dimension taken to be uniform. The generation of limited diffraction beam

restrictively governs the diffraction dependence only along propagation direction.

Moreover, the generated limited diffraction beam’s transversal intensity profile bears

resemblance to the zero-order Bessel function profile. In order to avoid any

misunderstanding, we should make clear distinction between generated limited

diffraction beam and Bessel-like beam. As it is known, Bessel-like beams are

solutions to the scalar wave equations with two transverse coordinates. However,

generated limited diffraction beam is characterized only in one transverse direction.
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4.2. 2D Axicon Shape Photonic Crystals and Numerical Results

Limitations of creating non-diffracting beams which have infinitely large diffraction-

resistant   propagation distance encouraged researchers to propose novel solutions to

create pseudo-nondiffracting beams. Aperture lenses, conical lenses, holographic

technique and spatial light modulators are among some of these techniques [185,

189-192, 214, 215]. In a recent study, 2D limited diffraction beams with Bessel

intensity profiles were generated via axicons made of square-lattice photonic crystal

structure [195]. Advantages of generated beam over Gaussian profile were

highlighted in that study. In Ref. 216, the authors investigated the round axicon tip

instead of sharp one, both theoretically and experimentally. The influence of the

wave refracted by the round tip of the axicon and the axial oscillations of the central

peak’s power variation in the propagation direction occurred by the off-axis part of

the axicon were explored. It is also possible to generate high-order Bessel beams

which have a central minimum and a non-diffracting bright ring. To generate such

beams Laguerre-Gaussian light beam launched on axicon in order to transform that

beam into an approximation of a high-order Bessel beam is investigated in Ref. 217.

In the present work, we construct an axicon shape PC using an annular PC (APC)

[57]. There are additional flexibilities in the design stage thanks to APC

configuration. It has more features in terms of structural parameters within the unit

cell such as the two radii and refractive indices of each region (inner and outer rings).

Besides, the circular shape of the unit cell can be transferred to elliptical one which

increases the design parameters. Hence, it is expected that light interaction in APC

may create rich spectral and temporal wave features which may be exploited for less

diffracted beams purposes. In-plane configuration of proposed study is also

advantageous due to compactness of the structure. In Ref. 218, APC were proposed

to engineer the dispersion property of the structure which is made of low-refractive

index contrast materials. The modulation of dispersion curves was achieved by

means of liquid infiltration process.
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The designed axicon-shape APC and band diagram of the unit cell for TM polarized

light (e-field is perpendicular to the crystal plane) are shown in Figs. 4.1(a) and

4.1(b), respectively. The structure consists of circular dielectric rods perforated at the

center. The external and internal radii of the circular rods are denoted by aR 30.0

and ar 15.0 , respectively. The lattice constant is represented by a. The group

indices of the background environment and the dielectric material are 0.11 n and

13.32 n , respectively. The axicon-shape APC structure is divided into two sections

as shown in Fig. 4.1(a). The first part has a length of 6a, where “a” is the lattice

constant. Length of the second part that lies between the tip of the axicon and the

right bound of the first part is initially 20a. That parameter will be altered later in the

paper in order to see the impact of the structure lateral extent to the generated two-

dimensional beam. The square-lattice APC is terminated by an arrow form with the

apex angle of τ=900.

Figure 4.1. (a) The schematic presentation of 2D axicon-shape square lattice annular PC and (b) its
dispersion diagram calculated by plane wave expansion method. In (c) and (d) iso-
frequency contours of the second band and its gradient distribution are shown by small
arrows.

The dispersion diagram is calculated by plane-wave expansion method [85]. The

center frequency of the input source is set at ωa/2πc=0.35 which is placed at the
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dispersion diagram calculated by plane wave expansion method. In (c) and (d) iso-
frequency contours of the second band and its gradient distribution are shown by small
arrows.

The dispersion diagram is calculated by plane-wave expansion method [85]. The

center frequency of the input source is set at ωa/2πc=0.35 which is placed at the



96

lower part of the second photonic band of the APC. The iso-frequency contour

corresponding to that frequency resembles a convex shape as shown in Figs. 4.1(c)

and 4.1(d). In addition, we present the gradient distribution of the iso-frequency

contours in Fig. 4.1(d), where one can observe the focusing effect on the operation

frequency of a/λ=0.35 along ГX direction at second TM band. Contrary to Ref. 13

which uses different photonic crystal parameters and operating frequency in the first

band, we focus second band in the present work. That ensures additional focusing on

top of the geometrical arrangement. Hence, longer diffraction-free beam propagation

is expected to be achieved. It is important to point out that if the operating frequency

corresponds to the first band in the dispersion diagram, the PC closely acts as an

isotropic medium.

We continued on numerical experiments with the FDTD simulations [27, 119]. In

order to eliminate reflections originated from the ends of the finite computational

window, the boundaries are surrounded by perfectly matched layers [119]. Input

source with a Gaussian distribution in the time domain is launched. The normalized

bandwidth of the input Gaussian distributed beam is Δω/ωc=0.007, where ωc is the

center frequency and Δω=0.0025 is the full-width at half-maximum of the beam.

Figure 4.2. (a) The spatial intensity profile of the generated limited diffraction beam. The cross-
sectional intensity profiles are shown at the focus point and 75a propagation distance in
(b) and (c), respectively.
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The two-dimensional limited diffraction beam is obtained by the transformation

property of the axicon-shape APC. The spatial intensity profile is depicted in Fig.

4.2(a). By the help of side lobes, the main lobe intensity of the two-dimensional

limited diffraction beam stays fairly constant along the propagation direction. The

center power value of the limited diffraction beam decays to 65% of the maximum

on-axis intensity after beam propagates a distance of 75a. As mentioned before,

cross-sectional view of the generated limited diffraction beam's intensity profile

resembles zero-order Bessel function as shown in Figs. 4.2(b) and 4.2(c). The

transverse beam profiles at the two selected points are presented in Figs. 4.2(b) and

4.2(c), respectively. The central lobe of the limited diffraction beam stays well

collimated and diffraction-resistant light propagation is apparent. The results show

that beam’s central lobe size at the FWHM enlarges gradually from Δy=0.43a to

Δy=5.24a. Therefore, the waist of the central lobe is increased by 12.8 times after

75a propagation distance. When we compare this result with the diffraction of the

conventional Gaussian beam, the FWHM value varies from 0.43a to 159.1a when a

measurement is taken after a propagation direction of 75a. As we can see from this

comparison the obtained beam is much more resistive to diffraction. It is expected

that the presented results will be enhanced further if some optimization procedures,

such as changing the inner and outer rings radii, location and size of the apex rod are

executed. Therefore, we proceed to the next section with a goal of achieving longer

diffraction-limited light propagation.

We should note that we report limited diffraction beam generation at a normalized

frequency value of ωa/2πc=0.35. What makes this frequency value special is based

on the following information. It is the region that occupies the bottom of the second

band in the dispersion diagram (X-point) as shown in Fig. 4.1(b). When we inspect

the iso-frequency contours at around these frequencies in Figs. 4.2(b) and 4.2(c) we

see that contours have convex shapes. The gradient of these curves dictates the flow

of light propagation according to the relation: vg=Δkω(k), where vg represents the

group velocity of beam. Due to convex shapes of the curves, beam is expected to be

focused at around these frequencies. When beam reaches the inclined surfaces of the

axicon-shape structure, it is strongly focused so that emerging waves at the lower and
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upper sections of the structure interfere and limited diffraction beam emerges. As we

move to higher frequencies above 0.35 the interference is no longer achieved at the

end of axicon-shape structure. Consequently, limited diffraction beam cannot be

realized. Similar reasoning can be proposed for the lowest band (first band). A beam

with a frequency corresponding to first band is susceptible to diffraction upon

propagation. Again, the absence of interference is responsible for absence of the

limited diffraction beam creation in the first band.

4.3. Improving Limited-Diffraction Propagation of Generated Diffraction

Limited Beam

In this part of the study, we investigate alternation of the central lobe propagation

distance by optimizing APC element at the apex point. As shown in Fig. 4.3(a), the

central lobe intensity of the limited diffraction beam is preserved along propagation

direction within different Zmax distances for various ΔZ values that denotes apex

shifting amount. The beam could propagate for a Zmax value of 92a when ΔZ=1.4a.

Therefore, applying an appropriate optimization prompts to enlargement of the beam

propagation distance for approximately 23%.  While determining the Zmax value we

take the decay of the central lobe intensity to 65% of the maximum intensity of the

power. Various cases for several ΔZ values are depicted in Fig. 4.3(b).

When the APC axicon apex location is optimized, two different behaviors of the

limited diffraction beam’s central lobe power intensity distributions are observed. In

the first case (ΔZ < 0), the maximum power intensity of the central lobe is shifted

towards APC axicon tip as shown by the dashed lines in Fig. 4.3(b). On the other

hand, in the second case (ΔZ >0), the central lobes’ maximum power intensity

dislocates far away from the APC axicon tip.  The longest propagation distance in

our case occurs when ΔZ=1.4a. We investigated this case further in Fig. 4.4. The

amount of side lobes of the limited diffraction beam determines the degree of the

diffraction–resistive feature of the generated beam. Therefore, because of supporting
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side lobes, longitudinal intensity profile of the main lobe decays very slowly. The

limited dimension of the computational domain in the y-direction artificially damps

some amount of the side lobes. As a result, the axial intensity diminishes quickly. In

the case of Fig. 4.4, by increasing the computational domain in the y-direction, we

allowed the occurrence of more side lobes. As a result, the propagation distance is

enlarged by an additional 4%.

Figure 4.3. Optimization of the maximum propagation distance Zmax=92a of the limited diffraction
beam’s central lobe by shifting the APC element at the apex location. (a) Spatial intensity
distributions of generated diffraction limited beam. (b) On-axis intensity distributions for
different longitudinal shifts of apex rod.

If we want to convert the normalized values into measurable physical quantities, the

following numbers should arise. The operating wavelength can be tuned to telecom

wavelength 1550nm. In this case, the lattice constant, inner and outer radii of rods

become 542.50nm, 81.37nm, 162.75nm, respectively. The limited diffraction occurs
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over the propagation distance of ~50μm after the beam waist has 0.23μm width. The

self-healing or self-reconstruction property of the generated limited diffraction beam

is investigated in the next section.

Figure 4.4. The representation of the spatial intensity profile that corresponds to apex shifting value of
ΔZ=1.4a.

4.4. Self-healing Ability of Two-dimensional Limited Diffraction Beam

One of the striking features of the non-diffraction beam is its self-healing property

[185, 197-200]. In this section of the article, we present a similar behavior found for

our limited diffraction beam. Obstructions with different sizes and shapes

(rectangular and circular) are placed along the optical axis at a certain distance. The

interactions between the beam and the obstacles are investigated. The refractive

index of the obstacle is n=1.5. The presence of the obstacle causes back reflections,

which interfere with the forward propagating beam. We compared the transverse

intensity profiles of the beam at two different locations, viz. just behind and far away

from the obstacle. The two profiles exhibit disparate features. Even though the first

one does not resemble Bessel function profile (there is no central lobe which is

basically blocked by the obstruction), the second profile, which is measured at a

certain distance away from the obstacle, fairly mimics zero-order Bessel function

profile. The figures supporting these observations are presented below.
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Figs. 4.5(a) and 4.5(b) show the spatial intensity profile of generated limited

diffraction beams and with the effect of the presence of obstacles on the radiation

pattern. The sizes of the obstacles are set to be (dz=0.4a)×(dy=4a) and

(dz=1a)×(dy=8a). Both rectangular dielectric objects are placed at the same location

at z=80a. The interference patterns between the tip of the axicon and the obstacle are

seen in the above-stated figures. The amount of reflected and transmitted light

depends on the size of the obstruction. As can be seen in Fig. 4.5(c), the existence of

the obstacle causes disturbance of the main lobe of the pattern and an increase in the

strength of side lobes. Furthermore, whenever the size of the obstacle is enlarged, the

beam profile will be more influenced due to the increasing effect of back-reflection.

The transverse intensity profiles for different cases in the event of the obstacle at

z=85a (40a+45a) are presented in Fig. 4.5(c). Another measurement is taken at

z=101a (40a+61a) within the same initial conditions and the resultant intensity

distribution is represented in Fig. 4.5(d). When the size of the object gets larger, less

light passes through and for both cases, the central lobes appear as double-peaked.

The obstacle blocks the main lobe of the limited diffraction beam. After propagating

certain distance such as 16a, the beam reconstruct itself as can be seen from Fig.

4.5(d).

Figure 4.5: The self-healing properties of the generated diffraction limited beam. (a) and (b) show
spatial intensity distributions of the generated diffraction limited beam facing obstacles
with dimensions (dz=0.4a)×(dy=4a) and (dz=1a)×(dy=8a), respectively. (c) and (d) show
comparison of the cross-sectional intensity profiles.
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In order to prove the superiority of the generated two-dimensional limited diffraction

beam in terms of reconstruction feature as compared with Gaussian one, FDTD

simulation results are demonstrated in  Figs. 4.6(a) and 4.6(b). The spatial intensity

profile of free-space propagation of Gaussian beam is demonstrated in Fig. 4.6(a). A

similar plot for the same beam is prepared under the presence of an obstacle with

dimensions (dz=0.4a)×(dy=1a). As can be seen in Fig. 4.6(b), the beams' transverse-

mode intensity profile is significantly distorted. The cross-sectional profiles of the

beam for different obstacles’ sizes show the inability of the wave to reconstruct after

propagating certain distance. Figs. 4.6(c) and 4.6(d) indicate field’s transverse

profiles at two different distances, respectively (i.e., 85a and 101a).

Figure 4.6. (a) Spatial intensity distribution of the tapered Gaussian beam in free-space with 0.8μm
FWHM. (b) Spatial intensity distribution of the propagation of the tapered Gaussian beam
with obstacle of (dz=0.4a)×(dy=1a) dimensions which settled at 80a distance from
source. (c) A comparison of the cross-sectional intensity profiles of the tapered Gaussian
beams just after the obstacle at 85a distance from the source with different obstacle
dimensions. (d) A comparison of the cross-sectional intensity profiles of the tapered
Gaussian beams at 101a distance from the source. The different types of lines correspond
to different obstacle dimensions.

Intentionally we subtracted spatial intensity profiles for both cases with and without

obstacle to analyze the responses of the obstacles to the limited diffraction and
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Figure 4.7. (a) The subtracted spatial intensity distribution of the generated diffraction limited beam
propagation with and without an obstacle whose dimensions are (dz=1a)×(dy=8a) (b) The
subtracted spatial intensity distribution of the Gaussian beam propagation with and
without an obstacle whose dimensions are (dz=0.4a)×(dy=1a).

Gaussian beams. The resultant field distribution for Gaussian and limited diffraction

beams depicted in Figs. 4.7. Mainly, central lobe gets affected for limited diffraction

beam and side lobes do not sense the obstacle as shown in Fig. 4.7(a). On the other

hand, in comparison with limited diffraction beam the absence of any supporting side

lobes for Gaussian beam greatly modifies the forward propagating beam after the

obstacle as shown in Fig. 4.7(b). The interference effect occurs for both cases due to

the back-reflected light. On the contrary of our limited diffraction beam with limited-

diffraction and self-healing ability, the Gaussian beam with a waist larger than that of

generated limited diffraction beam is dramatically suffers from the diffraction and

the appearance of an obstacle. In conclusion, we have shown re-generation capability

of generated limited diffraction beam if certain size-obstacles are inserted along the

wave path.

4.5. Discussions: Spot Size, Lateral Extent and Self-healing Phenomena

The current work reports limited diffraction light propagation distances over 75a and

92a by implementing a 2D axicon-shape APC with a lateral dimension of 40a. The

FWHM of the central spot increases from 0.43a to 5.24a and the intensity on the

central line stays fairly constant. The spot size of 0.43a corresponds to a focusing of

light down to λ/6.6 and it expands up to 5.24a (1.8λ). The intensity level drops and
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the decay rate is proportional to spot size and inversely proportional to number of

side lobes. It is feasible to perform that result with alternative nano-photonic devices.

Figure 4.8. (a) The on-axis intensity distributions for different widths of axicon APC. (b) The width
versus diffraction limited propagation distance.

However, most of them include metallic components. That in turn yields problems

associated with the bandwidth and optical loss (absorption). On the other hand, the

current photonic structure is made of all-dielectric materials. Hence, it can be

operated over different frequencies without suffering from metallic losses. It is

known that regular conical shape axicons with higher lateral extent are able to

produce longer non-diffracting beams in 3D space. In other words, doubling the

transverse dimension of axicons produces a non-diffracting beam that reaches two-

times longer distance by maintaining its transverse profile constant.
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Figure 4.9. The spatial intensity profiles of the generated diffraction limited beams for different width
of the axicon PC. (a) to (f) correspond to width values of W=20a, 30a, 40a, 60a, 70a, and
80a, respectively.

Figure 4.10. The spatial intensity profiles of the generated diffraction limited beams for different radii
of obstacle placed behind the axicon PC. Frame (a) corresponds to absence of obstacle
and frames (b)-(f) correspond to radii values of r=0.20a, 0.50a, 1.0a, 3.0a, and 5.0a,
respectively.

However, in 2D case the dependency of axicon dimensions to the transformed beam

is quite different. In this study, we explored the dependency of axicon-shape APC’s
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lateral extent to beam profile. Therefore, the lateral dimensions of the axicon-shape

APC is varied from 20a to 80a and Fig. 4.8(a) demonstrates axial intensity variations

for each width value. When the normalized intensity drops to 80% of the maximum

value, the corresponding propagation distance denoted as dP is read from Fig. 4.8(a).

Figure 4.11. The cross-sectional intensity profiles of beams in Fig. 4.10 are shown at a distance of 85a
from the tip of the axicon PC.

A similar data extraction is performed for 70%, 60%, and 50% cases. When we

increase the width, the propagation distance shows a non-linear dependency as

shown in Fig. 4.8(b). This result starkly contrasts with the result of a regular conical

shape axicon in 3D space that possesses linear dependency between width and

propagation distance. To underpin the nonlinear dependency we prepared spatial

intensity distributions in Figs. 4.9(a) - 4.9(f). When we increase the lateral width of

the axicon-shape APC, the length of the structure also increases due to the constraint

that the apex angle is kept at 90°. As a result, the input light propagates a longer

distance inside APC and reaches the sides of the structure with a different phase

terms. The interference of lower and upper parts of the field yields different beam

profile along the transverse direction. Hence, even though the number of side lobes
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increases when width increases the diffraction limited propagation distance shows

enhancement with unequal increments.

Figure 4.12. The on-axis intensity profiles of beams in Fig. 4.10 are shown for different circular shape
obstacle sizes.

The self healing property of the generated limited diffraction beam is further

examined in this section by using obstacles with different shapes and sizes. When we

compare the self-healing performance of the limited diffraction beam under the

presence of obstacles we observe various features. Fig. 4.10(a) - 4.10(f) presents

variations of spatial intensity profiles for different radii of circular obstacles. The

reference case without any obstacle is shown in Fig. 4.10(a). The remaining frames

from (b) to (f) correspond to radii values of 0.20a, 0.50a, 1.0a, 3.0a, and 5.0a. As the

size of the circular object increases, the profiles of limited diffraction beam's

transversal profile become more deformed. To indicate the degree of self-healing

feature, we prepared cross sectional profiles of the beam in Fig. 4.11. The field

distributions especially in frames (d), (e), and (f) are affected more than (a), (b), and

(c). The axial intensity variations of the same cases are presented in Fig. 4.12. It can

be shown that the back-reflected light increases as the size of the object on the path

of the beam gets larger. In addition, monotonous decay of peak intensity shows

different behavior in each case.

107

increases when width increases the diffraction limited propagation distance shows

enhancement with unequal increments.

Figure 4.12. The on-axis intensity profiles of beams in Fig. 4.10 are shown for different circular shape
obstacle sizes.

The self healing property of the generated limited diffraction beam is further

examined in this section by using obstacles with different shapes and sizes. When we

compare the self-healing performance of the limited diffraction beam under the

presence of obstacles we observe various features. Fig. 4.10(a) - 4.10(f) presents

variations of spatial intensity profiles for different radii of circular obstacles. The

reference case without any obstacle is shown in Fig. 4.10(a). The remaining frames

from (b) to (f) correspond to radii values of 0.20a, 0.50a, 1.0a, 3.0a, and 5.0a. As the

size of the circular object increases, the profiles of limited diffraction beam's

transversal profile become more deformed. To indicate the degree of self-healing

feature, we prepared cross sectional profiles of the beam in Fig. 4.11. The field

distributions especially in frames (d), (e), and (f) are affected more than (a), (b), and

(c). The axial intensity variations of the same cases are presented in Fig. 4.12. It can

be shown that the back-reflected light increases as the size of the object on the path

of the beam gets larger. In addition, monotonous decay of peak intensity shows

different behavior in each case.

107

increases when width increases the diffraction limited propagation distance shows

enhancement with unequal increments.

Figure 4.12. The on-axis intensity profiles of beams in Fig. 4.10 are shown for different circular shape
obstacle sizes.

The self healing property of the generated limited diffraction beam is further

examined in this section by using obstacles with different shapes and sizes. When we

compare the self-healing performance of the limited diffraction beam under the

presence of obstacles we observe various features. Fig. 4.10(a) - 4.10(f) presents

variations of spatial intensity profiles for different radii of circular obstacles. The

reference case without any obstacle is shown in Fig. 4.10(a). The remaining frames

from (b) to (f) correspond to radii values of 0.20a, 0.50a, 1.0a, 3.0a, and 5.0a. As the

size of the circular object increases, the profiles of limited diffraction beam's

transversal profile become more deformed. To indicate the degree of self-healing

feature, we prepared cross sectional profiles of the beam in Fig. 4.11. The field

distributions especially in frames (d), (e), and (f) are affected more than (a), (b), and

(c). The axial intensity variations of the same cases are presented in Fig. 4.12. It can

be shown that the back-reflected light increases as the size of the object on the path

of the beam gets larger. In addition, monotonous decay of peak intensity shows

different behavior in each case.



108

Figure 4.13. The spatial intensity profiles of the generated diffraction limited beams for different
dimensions of rectangular shaped obstacle. Frame (a) corresponds to absence of
obstacle and frames (b)-(f) correspond to rectangular obstacles whose dimensions are
(dz, dx)={0.4a; 0.2a -12a}.

Figs. 4.13(a)-(f) show spatial intensity profiles for rectangular shaped obstacles. The

cross-sectional profiles are provided in Figs. 4.14(a)-(f). The reflected light increases

as the size of the object increases. This trend is very similar to circular case as shown

in Fig. 4.12. However, the decay characteristic of the maximum field behaves

differently for rectangular case. The axial intensity distributions with respect to size

of rectangular shaped obstacles are illustrated in Fig. 4.15. Generated limited

diffraction beam is less affected in rectangular object case. This is due to the fact that

the circular shape influences the phase front of the beam more than the obstacle that

has planar front and back surfaces.
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Figure 4.14. The cross-sectional intensity profiles of beams in Fig. 4.13 are shown at the distance 85a
from the tip of the axicon PC.

Annular type PC gives additional flexibilities in terms of tuning the properties of the

limited diffraction beam. For example, a careful adjustment of the refractive index of

the inner air holes may give ways to manipulate the locations of the field’s maximum

amplitude. In addition to TM polarization, one may obtain a similar beam generation

mechanism for TE polarization.

Figure 4.15. The on-axis intensity profiles of beams are shown for different rectangular shape obstacle
sizes.
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Using APC instead of common PC structures gives additional flexibilities on tuning

the behavior of generated limited diffraction beam, as previously mentioned. Here

we provide one example by showing that gradual change of the refractive index of

the inner rods gives rise to longer propagation distance. The refractive indices from

n2 to n7 are arranged to change gradually from 1.5 to 2.0 by a step size of 0.10 in Fig.

4.16(a). The beginning indices of the inner rods at the apex of the axicon are equal to

n1=1.0. The designed graded index axicon composed of APC acts as diverging

(concave) lens. The light source follows certain paths that have different lengths and

refracts with different output angles. Hence, multiple side lobes occur at the edges of

the structure with different direction angles. Among those side lobes, the interference

is observed, which results in formation of the central lobe along the propagation

direction, as can be clearly inferred from the Fig. 4.16(b). In Fig. 4.16(c), the

intensity profiles depending on the propagation distance, Pd is observed. According

to this graph, the generated limited diffraction beam can propagate up to 150a

distance while keeping the intensity to be over 53% of maximum value and

propagation distance reaches to 200a when the central intensity of the beam is higher

than 36%.

Figure 4.16. (a) The schematic presentation of 2D axicon-shape annular PC with graded indices of air
holes. (b) The spatial intensity profiles of the generated diffraction limited beam. (c) The
on-axis intensity profiles of the generated two-dimensional beam.
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5. TWO-DIMENSIONAL COMPLEX PARITY-TIME SYMMETRIC

PHOTONIC STRUCTURES*

5.1. Introduction

Parity-time (PT-) symmetric structures were initially proposed as exotic systems with

unusual properties; despite their complex-valued potentials, the non-Hermitian

Hamiltonians describing those systems can have real eigenvalues [219]. First

regarded as a curiosity in quantum mechanics, such systems have recently been

shown to have interesting and useful applications in classical wave systems,

especially in optics. Indeed, PT-symmetric photonic systems have shown intriguing

new features, such as PT phase transitions [220] and realization of unidirectional

invisible media [221,222] or unidirectional waveguide transmitters [223,224]; some

of these effects have already been experimentally realized [220,223,224].

PT symmetry requires that the complex potential,      riUrUrU  ImRe  , obey the

symmetry requirement    rUrU 
 * , which means that the real part of the potential is

an even function,    rUrU 
 ReRe , whereas the imaginary part is odd,    rUrU 

 ImIm .

Although the imaginary part of the potential is generally difficult to obtain in nature,

this is not the case in optics. The classical analog to the real part of the potential in

optics is the refractive index, and the gain-loss is analogous to its imaginary part.

Therefore, by combining the index and gain-loss modulations with the required

symmetries, such optical systems become classical analogs of quantum systems

described by PT-symmetric Hamiltonians [220–224].

*This chapter is based on: M. Turduev, M. Botey, I. H. Giden, R. Herrero, H. Kurt, E.
Ozbay, and K. Staliunas, "Two-dimensional complex parity-time-symmetric photonic
structures," Physical Review A 91(2), 023825 (2015).
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To date, the pioneering works referenced above and recent extensive literature on

optical PT symmetry covers mostly one-dimensional (1D) systems. On the other

hand, recent works on systems with gain-loss modulations in two dimensions

[225,226], and also on complex two-dimensional 2D crystals [227,228] where the

gain-loss and index are simultaneously modulated, have shown the micro- and

nanophotonics to be a platform for developing synthetic materials with novel beam

propagation effects. However, none of these cases [225–228] can be attributed to PT-

symmetric systems because they do not meet the requirements of PT symmetry.

In this chapter, we propose a 2D PT-symmetric complex photonic structure and show

the new properties inherent of its 2D character. We explore the light propagation

within it, both by realistic numerical calculations using the FDTD method and by

analyzing the Bloch-like modes due to the complex modulation of the potential. We

observe strong asymmetric clockwise–counterclockwise flows of light in the Bloch-

like modes close to the crystallographic resonances or, equivalently, close to high-

symmetry points. As a basic effect, we numerically show the measurable asymmetric

transmission of a Gaussian light beam incident on a finite-sized structure resulting

from asymmetric wave coupling.

5.2. Derivation of the 2D Honeycomb PT-symmetric Structure

To introduce the coupling effects in a 2D PT-symmetric photonic structure, we start

from a 1D PT-symmetric optical system, the properties of which are summarized in

Fig. 5.1. This is essentially a superposition of a 1D Bragg mirror [Fig. 5.1(a1)] and a

balanced gain-loss modulation with the same periodicity but spatially displaced by a

quarter-period [Fig. 5.1(a2)]. In the simplest case, we can consider the harmonic

potential of the structure in the form:       qxiqxnxn sincos  , more conveniently

expressed as

   ,exp iqxnxn  (5.1)
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where q is the reciprocal lattice vector of the modulation, and n is the amplitude of

the complex index modulation. Clearly, such a modulation unidirectionally couples a

wave with wavevector kB to kA=kB+q. In the right column of Fig. 5.1(a2), a left-

propagating resonant wave, kB-q/2, is coupled to kA=kB+qq/2 and is thus Bragg-

reflected to the right. Alternatively, a harmonic Bragg reflector with real-valued

potential,

      ,expexp
2

)(cos iqxiqxnqxnxn  (5.2)

symmetrically couples, at resonance, kAq/2 with kB-q/2, as illustrated in the right

column of Fig. 5.1(a1). Hence, the 1D PT-symmetric modulation given by Eq. (5.1)

breaks the symmetry of left–right wave coupling and propagation, which becomes

most pronounced at resonance. Note that this symmetry breaking is the main

difference between the potentials in Eqs. (5.1) and (5.2), and is the reason for all the

peculiarities shown by PT-symmetric systems, while reciprocity always holds [229].

Keeping this basic principle in mind, we consider the PT-symmetric complex crystal

in 2D space. The simplest choice is the trivial extension of the 1D PT-symmetry to

2D,      yiqnxiqnrn yyxx expexp 
 , which simply factorizes the PT symmetries in

both quadratures but does not lead to new 2D peculiarities. Therefore, we intend to

build the nonfactorizable PT symmetries, i.e., nonfactorizable unidirectional

coupling between the plane wave components, assuming that it will introduce 2D

peculiarities (in comparison with 1D PT-symmetric systems).

We chose a triangular lattice, as the simplest nontrivial case:

  ),(exp
,,

0 



CABCABj

j rqinnrn  (5.3)
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which is generated by three vectors symmetrically rotated by angles of 2/3 with

respect to one another, namely, )23,2(, qqq CAAB 
 and ,0),q(BCq as

represented in the right column of Fig. 5.1(b2), where 0n is the refractive index of

the dielectric embedding medium, and n determines the amplitude of the complex

modulation. Note that considering only the real part of Eq. (5.3) leads to the

corresponding dielectric PhC with 6-fold symmetry, as represented by Fig. 5.1(b1).

At resonance, 33,, qk CBA  , such a real structure (PhC case) reciprocally couples the

Figure 5.1. (a1) Left: 1D Bragg reflector. Right: Fourier transform (FT) of the structure, reciprocal
lattice vectors and reciprocal coupling of wavevectors at resonance, n1 > n2. (a2) Left:
Gain-Loss distribution (G/red, L/blue). Right: FT of the combined 1D PT-symmetric
structure from (a1) and (a2), symmetric lattice vectors and asymmetric coupling at
resonance. (b1) Left: Real part of Eq. (3), n0=1.1, n=0.1. Center: Arrangement of
cylinders. Right: FT of real cylinder's structure and lattice vectors. (b2) Left: Imaginary
part of Eq. (3). Center: Honeycomb arrangement of gain-loss cylinders, n=1.10.1i,
n0=1.3. Right: FT of full 2D PT-symmetric arrangement of cylinders. Insets in (b1) and
(b2) show the symmetric and asymmetric coupling at resonance.
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plane wave components directed along the symmetry axes, as schematically shown

in the inset of Fig. 5.1(b1). However, for the complex lattice described by Eq. (5.3),

the coupling is analogous to that given by Eq. (5.1), being PT-symmetric in any

direction Such a complex lattice exhibits a 3-fold symmetry, as shown in the inset of

Fig. 5.1(b2). This can be expected to produce peculiarities in PT-symmetric systems.

Next, to design a realistic 2D PT-symmetric structure, we replace the lower

refractive index areas with low refractive index cylinders [central column in Fig.

5.1(b1)]. The right column of Fig. 5.1(b1) displays a 6-fold reciprocal space (Fourier

transform) of the cylinder arrangement enabling symmetric coupling. However,

when such cylinders alternatively exhibit gain and loss, as schematically represented

in the central column of Fig. 5.1(b2), the complex distribution of the index contains

the expected PT-symmetry. Indeed, the reciprocal space of the arrangement of

cylinders [right column of Fig. 5.1(b2)] reproduces the three points in the

configuration proposed in Eq. (5.3), leading to unidirectional coupling between wave

components. Apart from the three points indicating the lattice vectors,

,and, CABCAB qqq  other higher-order harmonics of the complex distribution appear

owing to the non-harmonic (stepwise) modulation of the potential.

The triangular lattice is seemingly the simplest nontrivial case of a non-factorizable

2D PT-symmetric complex crystal. Further nontrivial cases could be realized for

higher odd-fold rotational symmetry, which would also yield nontrivial 2D PT-

symmetric quasi-crystals. Here we consider only this triangular case.

5.3. Asymmetric Chiral Excitation

We numerically check whether the proposed system displays the expected properties

of complex PT-symmetric systems, in particular the asymmetric flow of light.

Differently from 1D, the asymmetric coupling between wavevectors rotates the input

by 2/3, depending on the input channel.  In other words, the structure is expected

to display a type of chiral non-reciprocity. This test is performed numerically using

the well-established FDTD technique [230]. We consider two finite-size structures of
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the same symmetry containing the real and complex distributions shown in Figs.

5.2(a) and 5.2(b), respectively.

We first analyze the propagation of a short broadband pulse incident on the structure

from the top in the vertical direction and calculate the transmitted intensity on two

detectors, symmetrically located on both sides of the structure [T1 and T2 in Figs.

5.2(a) and 5.2(b)]. The resulting spectral transmission in the clockwise and

counterclockwise directions, normalized to the incident pulse intensity, is represented

in Figs. 5.2(c) and 5.2(d) for each structure. When comparing the transmissions, we

clearly see the expected asymmetry arising precisely at resonant frequencies a/λ0.3,

where "a" is the center-to-center distance between cylinders; note that q=4π/3a [see

Figs. 5.2(c) and 5.2(d)]. Although the T1 and T2 spectra coincide perfectly for all

frequencies, for the PC case in Fig. 5.2(c), the counterclockwise (clockwise)

transmission is enhanced (reduced) at resonance for the 2D PT-symmetric structure

in Fig. 5.2(d). Note that, except for a higher-order resonance at a/λ0.6 (due to high-

order mode coupling), the symmetry is still unbroken far from resonance, and both

curves coincide well at other frequencies.

For the PC structure, an incident wave kA couples symmetrically to kB and kC, as

schematically shown in the inset of Fig. 5.1(b1). We can observe that the field

distribution depicted in Fig. 5.2(e), obtained by numerical FDTD simulation, is

perfectly symmetric. However, the asymmetric flow of light within the complex

system enhances the transmission to the counterclockwise output channel, T2, in Fig.

5.2(f), whereas transmission to the T1 channel is suppressed. Figure 5.2(f)

demonstrates at a glance the asymmetric coupling schematically represented in the

inset of Fig. 5.1(b2); the incident wave kA is coupled to kB but not to kC. Finally, we

also find that the situation depicted in Fig. 5.2(e) is very similar to the field

distribution from the 2D PT-symmetric structure far from resonance, where no

symmetry breaking is predicted.
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Figure 5.2. Schematic representation of:  (a) 2D PC (real) and (b) 2D PT-symmetric (complex)
structures, source and detectors (c) and (d) Clockwise and counterclockwise
transmissions as a function of frequency, in a/λ units, ("a" is the center-to-center distance
between cylinders of radius, R = 0.45a.) for structures in (a) and (b), respectively. Inset in
(d) is a magnified view within a/λ = 0.25–0.35. (e) and (f) Normalized intensity
distributions for an incident Gaussian beam (width 14a) on (a) and (b), respectively. See
the supplementary material for a frequency scan of the distribution (f) showing the PT-
phase transitions.

Finally, we note that whereas kA couples to kB, - kA couples to – kC. Thus, a -kA wave,

incident from the base upward to the structure, would be transmitted clockwise

instead of propagating counterclockwise within the structure owing to the

nonreciprocal chirality of the system. Note that the closed set of lattice vectors

(qAB+qBC+qCA=0) enables the simultaneous resonance of two disjoint triads, namely

(kA, kB, kC) and (-kA, -kC, -kB) in a circular chiral coupling. The counterclockwise

chiral mode being excited by kA, and the clockwise mode by -kA; rending the chiral

flow of light input dependent.
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5.4. Chiral Bloch-like Modes Close to the PT-transition Point

For a PC, the Bloch modes are defined as localized electromagnetic states of the

periodic media that are invariant in propagation. However, in a complex system

described by a non-Hermitian Hamiltonian, complex Bloch-like modes may either

amplify or decay in time. Below we calculate such Bloch-like modes analytically

considering the simple case of a harmonic PT-symmetric complex crystal of

triangular symmetry. We consider an incident plane wave with a polarization

perpendicular to the plane of the crystal and a wavevector directed vertically,

),0( kk 
 , near resonance: kkk


 A . The small variations are considered to be in

the same incident direction: ),0( ykk 
 . Disregarding the second time derivatives,

the wave equation can be written as;

.
)(

2 22
2

2

EE
rn

cEi t





  (5.4)

We expand the electric field into the first three harmonics of the field, which are

resonant in the lattice, namely: ),0( 0A kk 
 , ABAB qkk 

 , and
CAAC qkk 

 , and obtain,

for the TM polarization:

  .exp
,,




CBAj

jj rkkiaE 
(5.5)

Introducing the expansion in (5.5) into (5.4) yields coupled equations between their

amplitudes, CBA aaa ,, :
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The dispersion diagrams, i.e., the temporal eigenvalues and the associated Bloch-like

modes, are obtained by diagonalization of the matrix in (5.6). Figures 5.3(a) and

5.3(b) display the real and imaginary parts, respectively, of the matrix eigenvalues
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for the three Bloch-like modes at the edge of the Brillouin zone, i.e., at resonance

between lattice vectors. The temporal evolution of the Bloch mode is defined by the

matrix eigenvalues with a factor ckni 00 . As expected, sufficiently far from

resonance, all the eigenvalues are real-valued (where the asymmetry of the coupling

is not pronounced). Close to resonance, the PT phase transition occurs, and we obtain

Bloch modes with complex eigenvalues, one with a negative imaginary part and

hence amplified in time. Therefore, in an extended structure, after a finite

propagation time, the field distribution is expected to exhibit the amplitude and phase

corresponding to this amplified mode. Such amplitude and phase of the most

amplified Bloch mode, as calculated analytically from Eq. (5.6), are depicted in Figs.

5.3(c) and 5.3(d), respectively.

Figure 5.3. Calculated dispersion diagrams and Bloch modes. (a) Real and (b) imaginary parts of the
matrix eigenvalues , where ky, on the horizontal axis, is the distance from resonance
in k0 units. (c) Amplitude and (d) phase of the amplified chiral Bloch mode for k=0,
when illuminated from above and from below (e) and (f), respectively; the insets show the
counterclockwise/clockwise asymmetric coupling. (g) Field intensity and (h) phase
distribution within the hexagon for an incident Gaussian beam with carrier frequency
a/λ=0.303, corresponding magnified 6a×6a region. (i) Field amplitude obtained directly
from FDTD calculation, the arrow indicates the input channel. See the supplementary
material for videos of amplitude and phase evolutions, and counterclockwise flow of
light.
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To check the analytic predictions, we analyze the field evolution after excitation by a

relatively long Gaussian pulse with central frequency at resonance, and spectrum

narrower than the width of the transmission resonance peak in Fig. 5.2(d). Within the

structure (a larger version of the same honeycomb configuration), the incident

radiation is redistributed among all the coupled harmonics approaching a stationary

distribution of the growing Bloch-like mode, after a sufficiently long time. The

analytically calculated amplitude and phase of the amplified chiral Bloch-like mode

are shown in Figs. 5.3(c, d)/Figs. 5.3(e, f), when the structure is illuminated from

above/below, respectively. The result presented in Fig. 5.3(i) is used to extract the

amplitude and phase of the Bloch mode shown in Figs. 5.3(g) and 5.3(h),

respectively. The results agree well with the analytically calculated amplified Bloch

modes. The differences may be attributed mainly to the simplified model used (not

accounting for the real shape of the scatter) and the interplay between higher-order

harmonics, as well as to the finite size of the structure.

5.5. Implementation of Proposal

Finally, we propose a possible realization of the investigated 2D PT-symmetric

complex structure, which could be implemented and measured in microphotonic

devices. The configuration illustrated in Fig. 5.4(a) consists of a silicon slab with a

honeycomb lattice of alternating p-n and n-p semiconductor junctions. Full three-

dimensional (3D) FDTD numerical simulations were performed using the

LUMERICAL software package [230]. The device is illuminated by a broadband

pulse with a Gaussian profile, with a source 7 μm width and 0.5 μm height. Detectors

T1 and T2 are symmetrically placed on either side of the structure as shown in Fig.

5.4(a) to record the transmission. The calculated normalized transmission spectra at

T1 and T2 are depicted in Fig. 5.4(b). A measurable clockwise–counterclockwise

asymmetry is observed in the transmission near resonance at the wavelength

λ=1.501μm (wavelength in a vacuum). The steady-state electric field distributions at

the cross-sectional xy plane (z=0) and yz plane (x=0) are shown in Figs. 5.4(c) and

5.4(d), respectively. The electric field snapshot in Fig. 5.4(c) shows the asymmetric
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light transmission along the directions of T1 and T2 at the resonance frequency.

Furthermore, the cross-sectional field distribution depicted in Fig. 5.4(d) proves the

vertical confinement and guiding of the propagating beam inside the slab. As a result,

the out-of-plane losses are almost negligible for this specific design.

Figure 5.4. (a) Dielectric slab, n=3.474, 0.612 μm high, with holes of radii 0.45μm filled by p-n/n-p
semiconductor junctions, n=3.46±0.007i; a=1.0μm, where red/blue circles indicate
gain/loss areas (b) Clockwise–counterclockwise normalized transmission on detectors T1
and T2. Electric field distribution snapshots at cross-sectional planes (c) z=0 and (d) x=0.
The black arrow in (c) indicates the input channel.
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6. CONCLUSION

The aim of this thesis was to investigate and characterize new photonic designs for

efficiently light manipulation, beam steering, beam splitting, wavelength de-

multiplexing, light focusing, higher order mode converging, limited diffraction beam

generation and asymmetric light transmission purposes. Moreover, we have provided

analytical and numerical results in the design of all dielectric, low symmetric, graded

index and gain-loss index modulated parity time photonic structures.

In Chapter 2, we investigated the effect of symmetry-reduction on the dispersive

characteristics of all-dielectric PCs. Breaking the rotational symmetry of a PC unit-

cell produces various anomalous optical characteristics such as complete PBG, tilted

self-collimation, super-collimation, and wavelength selectivity. Besides, the low

symmetric unit-cell provides additional parameters to control the dispersive features

of Bloch modes. Next in section 2.1, the reduced symmetry of photonic crystals by

introducing asymmetric unit cells in terms of crescent shape instead of circular ones

improves the light manipulation capability via the appearance of anisotropic iso-

frequency contours in the dispersion diagram. The optical characteristics of the

structure were numerically investigated by means of finite-difference time-domain

and plane wave expansion methods. The crescent-shaped photonic crystal

demonstrates a high degree of control over the light propagation behavior in terms of

focusing and self collimation of light beams. The routes of light beam can be tuned

by altering the opening angle of the crescent shape. Engineering the placement of

each crescent-shape cells may offer a platform for implementing various photonic

functions including beam splitters and combiners, deflectors and routers without

deploying any defects inside the periodic dielectric structure.

In section 2.2, we have proposed periodic all-dielectric structures with low symmetry

for wavelength selective light manipulation. Contrary to common approaches that

utilize highly symmetric photonic configurations, the proposed approach in this

paper is highly different in terms of working principle (employment of self-

collimation effect) and structural form of primitive PC cell (rotational C4 symmetry).
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As a potential application, the specific spectral property of wavelength division

effect in a novel STAR-PC is analyzed and the spatial electric field distributions of

different wavelengths are demonstrated. An efficient design of wavelength sensitive

structure that works in the broad telecom window is properly modeled. The designed

device operates within the wavelength interval of nm5.1621nm5.1484  that

corresponds to a bandwidth of %82.80   . By means of the proposed STAR-

PC configuration, wavelength selective media can be designed without introducing

defects or using complex materials. Moreover, the proposed method is based on

engineering of the relevant dispersion curve of low symmetric PCs. The design does

not require any physical perturbation of the structure or nonlinearities. Therefore, this

innovative design based on self-collimation phenomenon may facilitate the

construction of wavelength division structures operating with a fairly broad

bandwidth and high coupling efficiency.

In chapter 3, we deal with inhomogeneous GRIN media and it optical

characterizations. In section 3.1, inhomogeneous GRIN media are considered by

considering them as optical lens possessing different light manipulation schemes

such as focusing, de-focusing and collimation. The analytical investigation of

continuous GRIN medium having HS profile is explored. In addition, the discrete

version of continuous GRIN medium is designed by PCs and time domain analyses

are conducted. The analytical approach utilizes Ray theory and computational tools

are based on plane wave expansion and finite-difference time-domain methods. The

detailed exploration of artificial GRIN structure reveals the significance of operating

such medium not only at long wavelengths but also at short wavelength region.

Meanwhile, strong focusing is possible if the operating frequency or structural length

is appropriately adjusted.  Conventional curved optical elements can be replaced with

the current designs. Flat front and back surfaces, frequency selectivity of the

structure and strong focusing capability make them invaluable element for variety of

optical systems and devices.
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In section 3.2, we have proposed A-GRIN PC designs to obtain mode conversion

process transforming even mode to odd mode and vice versa. Numerical methods

based on wave theory of light in inhomogeneous medium are used to design A-GRIN

PC environment. Mode transformation process is deeply investigated by exploring

both amplitude and phase information of the converted mode. Analytical approach

based on Ray theory helps understanding beam trajectories in different GRIN media.

The results produced by Exponential and Luneburg lens profiles are compared with

the corresponding ideal cases. The proposed devices consist of PCs with a constant

radius and a constant refractive index. The effective index variations are obtained by

varying the lattice spacing in only transverse to the propagation direction. It is seen

that Exponential profile’s performance is superior to Luneburg lens profile in terms

of creating higher-order mode. The numerical results are based on both frequency

and time domain methods. Analytical derivations are carried out by using ray theory.

The idea and implementations outlined in the present work may enable other mode

conversions including third or even higher order modes.

In chapter 4, we have reported limited diffraction light propagation distance

exceeding 92a (~50 m ) by implementing 2D axicon shaped annular PC and

optimizing the apex element location. In the numerical simulations, we observed that

the shape of the generated two-dimensional beam's transversal intensity profile

resembles to the zero-order Bessel function and the intensity on the central axis stays

fairly constant for a certain propagation distance before diffraction shows its effect.

We have explored the interaction of limited diffraction beam with obstacles of

different sizes and shapes placed on the propagation path and demonstrated the self-

healing ability of such beams. Furthermore, we show that using APC gives additional

improvements on the properties of limited diffraction beam. Hence, enlargement of

diffraction-resistive propagation distance is achieved by gradually changing the inner

rods’ refractive indexes.

Finally in chapter 5, we have proposed a simple 2D PT-symmetric photonic structure

and analyze the propagation of light with it. As predicted, we see that close to
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resonance, the system exhibits a nonreciprocal chirality associated with asymmetric

wave coupling between the plane wave components. Therefore, such a 2D PT-

symmetric structure with a hexagonal shape asymmetrically transmits light beams

incident on it. In addition, we analytically calculate the Bloch-like mode formations

and find that indeed the more amplified mode agrees well with the complex field,

and phase distributions in the structure at resonance. Following the proposed scheme,

we design and numerically analyze, using full 3D FDTD simulations, a 2D PT-

symmetric feasible configuration. The proposed 2D planar semiconductor structure

could be produced by microfabrication and microstructuration of the electrodes to

achieve the modulated gain-loss. It may be expected that new synthetic optical

components could rely on such optical systems.
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APPENDIX A

The transverse HS refractive index profile of the half GRIN medium along the y-axis
given by

The ray propagation equation for describing light behaviour within the planar graded
index structure can be obtained from the expression of a differential arc length along
a ray connecting two points within the medium. Ray trajectory calculation method is
illustrated in Fig. 3.1.1. The reciprocal slope of the path at the initial point (x0, y0)
and end point (x, y) are also given in the same figure. The differential arc length can
be calculated as follows:

In a transverse gradient the third optical direction is invariant along any ray within
the medium Ref. [13]-[Expressions (1.60), (6.3)]. In this case, maximum ray
penetration depth is a constant value and expressed as follows [13]:

In this regard, substitution of Eq. A1 into Eq. A3 provides

where A is a constant value and equals to .2
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I
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To find the ray path, we use a transformation of the variables as defined below

Under this change of variables and performing integration with respect to new
variable u, the ray trajectory between two points in the HS index continuous GRIN
structure becomes
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where 0u is the value of u at 0x that is ).sinh( 00 yu 

Eq. A6 can be written as

After denoting  Aux 0
1sin   and taking sine of the both sides of Eq. A7

gives

Here u(x) indicates the ray position at each point within the medium and ray slope
)( xu in the new u-x coordinate system as follows:

After constituting the parameter  to Eq. A9 and performing trigonometric
manipulation gives us formula of a ray slope as follows:

Integration of the slope information can give us the ray position,

Equation A11 is a mathematical expression of ray position at each x point within the
continuous HS GRIN medium. To represent ray position and ray slope information
using the initial conditions we should calculate  and u at x = 0 position, that is
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Then Eq. A10 and Eq. A11 become

Introducing position and slope of the axial and field rays we can obtain (2-by-2)
matrices to describe light propagation in a continuous HS GRIN medium, i.e.,

Note that, expression A15 is analogous of the ray-transfer (ABCD) matrices used in
geometrical optics for analyzing light propagation through any geometrical system.
Taking into account the expressions A15, A5, A9 and A10 we can determine the ray
position and slope information in a Cartesian coordinates, that is

The last two expressions are enough to describe the ray trajectories of light in GRIN
medium with a HS profile.

As can be seen in Fig. 3.1.1(b) when the light ray enters the free space after exiting
the HS GRIN structure it refracts obeying Snell's law and travels in a straight line. As
illustrated in Fig. 3.1.1(b), the output ray intersects with the optical axis (OA) and the
distance between that point and end face of the structure is defined as the back focal
length ΔF. Incident angle θ1 of the light ray at (xe, ye) position and the refracted angle
θ2 are given as an inset in same figure. Applying Snell's law to exiting ray can be
formulated as follows:
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Putting all parameters into Eq. A18 gives
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We know that: ,1))(sin( 2  xxxarctg hence, an angle of refraction θ2 can
be found as follows:

From Fig. 3.1.1(b), the tangent of refracted angle 2 can be determined as
follows

Then ΔF can be expressed as follows:

The final formula of ΔF can be determined after using an expression
21 1))(tan(sin xxx  :

One can see from Eq. A23 that there is a close link between this equation and Eq.
3.1.7 that express conditions of three special cases, i.e., collimation, focusing, and
defocusing.
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APPENDIX B

The transverse Exponential refractive index profile of the half GRIN medium along
the y-axis given by

The ray propagation equation for describing light behavior within the planar graded
index structure can be obtained from the expression of a differential arc length along
a ray connecting two points within the medium. Ray trajectory calculation method is
illustrated in Fig. 3.2.6. The reciprocal slope of the path at the initial point (x0, y0)
and end point (x0, y0) are also given in the same figure. The differential arc length
can be calculated as follows:

In a transverse gradient the third optical direction is invariant along any ray within
the medium Ref. [42]-[expressions (1.60), (6.3)]. In this case, maximum ray
penetration depth is a constant value and expressed as follows [44]:

In this regard, Eq. B3 can be rewritten as

To find the ray path, we use a transformation of the variables as defined below
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Under this change of variables and performing integration with respect to new
variable u, the ray trajectory between two points in the half Exponential index
continuous GRIN structure becomes

where is the value of at x = 0 that is .0
0

yAeu 

Eq. B6 can be written as

After denoting )(sin 0
1 ux   and taking sine of the both sides of Eq. (B7) gives

Here u(x) indicates the ray position at each point within the medium and ray slope
)(xu in the new u-x coordinate system as follows:

After constituting the parameter to Eq. B9 and performing trigonometric
manipulation gives us formula of a ray slope as follows:

Integration of the slope information can give us the ray position

Expression (B11) is a mathematical expression of ray position at each x point within
the continuous GRIN medium. To represent ray position and ray slope information
using the initial conditions we should calculate τ and ̇ at x = 0 position, that is
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Then Eq. B10 and Eq. B11 become

Introducing position and slope of the axial and field rays we can obtain (2x2)
matrices to describe light propagation in a continuous GRIN medium, i.e.

where axial and field rays are defined as follows

Note that, expression B15 is analogous of the ABCD law used in geometrical optics
for analyzing light propagation thorough any geometrical system. Taking into
account the expressions B15, B5, B9 and B10 we can determine the ray position and
slope information in a Cartesian coordinates, that is

The last two expressions are enough to describe the ray trajectories of light in
GRIN medium with an Exponential profile.
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