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ABSTRACT

We present a mathematical model for a market involving two stocks which are traded within a single homogeneous group of
investors who have similar motivations and strategies for trading. It is assumed that the market consists of a fixed amount of cash
and stocks (additions in time are not allowed, so the system is closed) and that the trading group is affected by trend and valuation
motivations while selling or buying each asset, but follows a strategy in which the buying of an asset depends on the other asset’s
price while the selling does not. By utilizing these assumptions and basic microeconomics principles, the mathematical model is
obtained through a dynamical system approach. We analyze the stability of equilibrium points of the model and determine the
conditions on parameters for stability. First, we prove that all equilibria are stable in the absence of a clear emphasis on a trend-
based value for each stock. Second, for systems in which the group of traders attaches importance to the valuation of one stock
and the trend of the other stock for trading, we establish conditions for stability and show with numerical examples that when
instability occurs, it is exhibited by oscillations in the price of both stocks. Moreover, we argue the existence of periodic solutions
through a Hopf bifurcation by choosing the momentum coefficient as a bifurcation parameter within this setting. Finally, we
give examples and numerical simulations to support and extend the analytical results. One of the key conclusions for economics
and finance is the existence of a cyclic behavior in the absence of exogenous factors according to the momentum coefficient. In
particular, an equilibrium price that is stable becomes unstable as the trend based trading increases.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5046925

The instabilities of financial markets cause great harm to
the economies of countries, and market analysts and policy-
makers often discuss these issues. Mathematical modeling
of the financial markets may improve the understanding
of the dynamics of the markets and offer applicable solu-
tions to issues in them. In this direction, stochastic mod-
els and deterministic models have been introduced. The
stochastic models are derived from theoretical assumptions
and largely based on the efficient market hypothesis, so
they treat instabilities as rare occurrences. Moreover, these
models do not offer oscillations or cyclic behavior within
this setting. However, the deterministic models, which have
emerged as alternative perspectives on asset price dynam-
ics in 1990, often analyze practical issues such as the market
crashes and the effect of excess cash. Using the theory of
differential equations, one can study stabilities and cyclic

behavior of these models. While the dynamics of a financial
market consisting of a single stock has been explored math-
ematically, and the conditions for its stability and instability
are understood, it is not known whether such instabili-
ties can influence the markets for other stocks. The aim
of this paper is to introduce a mathematical model that
is capable of addressing stabilities, instabilities, and also
cyclic behaviors within a financial market with multiple
stocks traded simultaneously. Toward this goal, we present
a deterministic model for a two-asset market system using
a dynamical system approach. It is assumed that the mar-
ket involves a homogeneous group of investors who have the
same characteristics for trading. The model, besides basic
microeconomics principles, is derived based on several key
aspects (for example, the finiteness of assets and the exis-
tence of the different motivations and strategies for trading)
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that are routinely examined by practitioners. Stability analy-
ses and numerical studies imply that equilibrium prices are
stable if the group of investors focuses on only the funda-
mental values of the assets being traded. In contrast, trading
that is largely affected by momentum effects leads to insta-
bilities in the asset prices, which are characteristics of the
crises of financial markets such as the high-tech bubble of
1998-2000 in the United States. Another important result is
the possibility of the existence of periodic solutions that are
not permitted in classical finance theory.

I. INTRODUCTION

Local and global issues arising in financial markets affect
the dynamics and stability of those markets and underline the
need for developing mathematical models that are capable of
suggesting solutions for such disturbances. In this direction, a
multitude of stochastic and deterministic asset pricing mod-
els have been introduced. Within the stochastic settings, the
models are derived based on the efficient market hypothesis
combined with the following assumptions: (i) the supply and
demand are based upon the value of the asset, (ii) there is a
general agreement on the valuation of an asset among mar-
ket participants since the information is public (so a unique
price is determined by the market participants), and (iii) there
is an assumption of an infinite amount of arbitrage capi-
tal that would take advantage of any discrepancies from this
unique price.1–3 In these models, the price of an asset is often
determined by the following stochastic equation:

d log[P(t)] = µdt + σdW(t), (1)

where d log[P(t)] represents the relative price change, W is
the Brownian motion, µ is the expected return, and σ is the
standard deviation.4 Even though these assumptions are good
idealizations for theoretical studies in classical finance, they
have been criticized by some scholars.5–15 Using the dynam-
ical system approach, an alternative perspective was intro-
duced to study the asset price dynamics within deterministic
setting.14,16–18 Unlike the stochastic models, these dynamical
systemmodels are derived frommore realistic assumptions: (i)
the value of an asset depends on not only the valuation of the
asset but also other factors, including the derivative history
of the price which is also called the momentum effect,9,10,13

(ii) each investor has a different motivation and strategy for
trading that eliminates the unique price argument,7,9,11 and
(iii) there is an assumption of the finiteness of assets, which
ignores the arbitrage argument.6,14,15 The deterministic mod-
els arise as a system of nonlinear differential equations which
include the excess demand equation that governs the price
of an asset and can be written in continuous-time form as
follows:

τ
1

P

dP

dt
=

D(P) − S(P)

D(P)
, (2)

where D[P(t)] and S[P(t)] are the demand and supply functions
of price, P(t), respectively, and τ is a proportionality constant
that scales the time variable.3,19

Using the asset flow approach, Caginalp and his col-
laborators have derived dynamical systems of this type and
used them to study the financial market dynamics and
stability.14–18,20–27 These early models capture the dynamics of
a single asset market with a prescribed number of shares
and cash supply (including additions in time) which are dis-
tributed to a homogenous group of traders randomly. The
models are derived based on the assumptions of the basic
conservation of cash and asset and microeconomics identities
including the excess demand equation (2).14,16–18,25 The mod-
els are also combined with the finiteness of assets, which
ignores the arbitrage argument, and also different motiva-
tions and strategies in the trading that eliminate the unique
price argument. By deriving a system of nonlinear differential
equations, these models have been used to study a vari-
ety of issues including the forecasting of the asset pricing,
some qualitative and quantitative properties of price dynam-
ics, price patterns, over/under valuations, market bubbles,
and crashes.10,14,18,20,25,28–30 Later models, constructed under
the same assumptions, have been extended to a market sys-
tem with a single asset, but multiple groups of investors.6,21,27,31

These models were used to study the dynamics of a single
asset market involving a heterogeneous group of investors
who all have different strategies, motivations, and also bud-
gets. Using these multi-group models, various phenomena
arising in closed end funds have been analyzed, including
the price change due to a change in the number of shares,6

and the optimality of the constant rebalanced the portfolio
strategy.31 Stability analysis, the emergence of the periodic
solutions via a Hopf bifurcation, and some other bifurcation
properties of these models have also been studied by several
researchers.15,21,26

In this paper, we follow in the footsteps of these earlier
models, but we focus on the price dynamics of a two-asset
market. We still assume that the number of shares of each
asset and the amount of cash are constant in time, but the
trading strategies of each trader now depend on both stock
prices, which couple their resulting dynamics. The model is
an extension of the models derived for a single asset market
system in Refs. 16 and 14. It is derived by assuming simi-
lar conditions including the assumption of the finiteness of
the assets so unlimited arbitrage is not possible. We con-
sider a system involving two assets traded by a homoge-
neous group of investors. It is assumed that there is N(1)

shares of stock 1, N(2) shares of stock 2, and M units of cash
in the system, which are distributed to investors randomly.
These investors follow a trading strategy in which the buy-
ing of an asset depends on the other asset’s price while the
selling does not. With respect to this trading strategy, the
investor group has preference functions for each stock that
are influenced by price momentum and discount from fun-
damental value. Using the basic microeconomics principle
together with Eq. (2), we derive a complete system of the first
order non-linear differential equations. We present the equi-
librium stability analysis of the model for several cases and use
numerical simulations to support and extend the analytical
results.
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In particular, we prove that all equilibria are stable if the
investor group buys and sells both assets according to only
valuation. On the other hand, if the investor group utilizes the
valuation for one asset and the trend effects on the trading
price for the other, then the stability of the equilibrium point
of the system is lost as the momentum coefficient increases.
For the latter case, the existence of periodic solutions through
a Hopf bifurcation is shown by choosing the momentum coef-
ficient of one of the stocks as a bifurcation parameter. Numer-
ical simulations support these analytical results and show that
periodic solution may appear as the momentum coefficient
passes through a critical value (see Fig. 8). The existence or
nonexistence of limit cycles, however, depends on the details
of the transition rate functions.

The paper is organized as follows. Section II presents the
mathematical model. Sections III and IV consist of a stability
and bifurcation analysis of the model. In Sec. IV, we also give
numerical simulations to support and extend the analytical
results. Section VI is devoted to results and discussions.

II. THE MODEL

We consider a market involving two stocks, namely,
stock 1 and stock 2, traded within a single homogeneous group
of investors, i.e., investors who share their trading strategies
and preferences. It is assumed that the market involves M
units of cash, N(1) units of stock 1, and N(2) units of stock 2.
We assume that the trading group follows a strategy in which
the buying of an asset depends on the other asset’s price while
the selling does not. With respect to our assumption on the
trading strategy, we define transition rate functions as follows:





k(1) (t) := k(1)[ζ (1)
1 (t), ζ (1)

2 (t), ζ (2)
1 (t), ζ (2)

2 (t)],

k(2) (t) := k(2)[ζ (1)
1 (t), ζ (1)

2 (t), ζ (2)
1 (t), ζ (2)

2 (t)],

k̃(1) (t) := k̃(1)[ζ (1)
1 (t), ζ (1)

2 (t)],

k̃(2) (t) := k̃(2)[ζ (2)
1 (t), ζ (2)

2 (t)],

(3)

where both k(1) and k(2) denote the transition rate functions
from cash to stocks 1 and 2, respectively, while both k̃(1) and
k̃(2) denote the transition rate functions from stocks 1 and 2
to cash. From another perspective, k(1) and k(2) can be defined
as the probabilities that one unit of cash will be used to
place an order to buy one unit of stock 1 and that of stock 2,
respectively. Similarly, k̃(1) and k̃(2) represent the probabili-
ties of selling of each stock, respectively, as in Refs. 6 and 14.
Thus, k(1), k(2), k̃(1), k̃(2) ∈ [0, 1], and 0 ≤ k(1) + k(2) ≤ 1. The func-
tions (3) describe how investors’ decisions to buy or sell stocks
depend on the quantities ζ

(i)
j , which represent the sentiments

toward each stock, where i = 1, 2 represents the stock number
and j represents the trend-based component (j = 1) and the
value-based component (j = 2) of the sentiment. Specifically,
ζ

(i)
1 (t) is the sum of all impacts of the relative price changes

before time t for stock i, while ζ
(i)
2 (t) represents investors’

focus on the deviation between the asset price and its funda-
mental (true) value. Trading sentiments reflect the dynamics
of the price of a stock and its contribution to the investors
decisions on stock purchases. The sentiment functions are

mathematically defined as follows:

ζ
(i)
1 (t) := q(i)

1 c(i)
1

∫ t

−∞

1

P(i)(τ )

dP(i)(τ )

dτ
e−c

(i)
1 (t−τ)dτ , (4)

ζ
(i)
2 (t) := q(i)

2 c(i)
2

∫ t

−∞

P(i)
a (τ ) − P(i)(τ )

P(i)
a (τ )

e−c
(i)
2 (t−τ)dτ , (5)

where, for i = 1, 2, c(i)
1 and c(i)

2 represent the time scales and

q(i)
1 and q(i)

2 characterize magnitudes for the investors prefer-

ences for stock i.6,14 In these definitions, P(i)
a (t) denotes the

fundamental value, while P(i)(t) is the trading price of the
stock i. Now, from Eqs. (4) and (5) one can obtain the following
differential equations for the investor’s preferences:

dζ
(i)
1 (t)

dt
= c(i)

1 q(i)
1

1

P(i)(t)

dP(i)(t)

dt
− c(i)

1 ζ
(i)
1 (t), (6)

dζ
(i)
2 (t)

dt
= c(i)

2 q(i)
2

P(i)
a (t) − P(i)(t)

P(i)
a (t)

− c(i)
2 ζ

(i)
2 (t), (7)

where i = 1, 2.
To complete the description of the system, we utilize

basic microeconomics principles to define demand and supply
functions as follows:

D(i) = k(i)(t)M and S(i) = k̃(i)(t)N(i)P(i)(t), (8)

where i = 1, 2 and M, N(i) are fixed. The price of each stock is
then determined by adjustment to the excess demand,3,14 i.e.,

τi
1

P(i)

dP(i)

dt
= Fi

(
D(i)

S(i)

)
, (9)

where τi is the time scale and Fi is an increasing function
satisfying Fi(1) = 0 for i = 1, 2, such as Fi(x) = x − 1 or log(x).

Equations (6)–(9) together with the algebraic equations
given in (3) yield a complete dynamical system that can be
analyzed qualitatively and solved numerically.

Example: As an example for the equations given in (3), one
can take the transition rate functions as follows:





k(1) (t) :=
1

8
{1 + tanh[ζ (1)

1 (t) + ζ
(1)
2 (t)]}{3 + tanh[−ζ

(2)
1 (t) − ζ

(2)
2 (t)]},

k(2) (t) :=
1

8
{1 + tanh[ζ (2)

1 (t) + ζ
(2)
2 (t)]}{3 + tanh[−ζ

(1)
1 (t) − ζ

(1)
2 (t)]},

k̃(1) (t) :=
1

2
{1 − tanh[ζ (1)

1 (t) + ζ
(1)
2 (t)]},

k̃(2) (t) :=
1

2
{1 − tanh[ζ (2)

1 (t) + ζ
(2)
2 (t)]}.

(10)
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In this case, the system defined by Eqs. (6)–(9) has the follow-
ing form:





τ1
1

P(1)

dP(1)

dt
= F1

(
M[1 + tanh(ζ

(1)
1 + ζ

(1)
2 )][3 + tanh(−ζ

(2)
1 − ζ

(2)
2 )]

4N(1)P(1)[1 − tanh(ζ
(1)
1 + ζ

(1)
2 )]

)
,

τ2
1

P(2)

dP(2)

dt
= F2

(
M[1+ tanh(ζ

(2)
1 + ζ

(2)
2 )][3+ tanh(−ζ

(1)
1 − ζ

(1)
2 )]

4N(2)P(2)[1− tanh(ζ
(2)
1 + ζ

(2)
2 )]

)
,

dζ
(i)
1

dt
= c(i)

1 q(i)
1

1

P(i)

dP(i)

dt
− c(i)

1 ζ
(i)
1 , i = 1, 2,

dζ
(i)
2

dt
= c(i)

2 q(i)
2

P(i)
a − P(i)

P(i)
a

− c(i)
2 ζ

(i)
2 , i = 1, 2.

(11)

We analyze this system analytically and numerically in later
sections.

III. LOCAL STABILITY ANALYSIS OF THE MODEL

For the stability analysis, we first rescale the system
defined by Eqs. (6)–(9) under the following constraints and
then give a complete stability analysis of the rescaled model
for several cases:

(i) F1(x) = F2(x) = x − 1,
(ii) P(i)

a (t) = P(i)
a > 0, i = 1, 2, where P(i)

a are constants,
(iii) c(i)

1 , c(i)
2 , q(i)

1 , and q(i)
2 are all positive parameters for i = 1, 2,

(iv) τ1 = τ2 = 1.

If we rewrite Eqs. (6)–(9) under constraints (i)-(iv), then we
have the following system of equations with i = 1, 2:





dP(i)

dt
=

k(i)M

k̃(i)N(i)
− P(i),

dζ
(i)
1

dt
= c(i)

1 q(i)
1

k(i)M

k̃(i)N(i)P(i)
− c(i)

1 q(i)
1 − c(i)

1 ζ
(i)
1 ,

dζ
(i)
2

dt
= c(i)

2 q(i)
2

(
1 −

P(i)

P(i)
a

)
− c(i)

2 ζ
(i)
2 .

(12)

For the stability analysis, we assume that the trading group is
affected by only one sentiment while selling or buying each
asset. We analyze the stability of system (12) for the following
three cases:

1. The trading group has a fixed trading preference.
2. The group has only fundamental trading preferences for

both assets.
3. The group follows a mixed trading strategy: A pure value-

based strategy while selling or buying the first asset, and
a pure trend-based strategy while selling or buying the
second asset.

A. The fixed trading preferences

Let us first analyze the dynamics of the system in which
ζ

(i)
1 and ζ

(i)
2 , i = 1, 2, are assumed to be constant, so k(i) and k̃(i),

i = 1, 2, are assumed to be constant. According to this assump-
tion, system (12) is reduced to the following uncoupled system

of equations:

dP(i)

dt
=

k(i)M

k̃(i)N(i)
− P(i), i = 1, 2. (13)

The equilibrium point of this system is [P(1)
eq , P(2)

eq ] =(
k(1)M

k̃(1)N(1) ,
k(2)M

k̃(2)N(2)

)
. Equation (13) can be written as

.

P(i) = P(i)
eq − P(i)

which is the linear first order equation. Its solution is

P(i)(t) = P(i)
eq + [P(i)(0) − P(i)

eq ]e
−t, i = 1, 2. (14)

Thus, we have the following result.

Theorem 1. For the system with the fixed trading preferences
governed by (13), the equilibrium point (P(1)

eq , P(2)
eq ) is Lyapunov

stable and attracting. In other words, it is locally asymptotically
stable.

B. The pure fundamental trading preferences

Now, suppose that the trading group has fundamental
trading preferences for both assets, which means that all
traders just focus on the deviation between each asset’s price
and its fundamental value. Then, the transition rate functions
can be written as follows:





k(1)(t) = k(1)[ζ (1)
2 (t), ζ (2)

2 (t)],

k̃(1)(t) = k̃(1)[ζ (1)
2 (t)],

k(2)(t) = k(2)[ζ (1)
2 (t), ζ (2)

2 (t)],

k̃(2)(t) = k̃(2)[ζ (2)
2 (t)],

(15)

so system (12) is reduced to the following system with i = 1, 2:




dP(i)

dt
=

k(i)M

k̃(i)N(i)
− P(i),

dζ
(i)
2

dt
= c(i)

2 q(i)
2

(
1 −

P(i)

P(i)
a

)
− c(i)

2 ζ
(i)
2 .

(16)

As a vector equation form, system (16) can be represented as
follows:

X′ = F(X), (17)

where X = (P(1), P(2), ζ
(1)
2 , ζ

(2)
2 )T, F = (f1, f2, f3, f4)T and,

for i = 1, 2,

fi :=
k(i)M

k̃(i)N(i)
− P(i),

fi+2 := c(i)
2 q(i)

2

(
1 −

P(i)

P(i)
a

)
− c(i)

2 ζ
(i)
2 .

The equilibrium points of system (17) have the following forms:

E
eq
F = [P(1)

eq , P
(2)
eq , ζ

(1)
2,eq, ζ

(2)
2,eq]

=

[
P(1)
eq , P

(2)
eq , q

(1)
2

P(1)
a − P(1)

eq

P(1)
a

, q(2)
2

P(2)
a − P(2)

eq

P(2)
a

]
(18)

=

[
k(1)M

k̃(1)N(1)
,

k(2)M

k̃(2)N(2)
, ζ

(1)
2,eq, ζ

(2)
2,eq

]
.
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Notice here that there are two free parameters and the system
has infinitely many fixed points.

The Jacobian matrix of system (17) at E
eq
F has the form of

J(E
eq
F ) =




−1 0 a b
0 −1 c d

e 0 −c(1)
2 0

0 f 0 −c(2)
2


 , (19)

where

a =
∂f1

∂ζ
(1)
2

(E
eq
F ) =

M

N(1)

∂k(1)

∂ζ
(1)
2

k̃(1) −
∂ k̃(1)

∂ζ
(1)
2

k(1)

(̃k(1))2
,

b =
∂f1

∂ζ
(2)
2

(E
eq
F ) =

M

k̃(1)2N(1)

∂k(1)

∂ζ
(2)
2

,

c =
∂f2

∂ζ
(1)
2

(E
eq
F ) =

M

k̃(2)N(2)

∂k(2)

∂ζ
(1)
2

,

d =
∂f2

∂ζ
(2)
2

(E
eq
F ) =

M

N(2)

∂k(2)

∂ζ
(2)
2

k̃(2) −
∂ k̃(2)

∂ζ
(2)
2

k(2)

(̃k(2))2
,

e =
∂f3
∂P(1)

(E
eq
F ) =

−c(1)
2 q(1)

2

P(1)
a

,

f =
∂f4

∂P(2)
(E

eq
F ) =

−c(2)
2 q22
P(2)
a

.

Notice that e < 0 and f < 0 since all parameters c(1)
2 , c(2)

2 , q(1)
2 ,

q(2)
2 , and P(1)

a , P(2)
a are positive. The characteristic polynomial of

J(E
eq
F ) is

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0,

where

a1 = c(1)
2 + c(2)

2 + 2,

a2 = 2c(1)
2 + 2c(2)

2 + c(1)
2 c(2)

2 − ea − df + 1,

a3 = c(1)
2 + c(2)

2 + 2c(1)
2 c(2)

2 − ea − df − eac(2)
2 − dfc(1)

2 ,

a4 = c(1)
2 c(2)

2 − eac(2)
2 − dfc(1)

2 + ef(ad − bc).

The Routh-Hurwitz criterion (see Appendix A) states that the
roots of the characteristic polynomial have negative real parts
if and only if a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a23 + a21 a4.

32,33

The criterion a1 > 0 is satisfied for all positive c(1)
2 and c(2)

2 .
If the following conditions hold:

C1:
∂k(1)

∂ζ
(1)
2

(E
eq
F ) > 0,

∂ k̃(1)

∂ζ
(1)
2

(E
eq
F ) < 0,

C2:
∂k(2)

∂ζ
(2)
2

(E
eq
F ) > 0,

∂ k̃(2)

∂ζ
(2)
2

(E
eq
F ) < 0,

then a > 0 and d > 0, so criterion a3 > 0 is satisfied since e < 0
and f < 0. To show that inequality a4 > 0, let us first check

whether ad − bc > 0 or not,

ad − bc =
M2

N(1)N(2) (̃k(1))2 (̃k(2))2

×




k(1)k(2)

(
∂ k̃(1)

∂ζ
(1)
2

∂ k̃(2)

∂ζ
(2)
2

)

−k(1)̃k(2)

(
∂ k̃(1)

∂ζ
(1)
2

∂k(2)

∂ζ
(2)
2

)

−k̃(1)k(2)

(
∂k(1)

∂ζ
(1)
2

∂ k̃(2)

∂ζ
(2)
2

)

+k̃(1)̃k(2)

(
∂k(1)

∂ζ
(1)
2

∂k(2)

∂ζ
(2)
2

−
∂k(1)

∂ζ
(2)
2

∂k(2)

∂ζ
(1)
2

)




.

If the following conditions hold:

C3:
∂k(1)

∂ζ
(2)
2

(E
eq
F ) < 0,

∂k(2)

∂ζ
(1)
2

(E
eq
F ) < 0,

C4:
∂k(1)

∂ζ
(1)
2

(E
eq
F )

∂k(2)

∂ζ
(2)
2

(E
eq
F ) >

∂k(1)

∂ζ
(2)
2

(E
eq
F )

∂k(2)

∂ζ
(1)
2

(E
eq
F ),

then ad − bc > 0. Eventually, if conditions C1, C2, C3, and C4
hold, then criterion a4 > 0 is satisfied since e < 0 and f < 0.
The final criterion a1a2a3 > a23 + a21 a4 is equivalent to

a1a2a3 − a23 − a21 a4

= −fd[3(c(1)
2 )2c(2)

2 + 4c(1)
2 (c(2)

2 )2 + 7c(1)
2 c(2)

2 + 2(c(1)
2 )2 + 3c(1)

2

+ 3(c(2)
2 )2 + 5c(2)

2 + (c(1)
2 )3c(2)

2 + (c(1)
2 )2(c(2)

2 )2 + 2(c(1)
2 )3 + 2]

− ae[(c(1)
2 )2(c(2)

2 )2 + 3(c(1)
2 )2c(2)

2 + 7c(1)
2 c(2)

2 + 3(c(1)
2 )2 + 5c(1)

2

+ 2(c(2)
2 )2 + 3c(2)

2 + (c(1)
2 )2(c(2)

2 )2 + c(1)
2 (c(2)

2 )3 + 2(c(2)
2 )3 + 2]

+ (ae − fd)2
[
c(1)
2 + c(1)

2 c(2)
2 + c(2)

2 + 1
]

+ efbc
[
(c(1)

2 )2 + (c(2)
2 )2 + 2c(1)

2 c(2)
2 + 4c(1)

2 + 4c(2)
2 + 4

]

+ 2(c(1)
2 )3(c(2)

2 )2 + 2(c(2)
2 )3(c(1)

2 )2 + 8(c(1)
2 )2(c(2)

2 )2 + 4(c(1)
2 )3c(2)

2

+ 10(c(1)
2 )2c(2)

2 + 4c(1)
2 (c(2)

2 )3 + 10c(1)
2 (c22)

2 + 8c(1)
2 c(2)

2 + 2(c(1)
2 )3

+ 4(c(1)
2 )2 + 2c(1)

2 + 2(c(2)
2 )3 + 4(c(2)

2 )2 + 2c(2)
2 .

Note that if conditions C1, C2, and C3 hold, then fd < 0,
ae < 0, and efbc > 0. So, the final criterion a1a2a3 − a23 − a21 a4 >

0 is satisfied for all positive c(1)
2 and c(2)

2 . We have just validated
the following result.

Theorem 2. The equilibrium point (18) of system (16) is asymp-
totically stable if the following conditions hold:

C1 :
∂k(1)

∂ζ
(1)
2

(E
eq
F ) > 0,

∂ k̃(1)

∂ζ
(1)
2

(E
eq
F ) < 0,

C2 :
∂k(2)

∂ζ
(2)
2

(E
eq
F ) > 0,

∂ k̃(2)

∂ζ
(2)
2

(E
eq
F ) < 0,
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C3 :
∂k(1)

∂ζ
(2)
2

(E
eq
F ) < 0,

∂k(2)

∂ζ
(1)
2

(E
eq
F ) < 0,

C4 :
∂k(1)

∂ζ
(1)
2

(E
eq
F )

∂k(2)

∂ζ
(2)
2

(E
eq
F ) >

∂k(1)

∂ζ
(2)
2

(E
eq
F )

∂k(2)

∂ζ
(1)
2

(E
eq
F ).

In plain language, Theorem 2 says that in a group of
investors that base their decisions on the value of a stock and
not its price movement, the equilibrium is stable provided the
following conditions are satisfied: (C1) the likelihood of buy-
ing stock 1 by the group increases with the stock sentiment
(which increases with decreasing price) and the likelihood of
selling stock 1 decreases with its sentiment, (C2) similar holds
for stock 2, (C3) the likelihood of buying stock 1 decreases with
increasing sentiment for stock 2 and vice versa, and (C4) the
increase in the likelihood of purchasing stocks 1 and 2 based
on their own sentiments exceeds the combined decrease in
the likelihood of their purchase based on the opposite stock
sentiments. The last condition can be guaranteed by requiring
that the influence of each stock sentiment on its own stock
trading rate is larger than its influence on the trading rate of
the other stock.

C. The mixed trading preferences

We now consider a system in which the trading group has
a different strategy for each stock. We assume that the group
follows a pure value-based strategy for the first stock but fol-
lows a pure trend-based strategy for the second stock, so the
transition rate functions are defined as follows:





k(1)(t) = k(1)[ζ (1)
2 (t), ζ (2)

1 (t)],

k̃(1)(t) = k̃(1)[ζ (1)
2 (t)],

k(2)(t) = k(2)[ζ (1)
2 (t), ζ

(2)
1 (t)],

k̃(2)(t) = k̃(2)[ζ (2)
1 (t)].

(20)

Then, system (12) is reduced to the following system:





dP(1)

dt
=

k(1)M

k̃(1)N(1)
− P(1),

dP(2)

dt
=

k(2)M

k̃(2)N(2)
− P(2),

dζ
(1)
2

dt
= c(1)

2 q(1)
2

P(1)
a − P(1)

P(1)
a

− c(1)
2 ζ

(1)
2 ,

dζ
(2)
1

dt
= c(2)

1 q(2)
1

k(2)M

k̃(2)N(2)P(2)
− c(2)

1 q(2)
1 − c(2)

1 ζ
(2)
1 .

(21)

Representing system (21) as a vector equation form, one has

X′ = F(X), (22)

where X = [P(1),P(2), ζ (1)
2 , ζ (2)

1 ]T, F = (f1,f2, f3, f4)T and

f1 :=
k(1)M

k̃(1)N(1)
− P(1),

f2 :=
k(2)M

k̃(2)N(2)
− P(2),

f3 := c(1)
2 q(1)

2

P(1)
a − P(1)

P(1)
a

− c(1)
2 ζ

(1)
2 ,

f4 := c(2)
1 q(2)

1

k(2)M

k̃(2)N(2)P(2)
− c(2)

1 q(2)
1 − c(2)

1 ζ
(2)
1 .

The equilibrium points of system (22) can be obtained by
solving the following equation for P(1), P(2), ζ

(1)
2 , ζ

(2)
1 :

F(X) = 0.

f1 = 0 and f2 = 0 yield

P(1)
eq =

k(1)M

k̃(1)N(1)
, (23)

P(2)
eq =

k(2)M

k̃(2)N(2)
. (24)

From f4 = 0 together with Eq. (24), we obtain ζ
(2)
1,eq = 0. Finally,

from f3 = 0, we have

ζ
(1)
2,eq = q(1)

2

P(1)
a − P(1)

eq

P(1)
a

. (25)

The equilibrium points of system (22) have the following forms:

E
eq
M = [P(1)

eq ,P
(2)
eq , ζ

(1)
2,eq, ζ

(2)
1,eq]

=

(
P(1)
eq ,P

(2)
eq , q

(1)
2

P(1)
a − P(1)

eq

P(1)
a

, 0

)
. (26)

Once again, the system has infinitely many equilibrium points.
The Jacobian matrix of system (22) at E

eq
M has the form of

J(E
eq
M) =




−1 0 a b
0 −1 c d

f 0 −c(1)
2 0

0 e −ec −ed − c(2)
1


 , (27)

where

a =
∂f1

∂ζ
(1)
2

(E
eq
M) =

M

N(1)

∂k(1)

∂ζ
(1)
2

k̃(1) −
∂ k̃(1)

∂ζ
(1)
2

k(1)

(̃k(1))2
,

b =
∂f1

∂ζ
(2)
1

(E
eq
M) =

M

k̃(1)N(1)

∂k(1)

∂ζ
(2)
1

,

c =
∂f2

∂ζ
(1)
2

(E
eq
M) =

M

k̃(2)N(2)

∂k(2)

∂ζ
(1)
2

,
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d =
∂f2

∂ζ
(2)
1

(E
eq
M) =

M

N(2)

∂k(2)

∂ζ
(2)
1

k̃(2) − ∂ k̃(2)

∂ζ
(2)
1

k(2)

(̃k(2))2
,

e =
∂f4

∂P(2)
(E

eq
M) = −

c(2)
1 q(2)

1

P(2)
eq

,

f =
∂f3
∂P(1)

(E
eq
M) = −

c(1)
2 q(1)

2

P(1)
a

.

The characteristic polynomial of J(E
eq
M) is

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0,

where

a1 = 2 + de + c(2)
1 + c(1)

2 ,

a2 = 2c(2)
1 + 2c(1)

2 + c(2)
1 c(1)

2 + ed − af + edc(1)
2 + 1,

a3 = c(2)
1 + c(1)

2 + 2c(2)
1 c(1)

2 − af + edc(1)
2 − afc(2)

1

− eadf + ebcf,

a4 = c(2)
1 c(1)

2 − afc(2)
1 .

Using the Routh-Hurwitz criteria, we now determine the
conditions for local stability. Let us define U = c(2)

1 + de, then

a1 = c(1)
2 + U + 2,

a2 = c(2)
1 + 2c(1)

2 + c(1)
2 U + U − af + 1,

a3 = c(2)
1 + c(1)

2 + c(2)
1 c(1)

2 + c(1)
2 U − af − afU + ebcf,

a4 = c(2)
1 c(1)

2 − afc(2)
1 .

If the following condition holds:

K1:
∂k(1)

∂ζ
(1)
2

(E
eq
M) > 0,

∂k(1)

∂ζ
(2)
1

(E
eq
M) < 0,

∂ k̃(1)

∂ζ
(1)
2

(E
eq
M) < 0,

∂k(2)

∂ζ
(1)
2

(E
eq
M) < 0,

∂k(2)

∂ζ
(2)
1

(E
eq
M) > 0,

∂ k̃(2)

∂ζ
(2)
1

(E
eq
M) < 0,

then a > 0, b < 0, c < 0, d > 0.
Note that e < 0, f < 0 since all parameters are positive,

and P(1)
a > 0, P(2)

eq > 0. Hence, if condition K1 and the following
condition hold:

K2: U > 0,

then a1 > 0, a3 > 0, a4 > 0.
Now, define V = c(1)

2 − af, Y = ebcf, Z = c(1)
2 + 1. If condi-

tion K1 holds, then V > 0, Y > 0, and Z > 0.
So, a1, a2, a3, a4, and the fourth inequality a1a2a3 > a23 +

a21 a4 can be rewritten as

a1 = U + Z + 1,

a2 = c(2)
1 + Z + V + UZ,

a3 = c(2)
1 Z + V + UV + Y,

a4 = c(2)
1 V,

a1a2a3 − a23 − a21 a4 = U3VZ + U2VZ2 + 3U2VZ + U2YZ

+ U2Z2c(2)
1 + UV2Z − UVY + 2UVZ2

− 2UVZc(2)
1 + 3UVZ + UYZ2 + 2UYZ

+ UYc(2)
1 + UZ3c(2)

1 + 2UZ2c(2)
1 + UZ(c(2)

1 )2

+ V2Z + VYZ − VY + VZ2 − 2VZc(2)
1

+ VZ − Y2 + YZ2 − YZc(2)
1

+ YZ + Yc(2)
1 + Z3c + Z2c(2)

1 + Z(c(2)
1 )2

= 2UYZ − UVY + YZ − VY

+ 2UVZ2 − 2UVZc(2)
1 + VZ2 − 2VZc(2)

1

+ Yc(2)
1 − Y2 + Z(c(2)

1 )2 − YZc(2)
1

+ [other terms that are positive]

= 2UVZ(Z − c(2)
1 )︸ ︷︷ ︸

T1

+ VZ(Z − 2c(2)
1 )︸ ︷︷ ︸

T2

+ UY(2Z − V)︸ ︷︷ ︸
T3

+ Y(Z − V)︸ ︷︷ ︸
T4

+ Y(c(2)
1 − Y)︸ ︷︷ ︸
T5

+ Zc(2)
1 (c(2)

1 − Y)︸ ︷︷ ︸
T6

+ [other terms that are positive].

• If Z − 2c(2)
1 = c(1)

2 + 1 − 2c(2)
1 > 0, then T1 > 0 (since, if Z −

2c(2)
1 > 0, then Z − c(2)

1 > 0) and T2 > 0.

• If Z − V = c(1)
2 + 1 − c(1)

2 + af = 1 + af > 0, then T3 > 0 (since,
if Z − V > 0, then 2Z − V > 0) and T4 > 0.

• If c(2)
1 − Y = c(2)

1 − bcef = c(2)
1 − bc

c
(1)
2 q

(1)
2

P
(1)
a

c
(2)
1 q

(2)
1

P
(2)
eq

= c(2)
1

(
1 − bc

c
(1)
2 q

(1)
2

P
(1)
a

q
(2)
1

P
(2)
eq

)
> 0, then T5 > 0 and T6 > 0.

Consequently, if conditions K1, K2, and the following condi-
tions are satisfied:

K3: c(1)
2 + 1 − 2c(2)

1 > 0,

K4: 1 + af = 1 − a
c
(1)
2 q

(1)
2

P
(1)
a

> 0,

K5: 1 − bc
c
(1)
2 q

(1)
2

P
(1)
a

q
(2)
1

P
(2)
eq

> 0,

then a1a2a3 − a23 − a21 a4 > 0. Thus, we reach the following
result.

Theorem 3. The equilibrium point E
eq
M of system (21) in which

all traders follow a pure value-based strategy while selling
or buying asset 1 and a pure trend-based strategy while sell-
ing or buying asset 2 is asymptotically stable if the following
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conditions hold:

K1 : ∂k(1)

∂ζ
(1)
2

(E
eq
M) > 0, ∂k(1)

∂ζ
(2)
1

(E
eq
M) < 0, ∂ k̃(1)

∂ζ
(1)
2

(E
eq
M) < 0,

∂k(2)

∂ζ
(1)
2

(E
eq
M) < 0, ∂k(2)

∂ζ
(2)
1

(E
eq
M) > 0, ∂ k̃(2)

∂ζ
(2)
1

(E
eq
M) < 0,

K2 : 1 −
Mq

(2)
1

N(2)P
(2)
eq

∂

∂ζ
(2)
1

(
k(2)

k̃(2)

)
> 0,

K3 : c(1)
2 + 1 − 2c(2)

1 > 0,

K4 : 1 −
Mc

(1)
2 q

(1)
2

N(1)P
(1)
a

∂

∂ζ
(1)
2

(
k(1)

k̃(1)

)
> 0,

K5 : 1 −
M2c

(1)
2 q

(1)
2 q

(2)
1

N(1)N(2)P
(1)
a P

(2)
eq


 ∂k(1)

∂ζ
(2)
1




 ∂k(2)

∂ζ
(1)
2




k̃(1) k̃(2) > 0.

In plain language, Theorem 3 states that in a group of
investors that base their decisions on the value of stock 1 and
price increase of stock 2, the equilibrium is stable provided the
following conditions are satisfied: (K1) the likelihood of buying
stock 1 by the group increases with that stock value senti-
ment (which increases with decreasing price) but decreases
with stock 2 trend sentiment, and the likelihood of selling
stock 1 decreases with its value sentiment, while the likeli-
hood of buying stock 2 decreases with the value sentiment
of stock 1, increases with the trend sentiment of stock 2 and
the likelihood of selling stock 2 decreases with its trend sen-
timent, (K2) the change in the ratio of the likelihood of buying
versus selling of stock 2 cannot depend much on that stock
trend sentiment, (K3) the trend-based sentiment for stock 2
must react slowly to changes in price, (K4) the change in the
ratio of the likelihood of buying versus selling of stock 1 cannot
depend too much on that stock value sentiment, and (K5) the
combined influence of stock 1 value sentiment on stock 2 pur-
chase likelihood and the influence of stock 2 trend sentiment
on stock 1 purchase likelihood must be small.

IV. EXAMPLE AND NUMERICAL SIMULATIONS

As an example, we consider system (11) in which the tran-
sition rate function is defined by (10). We rewrite the system
under the following constraints for stability analysis:

(i) F1(x) = F2(x) = x − 1,
(ii) |ζ

(1)
1 (t) + ζ

(1)
2 (t)| < ε1 and |ζ

(2)
1 (t) + ζ

(2)
2 (t)| < ε2, where ε1 and

ε2 are small positive numbers,
(iii) to simplify the calculations, we use the Taylor series

approximation of tanh function, i.e., tanh(x) ' x. Thus, the
transition rate functions can be written as follows [due to
assumptions (ii) and (iii)]:





k(1)(t) ≈
1

8
[1 + ζ

(1)
1 (t) + ζ

(1)
2 (t)][3 − ζ

(2)
1 (t) − ζ

(2)
2 (t)],

k(2)(t) ≈
1

8
[1 + ζ

(2)
1 (t) + ζ

(2)
2 (t)][3 − ζ

(1)
1 (t) − ζ

(1)
2 (t)],

k̃(1)(t) ≈
1

2
[1 − ζ

(1)
1 (t) − ζ

(1)
2 (t)],

k̃(2)(t) ≈
1

2
[1 − ζ

(2)
1 (t) − ζ

(2)
2 (t)],

(28)

(iv) P(1)
a (t) = P(1)

a > 0 and P(2)
a (t) = P(2)

a > 0, where both P(1)
a and

P(2)
a are constants,

(v) c(i)
1 , c(i)

2 , q(i)
1 , and q(i)

2 are all positive parameters for i = 1, 2,
(vi) τ1 = τ2 = 1.

Under the above constraints, system (11) turns into the follow-
ing system of equations:





dP(1)

dt
=

M(1 + ζ
(1)
1 + ζ

(1)
2 )(3 − ζ

(2)
1 − ζ

(2)
2 )

4N(1)(1 − ζ
(1)
1 − ζ

(1)
2 )

− P(1),

dP(2)

dt
=

M(1 + ζ
(2)
1 + ζ

(2)
2 )(3 − ζ

(1)
1 − ζ

(1)
2 )

4N(2)(1 − ζ
(2)
1 − ζ

(2)
2 )

− P(2),

dζ
(1)
1

dt
= c(1)

1 q(1)
1

M(1 + ζ
(1)
1 + ζ

(1)
2 )(3 − ζ

(2)
1 − ζ

(2)
2 )

4N(1)(1 − ζ
(1)
1 − ζ

(1)
2 )P(1)

−c(1)
1 q(1)

1 − c(1)
1 ζ

(1)
1 ,

dζ
(1)
2

dt
= c(1)

2 q(1)
2

(
1 −

P(1)

P(1)
a

)
− c(1)

2 ζ
(1)
2 ,

dζ
(2)
1

dt
= c(2)

1 q(2)
1

M(1 + ζ
(2)
1 + ζ

(2)
2 )(3 − ζ

(1)
1 − ζ

(1)
2 )

4N(2)(1 − ζ
(2)
1 − ζ

(2)
2 )P(2)

−c(2)
1 q(2)

1 − c(2)
1 ζ

(2)
1 ,

dζ
(2)
2

dt
= c(2)

2 q(2)
2

(
1 −

P(2)

P(2)
a

)
− c(2)

2 ζ
(2)
2 .

(29)

Notice here that system (29) yields an example for system
(12). Once again, we assume that the trading group is affected
by only one sentiment while selling or buying each asset and
analyze the stability of system (29) for the following two cases:

Case 1: The group has fundamental trading preferences
for each asset,

Case 2: The group follows a mixed trading preference for
each asset: A pure value-based strategy while selling or buying
the first asset, and a pure trend-based strategy while selling or
buying the second asset.

A. Case 1. The pure fundamental trading preferences

Suppose that the trading group follows a pure value-
based strategy for each asset, i.e., all traders focus on only the
deviation between the asset price and its fundamental value
and ignore the trend for trading. Then, the transition rate
functions (28) can be written as follows:





k(1) =
1

8
[1 + ζ

(1)
2 ][3 − ζ

(2)
2 ],

k̃(1) =
1

2
[1 − ζ

(1)
2 ],

k(2) =
1

8
[1 + ζ

(2)
2 ][3 − ζ

(1)
2 ],

k̃(2) =
1

2
[1 − ζ

(2)
2 ].

(30)

Chaos 29, 023114 (2019); doi: 10.1063/1.5046925 29, 023114-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

As a result, system (29) turns into the following system:





dP(1)

dt
=

M(1 + ζ
(1)
2 )(3 − ζ

(2)
2 )

4N(1)(1 − ζ
(1)
2 )

− P(1),

dP(2)

dt
=

M(1 + ζ
(2)
2 )(3 − ζ

(1)
2 )

4N(2)(1 − ζ
(2)
2 )

− P(2),

dζ
(1)
2

dt
= c(1)

2 q(1)
2

P(1)
a − P(1)

P(1)
a

− c(1)
2 ζ

(1)
2 ,

dζ
(2)
2

dt
= c(2)

2 q(2)
2

P(2)
a − P(2)

P(2)
a

− c(2)
2 ζ

(2)
2 ,

(31)

and its equilibrium points has the following form:

E
eq
F = [P(1)

eq ,P
(2)
eq , ζ

(1)
2,eq, ζ

(2)
2,eq]

=

(
(1 + ζ

(1)
2,eq)(3 − ζ

(2)
2,eq)M

4(1 − ζ
(1)
2,eq)N

(1)
,
(1 + ζ

(2)
2,eq)(3 − ζ

(1)
2,eq)M

4(1 − ζ
(2)
2,eq)N

(2)
, ζ (1)

2,eq, ζ
(2)
2,eq

)
.

(32)

Following now Eq. (19), one obtains the characteristic polyno-
mial of J(E

eq
F ) as follows:

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0,

where

a1 = c(1)
2 + c(2)

2 + 2,

a2 = 2c(1)
2 + 2c(2)

2 + c(1)
2 c(2)

2 − ea − df + 1,

a3 = c(1)
2 + c(2)

2 + 2c(1)
2 c(2)

2 − ea − df − eac(2)
2 − dfc(1)

2 ,

a4 = c(1)
2 c(2)

2 − eac(2)
2 − dfc(1)

2 + ef(ad − bc),

in which

a =
M(3 − ζ

(2)
2,eq)

2N(1)(1 − ζ
(1)
2,eq)

2
, b =

−M(1 + ζ
(1)
2,eq)

4N(1)(1 − ζ
(1)
2,eq)

, c =
−M(1 + ζ

(2)
2,eq)

4N(2)(1 − ζ
(2)
2,eq)

,

d =
M(3 − ζ

(1)
2,eq)

2N(2)(1 − ζ
(2)
2,eq)

2
, e =

−c(1)
2 q(1)

2

P(1)
a

, f =
−c(2)

2 q(2)
2

P(2)
a

.

Now, let us check conditions C1, C2, C3, and C4 given in
Sec. III B. First, note that since it is assumed that tanh(x)

' x, we have −1 < ζ
(1)
2 < 1 and −1 < ζ

(2)
2 < 1. So, the following

inequalities are satisfied:

0 < 1 − ζ
(1)
2 < 2, (33)

0 < 1 + ζ
(1)
2 < 2, (34)

2 < 3 − ζ
(1)
2 < 4, (35)

0 < 1 − ζ
(2)
2 < 2, (36)

0 < 1 + ζ
(2)
2 < 2, (37)

2 < 3 − ζ
(2)
2 < 4. (38)

• According to inequality (38),

∂k(1)

∂ζ
(1)
2

(E
eq
F ) =

1

8
[3 − ζ

(2)
2,eq] > 0

and

∂ k̃(1)

∂ζ
(1)
2

(E
eq
F ) = −

1

2
< 0.

Thus, condition C1 holds.

• According to inequality (35),

∂k(2)

∂ζ
(2)
2

(E
eq
F ) =

1

8
[3 − ζ

(1)
2,eq] > 0

and

∂ k̃(2)

∂ζ
(2)
2

(E
eq
F ) = −

1

2
< 0.

Therefore, condition C2 is satisfied.

• According to inequalities (34) and (37),

∂k(1)

∂ζ
(2)
2

(E
eq
F ) = −

1

8
[1 + ζ

(1)
2,eq] < 0,

∂k(2)

∂ζ
(1)
2

(E
eq
F ) = −

1

8
(1 + ζ

(2)
2,eq) < 0

so that condition C3 holds.

• Finally, we show that condition C4 is satisfied. First, it is easy
to see that

∂k(1)

∂ζ
(1)
2

(E
eq
F )

∂k(2)

∂ζ
(2)
2

(E
eq
F ) −

∂k(1)

∂ζ
(2)
2

(E
eq
F )

∂k(2)

∂ζ
(1)
2

(E
eq
F )

=
1

8
(3 − ζ

(2)
2,eq)

1

8
(3 − ζ

(1)
2,eq)

−
1

8
(1 + ζ

(1)
2,eq)

1

8
(1 + ζ

(2)
2,eq)

= 1 −
1

2
(ζ

(1)
2,eq + ζ

(2)
2,eq).

Since −1 < ζ
(1)
2 < 1 and −1 < ζ

(2)
2 < 1, one has −2 < ζ

(1)
2

+ ζ
(2)
2 < 2. Thus,

1 −
1

2
[ζ (1)

2,eq + ζ
(2)
2,eq] > 0,

so that condition C4 holds.

Consequently, since system (31) is an example of system (16),
according to Theorem 2, we have proved the following result.

Corollary 1. The equilibrium point (32) of system (31) is asymp-

totically stable for all positive c(1)
2 and c(2)

2 .

Chaos 29, 023114 (2019); doi: 10.1063/1.5046925 29, 023114-9

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

B. Case 2. The mixed trading preferences

1. Local stability analysis

We now assume that the trading group has different strategies for each stock, i.e., the group follows a pure value-based
strategy for the first stock but follows a pure trend-based strategy for the second stock. Hence, the transition rate functions (28)
are given by





k(1) =
1

8
[1 + ζ

(1)
2 ][3 − ζ

(2)
1 ],

k̃(1) =
1

2
[1 − ζ

(1)
2 ],

k(2) =
1

8
[1 + ζ

(1)
2 ][3 − ζ

(2)
1 ],

k̃(2) =
1

2
[1 − ζ

(2)
1 ].

(39)

Thus, system (29) is reduced to the following form:





dP(1)

dt
=

M(1 + ζ
(1)
2 )(3 − ζ

(2)
1 )

4N(1)(1 − ζ
(1)
2 )

− P(1),

dP(2)

dt
=

M(1 + ζ
(2)
1 )(3 − ζ

(1)
2 )

4N(2)(1 − ζ
(2)
1 )

− P(2),

dζ
(1)
2

dt
= c(1)

2 q(1)
2

P(1)
a − P(1)

P(1)
a

− c(1)
2 ζ

(1)
2 ,

dζ
(2)
1

dt
= c(2)

1 q(2)
1

M

4N(2)P(2)

(1 + ζ
(2)
1 )(3 − ζ

(1)
2 )

(1 − ζ
(2)
1 )

− c(2)
1 q(2)

1 − c(2)
1 ζ

(2)
1 .

(40)

Using Eqs. (23)–(25), one can obtain the equilibrium points of system (40) as follows:

P(1)
eq =

3M

4N(1)

1 + ζ
(1)
2,eq

1 − ζ
(1)
2,eq

, (41)

P(2)
eq =

M

4N(2)
[3 − ζ

(1)
2,eq], (42)

ζ
(2)
1,eq = 0, (43)

ζ
(1)
2,eq = q(1)

2

P(1)
a − P(1)

eq

P(1)
a

. (44)

Now, combining Eqs. (41) and (44) we have the following equation:

q(1)
2

P(1)
a

[P(1)
eq ]

2 +

(
1 − q(1)

2 + q(1)
2

3M

4N(1)P(1)
a

)
P(1)
eq −

3M

4N(1)
(1 + q(1)

2 ) = 0. (45)

Solving Eq. (45) for P(1)
eq yields the following positive root:

P(1)
eq =

−

(
1 − q(1)

2 + q(1)
2

3M

4N(1)P
(1)
a

)
+

√(
1 − q(1)

2 + q(1)
2

3M

4N(1)P
(1)
a

)2

+
q
(1)
2

P
(1)
a

3M
N(1) (1 + q(1)

2 )

2q
(1)
2

P
(1)
a

. (46)

Chaos 29, 023114 (2019); doi: 10.1063/1.5046925 29, 023114-10

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Since P(1) is the price of the first stock, it cannot be neg-
ative. Therefore, we omitted the negative root of Eq. (45). The
equilibrium points of system (40) have the following forms:

E
eq
M = (P(1)

eq ,P
(2)
eq , ζ

(1)
2,eq, ζ

(2)
1,eq)

=

(
P(1)
eq ,

M

4N(2)

(
3 − q(1)

2

P(1)
a − P(1)

eq

P(1)
a

)
, q(1)

2

P(1)
a − P(1)

eq

P(1)
a

, 0

)

=

(
3M(1 + ζ

(1)
2,eq)

4N(1)(1 − ζ
(1)
2,eq)

,
M(3 − ζ

(1)
2,eq)

4N(2)
, ζ (1)

2,eq, 0

)
(47)

in which P(1)
eq is the equilibrium price which is denoted by

Eq. (46). From (27), the characteristic polynomial of J(E
eq
M) can

be obtained as follows:

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0,

where

a1 = 2 + de + c(2)
1 + c(1)

2 ,

a2 = 2c(2)
1 + 2c(1)

2 + c(2)
1 c(1)

2 + ed − af + edc(1)
2 + 1,

a3 = c(2)
1 + c(1)

2 + 2c(2)
1 c(1)

2 − af + edc(1)
2 − afc(2)

1

− eadf + ebcf,

a4 = c(2)
1 c(1)

2 − afc(2)
1

in which a = 3M
2N(1)

1

(1−ζ
(1)
2,eq)2

, b = −M
4N(1)

(1+ζ
(1)
2,eq)

(1−ζ
(1)
2,eq)

, c = −M
4N(2) ,

d = M
2N(2) (3 − ζ

(1)
2,eq), f = −

c
(1)
2 q

(1)
2

P
(1)
a

and e = −
c
(2)
1 q

(2)
1

P
(2)
eq

.

In Sec. III C, we have proved that the equilibrium point of
system (21) are asymptotically stable if conditions K1-K5 hold.
Since system (40) is an example for system (21), the equilib-
rium point of system (40) is asymptotically stable if the same
conditions hold.

FIG. 1. Graphs of the first stock’s price, P(1)(t), for q
(2)
2 = 1 and q

(1)
2 = 0.01, 1,

and 10 marked with diamond, square, and circle, respectively. Here, q
(1)
2 is the

valuation coefficient for the first stock, while q
(2)
2 is that for the second stock. We

used [P(1)(0), P(2)(0), ζ
(1)
2 (0), ζ

(2)
2 (0)] = (4, 6, 0.01, 0.01) as an initial condition

for simulations. Note that the equilibrium price of the first stock, P
(1)
eq , is stable for

each q
(1)
2 . Moreover, it gets closer to the true value P

(1)
a = 4 as q

(1)
2 gets larger.

FIG. 2. Graphs of the price of the second stock, P(2)(t), for q
(2)
2 = 1 and q

(1)
2 =

0.01, 1, and 10 marked with diamond, square, and circle, respectively. We used
the same initial condition as in Fig. 1. Simulations show that the steady state price

of the second stock, P
(2)
eq , is stable for each q

(1)
2 .

Since it is assumed that tanh(x) ' x, we have −1 < ζ
(1)
2 < 1

so that one easily obtains the following inequalities:

0 < 1 − ζ
(1)
2 < 2, (48)

0 < 1 + ζ
(1)
2 < 2, (49)

2 < 3 − ζ
(1)
2 < 4. (50)

By now using these inequalities, we show that condition K1
holds as follows:

• Utilizing inequality (49), one has

∂k(1)

∂ζ
(2)
1

(E
eq
M) = −

1

8
[1 + ζ

(1)
2,eq] < 0

and

∂k(1)

∂ζ
(1)
2

(E
eq
M) =

1

8
[3 − ζ

(2)
1,eq] =

3

8
> 0,

∂ k̃(1)

∂ζ
(1)
2

(E
eq
M) = −

1

2
< 0.

• Using now inequality (50), we can show that

TABLE I. The steady states of the stocks’ prices in system (31) as q
(1)
2 varies.

q(2)
2 q(1)

2 P(1)
eq P(2)

eq

1 0.01 2.9213 5.4335

1 1 3.5777 5.3666

1 10 3.9385 5.3346
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FIG. 3. Graphs of the price of the first stock, P(1)(t), for q
(1)
2 = 1 and q

(2)
2 =

0.01, 1, and 10 marked with diamond, square, and circle, respectively. Here, q
(1)
2

is the valuation coefficient for the first stock, while q
(2)
2 is that for the second

stock. [P(1)(0), P(2)(0), ζ
(1)
2 (0), ζ

(2)
2 (0)] = (4, 6, 0.01, 0.01) are the initial con-

ditions used for simulations. It is clear that the equilibrium price of the first stock,

P
(1)
eq , is stable for each q

(2)
2 .

∂k(2)

∂ζ
(2)
1

(E
eq
M) =

1

8
[3 − ζ

(1)
2,eq] > 0

and

∂k(2)

∂ζ
(1)
2

(E
eq
M) = −

1

8
[1 + ζ

(2)
1,eq] = −

1

8
< 0,

∂ k̃(2)

∂ζ
(2)
1

(E
eq
M) = −

1

2
< 0.

Thus, condition K1 holds. Then, according to Theorem 3,
the equilibrium point of system (40) is asymptotically stable if

FIG. 4. Graphs of the second stock’s price, P(2)(t), for q
(1)
2 = 1 and q

(2)
2 =

0.01, 1, and 10 marked with diamond, square, and circle, respectively. We used
the same initial condition as in Fig. 3. Note that the equilibrium price of the second

stock, P
(2)
eq , is stable for each q

(2)
2 . Note also that it gets closer to the true value

P
(2)
a = 6 as q

(2)
2 gets larger.

the following conditions hold:

K2: 1 − 2q(2)
1 > 0,

K3: c(1)
2 + 1 − 2c(2)

1 > 0,

K4: 1 −
3Mc

(1)
2 q

(1)
2

2N(1)(1−ζ
(1)
2,eq)2

> 0,

K5: 1 −
M(1+ζ

(1)
2,eq)c

(1)
2 q

(1)
2 q

(2)
1

4N(1)(1−ζ
(1)
2,eq)(3−ζ

(1)
2,eq)P

(1)
a

> 0.

(51)

We summarize the result that we have concluded below.

Corollary 2. The equilibrium point E
eq
M of system (40) is asymp-

totically stable if the conditions K2-K5 in (51) hold.

In plain language, Corollary 2 states that for our example
the equilibrium is stable provided the following conditions are
satisfied: (K2) the strength of the dependence of trend senti-
ment on stock 2 price should be less than 1/2, (K3) the trend
sentiment for stock 2 must react slowly to the changes in the
price of stock 2, and [(K4) and (K5)] the value sentiment for
stock 1 must react slowly to the changes in the price of stock 1.

2. Bifurcation analysis for system (40)

In this subsection, we show the existence of the Hopf
bifurcation of system (40) by choosing the trend coefficient
of the second stock, q(2)

1 , as a bifurcation parameter. We first
write the characteristic equation as follows:

H(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4, (52)

where

a1 = Aq(2)
1 + B, (53)

a2 = Fq(2)
1 + C, (54)

a3 = Gq(2)
1 + D, (55)

a4 = E (56)

in which A = −2c(2)
1 , B = 2 + c(2)

1 + c(1)
2 , C = 1 + 2c(2)

1 + 2c(1)
2 +

c(2)
1 c(1)

2 + Kq(1)
2 c(1)

2 , D = c(2)
1 + c(1)

2 + 2c(2)
1 c(1)

2 + Kq(1)
2 c(1)

2 (1 + c(2)
1 ), E =

c(2)
1 c(1)

2 + Kq(1)
2 c(1)

2 c(2)
1 , F = −2c(2)

1 (1 + c(1)
2 ),G = −2c(2)

1 (c(1)
2 + Kq(1)

2 c(1)
2 )

+ c(2)
1 c(1)

2 q(1)
2 L, where

K =
3M

2N(1)P(1)
a (1 − ζ

(1)
2,eq)

2
,

L =
M2(1 + ζ

(1)
2,eq)

16N(1)N(2)P(1)
a (1 − ζ

(1)
2,eq)

.

TABLE II. The steady states of the stocks’ prices in system (31) as q
(2)
2 varies.

q(1)
2 q(2)

2 P(1)
eq P(2)

eq

1 0.01 3.6223 4.3819

1 1 3.5777 5.3666

1 10 3.5564 5.9078
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FIG. 5. The region bounded by the inner rectangle involves the values of q
(1)
2 and

q
(2)
1 at which the steady states of system (40) are definitely stable.

Notice that since it is assumed that tanh(x) ' x, one has −1 <

ζ
(1)
2 < 1. Notice also that all parameters in K and L are positive.
As a result, K > 0 and L > 0. Thus, A < 0, B > 0, C > 0, D > 0,
E > 0, F < 0, and G can be either positive or negative.

The following theorem states the conditions on param-
eters at which system (40) has a Hopf bifurcation. We
prove it using Theorem 6 proved by Asada and Yoshida (see
Appendix D).

FIG. 6. Graphs of the price of the first stock, P(1)(t), for q
(2)
1 = 0.35 and q

(1)
2 =

0.01, 0.2, 1, and 10, respectively, where q
(2)
1 is the trend coefficient for the second

stock, while q
(1)
2 is the valuation coefficient for the first stock. The initial condition

used for simulations is [P(1)(0), P(2)(0), ζ
(1)
2 (0), ζ

(2)
2 (0)] = (4, 6, 0.01, 0.01).

The equilibrium price of the first stock, P
(1)
eq , is stable for each q

(1)
2 . Moreover,

it gets closer to the true value P
(1)
a = 4 as q

(1)
2 gets larger.

FIG. 7. Graphs of the second stock’s price, P(2)(t), for q
(2)
1 = 0.35 and q

(1)
2 =

0.01, 0.2, 1, and 10, respectively. q
(2)
1 is the trend coefficient for the second stock,

while q
(1)
2 is the valuation coefficient for the first stock. We used the same initial

conditions as in Fig. 6 for simulations. The equilibrium price of the second stock,

P
(2)
eq , is stable for each q

(1)
2 .

Lemma 1. The characteristic polynomial H(λ) has a pair of
(simple) pure imaginary roots and two roots with negative real
parts if one of the following condition holds:

P1: G < 0 and q(2)
1 < min

(
− B

A
,−D

G

)
.

P2: G ≥ 0 and q(2)
1 < −(B/A).

Proof. To prove the claims, we utilize Theorem 6 which
states that H(λ) has a pair of pure imaginary roots and two
roots with negative real parts iff a1 > 0, a3 > 0, a4 > 0, and
φ = a1a2a3 − a21 a4 − a23 = 0.

Let us first assume that P1 is satisfied. Then, a3 = Gq(2)
1 +

D is a linear decreasing function of q(2)
1 , because of G < 0. Sim-

ilarly, a1 = Aq(2)
1 + B is a linear decreasing function of q(2)

1 since

A < 0. Also, a1 = 0 and a3 = 0 when q(2)
1 = − B

A
and q(2)

1 = −D
G
,

respectively, where − B
A

> 0 and −D
G

> 0. Thus, a1 > 0 and a3 >

0 for q(2)
1 ∈ [0,min

(
− B

A
,−D

G

)
). We also know that a4 > 0 due to

its definition [see (56)].
On the other hand, φ is a continuous function of q(2)

1

defined as follows:





φ(q(2)
1 ) = a1a2a3 − a21 a4 − a23

= AFG(q(2)
1 )3 + (CAG − EA2 + FDA − F2 + BCF)(q(2)

1 )2

+(ACD − 2ABE − 2GD + BFD + BCG)q(2)
1

+(CBD − EB2 − D2).

(57)

TABLE III. The steady states of the stocks’ prices in system (40) as q
(1)
2 varies, but

q
(2)
1 is fixed.

q(1)
2 q(2)

1 P(1)
eq P(2)

eq

0.01 0.35 3.0148 4.4963

0.2 0.35 3.2377 4.4428

1 0.35 3.6235 4.3588

10 0.35 3.9455 4.2958
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Using now the intermediate value theorem, we show that φ

vanishes for some q(2)
1 > 0. Note that





φ(0) = CBD − EB2 − D2

= K2c(1)
2 (q(1)

2 )2 − 2Kc(1)
2 q(1)

2 + c(1)
2

+ other positive terms

= c(1)
2 (Kq(1)

2 − 1)2 + other positive terms

(58)

so that φ(0) > 0.
Note also that φ(− B

A
) = −(−GB

A
+ D)2 < 0 and φ(−D

G
)

= −(− AD
G

+ B)2E < 0, so φ(q(2)
1 ) < 0 when q(2)

1 = min
(
− B

A
,−D

G

)
.

Then, by the intermediate value theorem, ∃ q(2),∗
1 ∈ [0,min

(
− B

A
,

−D
G

)
] such that φ[q(2),∗

1 ] = 0 [since φ is a polynomial of q(2)
1 ].

Moreover, a1[q
(2),∗
1 ] > 0, a3[q

(2),∗
1 ] > 0.

Second, we assume that P2 holds. Then, G = 0 implies
a3 = D > 0, and G > 0 implies a3 = Gq(2)

1 + D > 0 for all q(2)
1 >

0. On the other hand, since A < 0, B > 0, and a1(−B/A) = 0
[see (53)], a1 > 0 when q(2)

1 < − B
A
. Once again, a4 > 0 by its

definition. Finally, φ is a continuous function of q(2)
1 [see (57)],

φ(0) > 0 [see (58)], and φ(− B
A
) = −(−GB

A
+ D)2 < 0. By now

using the intermediate value theorem, one can show that
∃ q(2),∗

1 ∈ (0,− B
A
) such that φ(q(2),∗

1 ) = 0.
Consequently, from Theorem 6 we have showed the exis-

tence of a pair of pure imaginary roots under conditions P1
and P2. Moreover, Theorem 6 underlines that the pure imagi-
nary roots are simple since the other two roots have negative
real parts, and H(λ) is a fourth order polynomial which has at
most four zeros. �

Remark. Since a pair of pure imaginary roots appearing when
q(2)
1 = q(2),∗

1 is simple, the transversality condition holds, i.e.,

Re

(
dλ(q(2)

1 )

dq(2)
1

) ∣∣∣
{q

(2),∗
1 ;E

eq
M }

6= 0.

Theorem 4. System (40) undergoes a Hopf bifurcation at E
eq
M if

one of conditions P1 and P2 is satisfied.

Proof. The proof follows from Lemma 1. �

V. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations to sup-
port and extend the analytical results obtained in the former
sections for the following two cases:

Case 1: All traders follow a fundamental strategy while
selling or buying assets.

Case 2: The trading group follows a pure value-based
strategy while selling or buying the first asset, and a pure
trend-based strategy while selling or buying the second asset.

As a numerical example, we consider a closed market
involving 2400 units of cash and 600 units of the first stock
and 400 units of the second stock. We assume that the group
values the first stock as P(1)

a = 4 and the other stocks as P(2)
a =

6. For each simulation, we use the ODE package (ode23s) in
MATLAB (R2016a).

Case 1: In this case, we fixed time scales for the valua-
tion motivations as c(1)

2 = 1 and c(2)
2 = 1. Corollary 1 underlines

that each equilibrium is asymptotically stable for all positive
parameters. In Figs. 1 and 2, we fix magnitude for the valuation

FIG. 8. Graphs of the real parts of eigenvalues of the Jacobian matrix of system (40) versus q
(2)
1 . In this graph, X:=q

(2)
1 and Y:=Real part of an eigenvalue.
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FIG. 9. Graphs of the price of the first stock, P(1)(t), for q
(1)
2 = 0.02 and

q
(2)
1 = 0.1, 0.5, 1, and 1.005, respectively. [P(1)(0), P(2)(0), ζ

(1)
2 (0), ζ

(2)
1 (0)] =

(3.03, 4.6, 0.0049, 0) is the set of the initial conditions used for simulations. The

price is stable for q
(2)
1 = 0.1 and q

(2)
1 = 0.5, unstable for q

(2)
1 = 1.005, periodic

for q
(2)
1 = 1

.
= q

(2),∗
1 .

motivation for the second stock as q(2)
2 = 1 and vary the value-

based coefficient q(1)
2 for the first stock. We take P(1)(0) = 4,

P(2)(0) = 6, ζ
(1)
2 (0) = 0.01, and ζ

(2)
2 (0) = 0.01 as an initial con-

dition and plot graphs of solutions for the stocks’ prices by
using the parameters above. The equilibrium prices in Table I
vary with q(1)

2 (see Appendix B which explains the calculations

of the equilibrium points P(1)
eq and P(2)

eq ).
Figures 1 and 2 show that the equilibrium point is sta-

ble for each value of q(1)
2 which is compatible with Corollary 1.

From these figures, one can also observe that P(1)
eq tends to P(1)

a

while q(1)
2 gets larger. This means that if the investor group

pays more attention to the valuation of the first stock, then
the equilibrium price of the first stock gets close to its fun-
damental value that yields a similar conclusion obtained in
Ref. 14.

In Figs. 3 and 4, we now fix the magnitude for the
valuation motivation for the first stock as q(1)

2 = 1 and vary

the value-based coefficient for the second stock as q(2)
2 =

0.01, 1, 10, respectively. By using the parameters values
used in Figs. 1 and 2 together with the initial conditions
[P(1)(0),P(2)(0), ζ (1)

2 (0), ζ (2)
2 (0)] = (4, 6, 0.01, 0.01), we plot graphs

of solutions for the stocks’ prices once again. The equilibrium
prices, which vary with respect to the parameter q(2)

2 , are given
in Table II (see Appendix B for their calculations). These graphs
show that the equilibrium point is stable for each given value
of q(2)

2 . According to Fig. 4, while q(2)
2 gets larger, the equilib-

rium price of the second stock gets close to P(2)
a , which is the

fundamental value for the second stock.
Case 2. We again fix time scales for both trend and

valuation motivations as c(1)
2 = 2 and c(2)

1 = 1. First, using the
criteria given by Corollary 2, we display the stability region
where all fixed points are stable as the parameters q(1)

2 and q(2)
1

vary within. For the parameters which are located inside of
this region, the steady states of system (40) must be stable.
However, for the parameters which are located outside or on
the boundary of this region, the corresponding equilibrium
may be either stable or unstable.

In Figs. 6 and 7, we fix the magnitude for trend moti-
vations as q(2)

1 = 0.35 and vary valuation motivations as

q(1)
2 = 0.01, 0.2, 1, and 10, respectively [note that (q(2)

1 , q(1)
2 ) =

(0.35, 0.01) and (q(2)
1 , q(1)

2 ) = (0.35, 0.2) are located inside of

the stability region, but (q(2)
1 , q(1)

2 ) = (0.35, 1) and (q(2)
1 , q(1)

2 ) =

(0.35, 10) are located outside of the stability region exhibited
in Fig. 5]. Using these parameters, we plot the graphs of the
first two components (stocks’ prices) of the solutions by tak-
ing [P(1)(0),P(2)(0), ζ (1)

2 (0), ζ (2)
2 (0)] = (4, 6, 0.01, 0.01) as an initial

condition. According to the parameters, for each value of q(1)
2 ,

system (40) has only one positive equilibrium point that is
given by Eqs. (46) and (47). The equilibrium prices are given in
Table III. Figures 6 and 7 illustrate that the equilibrium prices
that vary with respect to q(1)

2 are stable.
In Fig. 8, fixing the magnitude of the valuation motivation

as q(1)
2 = 0.02 and using the parameters above, we plot the real

parts of the eigenvalues of the Jacobian matrix of system (40)
according to the trend coefficient for the second stock, q(2)

1 .

With respect to Eq. (46), P(1)
eq and P(2)

eq are independent of q(2)
1 , so

the system has a unique equilibrium value [P(1)
eq ,P

(2)
eq , ζ

(1)
2,eq, ζ

(2)
1,eq] =

(3.0293, 4.4927, 0.0049, 0). This graph shows that the equilib-
rium point of the system is unstable for each q(2)

1 which is

bigger than a critical value q(2),∗
1 ∈ (0.9999, 1.001) since the real

part of one of the eigenvalues is positive for q(2)
1 > q(2),∗

1 .
Figures 9 and 10 present the graphs of the stocks’ prices

when q(2)
1 = 0.1, 0.5, 1, and 1.005, respectively, for the fixed val-

uation coefficient, namely, q(1)
2 = 0.02. These graphs are plot-

ted by taking the initial conditions as P(1)(0) = 3.03, P(2)(0) =

4.6, ζ
(1)
2 (0) = 0.0049, ζ

(2)
1 (0) = 0. Note again that except for

[q(2)
1 , q(1)

2 ] = (0.01, 0.02) and [q(2)
1 , q(1)

2 ] = (0.5, 0.02), the other
points are located outside of the stability region in Fig. 5.
According to Figs. 9 and 10, the equilibrium prices are sta-
ble for q(2)

1 = 0.1 and q(2)
1 = 0.5, while they are unstable for

q(2)
1 = 1.005 which is bigger than q(2),∗

1 . Moreover, when q(2)
1 =

1 that is very closed to the critical value q(2),∗
1 , the system

presents a cyclic behavior which underlines the existence of
periodic solutions through a Hopf bifurcation as q(2)

1 passes

FIG. 10. Graphs of the second stock’s price, P(2)(t), for q
(1)
2 = 0.02 and q

(2)
1 =

0.1, 0.5, 1, and 1.005, respectively. We used the same initial conditions and
observed a similar behavior as in Fig. 9.
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through q(2),∗
1 by choosing q(2)

1 as a bifurcation parameter (see
Theorem 4). Next few simulations show this behavior.

Finally, we perform numerical simulations to support and
extend the existence of the Hopf bifurcation of system (40).
For simulations, we again fix the value-based coefficient of the
first stock as q(1)

2 = 0.02. Using the parameters c(1)
2 = 2, c(2)

1 = 1,

P(1)
a = 4, and P(2)

a = 6, we calculate G, − B
A
, and −D

G
as follows:

G = −4.1514, −
B

A
= 2.5000, and −

D

G
= 1.7153.

(a)

(b)

(c)

FIG. 11. Graphs of the stocks’ prices, P(1)(t) and P(2)(t), for

q
(2)
1 = 0.98 < q

(2),∗
1 (a), q

(2)
1 = 1

.
= q

(2),∗
1 (b), and q

(2)
1 = 1.01 > q

(2),∗
1

(c). [P(1)(0), P(2)(0), ζ
(1)
2 (0), ζ

(2)
1 (0)] = (3.03, 4.6, 0.0049, 0) is the set of the

initial conditions used for these simulations. The steady state prices are stable in
(a), periodic in (b), and unstable in (c).

FIG. 12. Graphs of the trajectories of the solutions for [P(1)(t), P(2)(t), ζ
(1)
2 (t)] (a)

and [P(1)(t), P(2)(t), ζ
(2)
1 (t)] (b) when q

(2)
1 = 1

.
= q

(2),∗
1 . We used the same initial

conditions as in Fig. 11 for these simulations. The star denotes the equilibrium
point.

Hence, according to condition P1 in Theorem 4, the Hopf
bifurcation occurs at q(2),∗

1

.
= 1 < min

(
− B

A
,−D

G

)
, where q(2),∗

1 is

the root of the function φ(q(2)
1 ) [see (57)] (note here that if φ

has two roots or more, then the smallest positive root should
be chosen as q(2),∗

1 ).
In Fig. 11, we plot the stocks’ prices, P(1)(t) and P(2)(t),

according to time for q(2)
1 = 0.98 < q(2),∗

1 in (a), q(2)
1 = 1

.
= q(2),∗

1 in

(b), and q(2)
1 = 1.01 > q(2),∗

1 in (c). The initial conditions that we

used for simulations are P(1)(0) = 3.03, P(2)(0) = 4.6, ζ
(1)
2 (0) =

0.0049, and ζ
(2)
1 (0) = 0. The graphs in (a) show that the equilib-

rium points of the stocks’ prices are stable for q(2)
1 which is less

than the critical bifurcation value, q(2),∗
1 . The graphs in (b) illus-

trate that periodic solutions occur through a Hopf bifurcation
as the bifurcation parameter, q(2)

1 , passes through q(2),∗
1 . The

graphs in (c) indicate that the steady state prices are unstable
for q(2)

1 that is greater than q(2),∗
1 . Furthermore, Fig. 12 presents

the trajectories of the solutions for [P(1)(t),P(2)(t), ζ (1)
2 (t)] [in (a)]

and [P(1)(t),P(2)(t), ζ (2)
1 (t)] [in (b)] for q(2)

1 = 1
.
= q(2),∗

1 .
Finally, Fig. 13 illustrates the trajectories of the solu-

tions for [P(1)(t),P(2)(t), ζ (1)
2 (t)] [in (a)] and [P(1)(t),P(2)(t), ζ (2)

1 (t)]
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FIG. 13. Graphs of the trajectories of [P(1)(t), P(2)(t), ζ
(1)
2 (t)] (a) and

[P(1)(t), P(2)(t), ζ
(2)
1 (t)] (b) for q

(2)
1 = 1

.
= q

(2),∗
1 with the different initial val-

ues: P(2)(0) = 4.55 (inner), P(2)(0) = 4.6 (middle), and P(2)(0) = 4.65 (outer).
The star denotes the equilibrium point. This figure presents the segment of the
trajectories for t ∈ [20; 200].

[in (b)] with different initial values. For these simulations, we
take q(2)

1 = q(2),∗
1 , but use the different initial values, namely,

[P(1)(0),P(2)(0), ζ (1)
2 (0), ζ (2)

1 (0)] = (3.03, 4.55, 0.0049, 0) (inner),

[P(1)(0),P(2)(0), ζ (1)
2 (0), ζ (2)

1 (0)] = (3.03, 4.6, 0.0049, 0) (middle),

and [P(1)(0),P(2)(0), ζ (1)
2 (0), ζ (2)

1 (0)] = (3.03, 4.65, 0.0049, 0)

(outer). The periods of the periodic solutions increase.
Figure 13 shows the segment of the trajectories for t ∈

[20; 200].
In numerical analysis of Hopf bifurcations, it is customary

to add the bifurcation diagram which indicates the magnitude
of the limit cycle that usually accompanies such a bifurca-
tion. Unfortunately, for the example we study here, limit cycles
do not appear on neither side of the bifurcation, and hence,
the bifurcation diagram is trivial. Instead of converging to a
limit cycle, the solutions depart the unstable equilibrium and
after several oscillations they blow up (diverge to infinity) at a
finite time. We have verified this observation using extensive
numerical simulations and the bifurcation analysis software
XPPAUT. The peculiarity of this non-generic behavior, which
occurs for both the linearized and the nonlinear version of the
example, lies in the specific assumptions on the transition rate
functions we made in (10) and (39), in particular, the forms of
k̃(1) and k̃(2). When these forms are replaced by constant func-
tions, i.e., k̃(1) = 1

2
and k̃(2) = 1

2
, one can easily observe stable

limit cycle behavior (not shown).

VI. CONCLUSIONS

Since early 1990s, the dynamics of asset prices has been
studied through a dynamical system approach by consid-
ering a market that consists of a single asset and a group
of investors and utilizing several key aspects that are often
followed in practice.6,14–18,21–23,25–27 Unlike the assumptions of
neoclassical economics that are largely based on the effi-
cient market hypothesis, these studies assume the finiteness
of assets, which ignores the arbitrage argument and also dif-
ferent motivations and strategies in the trading that eliminate
the unique price argument. In each paper, the starting point
is the excess demand equation which is the basic principle of
economics given by Eq. (2).

In this paper, we study asset price dynamics of a market
involving two assets and a group of investors who have com-
mon motivations and strategies for trading. It is assumed that
the stocks are distributed to this single homogeneous group
randomly, and the group follows a trading strategy in which
the buying of an asset depends on the other asset’s price while
the selling does not. Utilizing the basic microeconomics prin-
ciple, we derive a mathematical model which is based on this
trading strategy together with the idea of the finiteness of
assets and preference that is influenced by price momentum
and discount from fundamental value. This model differs from
the former asset flow models that argue a single asset market
system.14–18,25

We have performed the stability analysis of the model
and determined the conditions on parameters that guaran-
tee stability. First, we showed that if the group of investors
focuses on fundamental values of each stock for trading, then
all equilibria are stable provided trading rates depend in a rea-
sonable fashion on value sentiments, in particular, when the
influence of a stock sentiment on its own trading rate is larger
than its influence on the trading rate of the other stock. Sec-
ond, we established conditions for stability for the system in
which the investor group pays attention to both the valua-
tion of stock 1 and the trend of stock 2 when trading them.
The most significant finding here is that, similar to the results
obtained for a single-stock market, stability requires that both
the trend and value sentiments react slowly to price variations
and that the trend sentiment’s dependence on price growth
and decline is small. Then, a Hopf bifurcation analysis is given
for the latter case that leads to the cyclic behavior for such
market systems under the emphasis of the strong momen-
tum effects. Finally, analytical results have been supported and
extended by numerical simulations. Numerical studies show
that an equilibrium that is stable becomes unstable as the
trend based trading increases, and a Hopf bifurcation occurs
as the trend based coefficient of stock 2, q(2)

1 , passes through
a critical value (see, for example, Fig. 8). This result is impor-
tant from the market point of view since the classical finance
always treats the equilibrium point as a single point.1–3,19,34

Advantages of the asset flow models with respect
to the classical finance models of asset price dynamics
include the following: (i) In the classical models prices
behave according to the Brownian motion, so it is not
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possible to analyze market microstructure and investors’
strategies.5,7–9,11–13 However, since the asset flow approach
contains the relatively simple assumption arising in practical
applications, these topics can be studied by using the tools of
differential equations.6,14,16,21,25,27 (ii) The classical models often
argue a unique price since the arbitrage argument is generally
assumed. As a result, they exclude any periodic behavior and
treat any large, rapid deviation in price (often called as “market
crash”) as a rare probabilistic event.2,3,19,24,34 However, stabil-
ity, instability, and cyclic behavior in an asset market can be
analyzed by utilizing the asset flow models.6,14,15,21,23–25,27 From
this perspective, the model introduced here has a potential
to study a variety of issues arising in the financial market,
such as the qualitative price behavior in an asset market16,18,25

and dynamics of the market presenting speculative bubbles
or major crashes, which methods of classical finance fail to
explain.10,13,24,27,28,30 An extension of this model for a market
system involving multiple stocks and heterogeneous investors
groups may further improve the understanding of dynamics of
financial markets. These will be topics for a future study.

ACKNOWLEDGMENTS

We would like to express our gratitude to Dr. Gunduz
Caginalp for his valuable discussion, comments, and sug-
gestions that led to truly significant improvement of this
manuscript. H. Merdan was supported by TUBITAK (The Sci-
entific and Technological Research Council of Turkey).

APPENDIX A: ROUTH-HURWITZ CRITERIA

Theorem 5. Given the polynomial

P(λ) = λn + a1λ
n−1 + · · · + an−1λ + an,

where the coefficients ai are real constants, i = 1, . . . ,n, define
the n Hurwitz matrices using the coefficients ai of the charac-
teristic polynomial as follows:

H1 = (a1), H2 =

(
a1 1
a3 a2

)
, H3 =




a1 1 0
a3 a2 a1
a5 a4 a3




and

Hn =




a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an



,

where aj = 0, if j > n. Then, all of the roots of the polynomial
P(λ) are negative or have a a negative real part if and only if the
determinants of all Hurwitz matrices are positive, i.e.,

detHj > 0, j = 1, 2, . . . ,n.

The Routh-Hurwitz criteria for n = 3, 4 then have the following
conditions:

n = 3 : a1 > 0, a3 > 0, and a1a2 > a3,

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a23 + a21 a4.

APPENDIX B: EQUILIBRIUM POINTS OF SYSTEM (31)

The equilibrium points of system (31) are obtained by
equating the right hand sides of the equations in system to
0. Equating the first two equations to zero yields

P(1)
eq =

(1 + ζ
(1)
2,eq)(3 − ζ

(2)
2,eq)M

4(1 − ζ
(1)
2,eq)N

(1)
, (B1)

P(2)
eq =

(1 + ζ
(2)
2,eq)(3 − ζ

(1)
2,eq)M

4(1 − ζ
(2)
2,eq)N

(2)
. (B2)

From the last two equations in system and Eqs. (B1) and (B2),
we then have the following nonlinear equations:

G(ζ
(1)
2,eq, ζ

(2)
2,eq) = c(1)

2 q(1)
2

(
1 −

M(1 + ζ
(1)
2,eq)(3 − ζ

(2)
2,eq)

4N(1)P(1)
a (1 − ζ

(1)
2,eq)

)
− c(1)

2 ζ
(1)
2,eq,

H(ζ
(1)
2,eq, ζ

(2)
2,eq) = c(2)

2 q(2)
2

(
1 − M

(1 + ζ
(2)
2,eq)(3 − ζ

(1)
2,eq)

4N(2)P(2)
a (1 − ζ

(2)
2,eq)

)
− c(2)

2 ζ
(2)
2,eq.

In Sec. V, to find the equilibrium points of system 31, numer-
ically we first fixed all parameters (c(1)

2 , c(2)
2 , q(1)

2 , q(2)
2 , M, N(1),

N(2), P(1)
a , P(2)

a ), and then by using “fsolve” function in MATLAB,
we find the root of the following system:

{
G(ζ

(1)
2,eq, ζ

(2)
2,eq) = 0,

H(ζ
(1)
2,eq, ζ

(2)
2,eq) = 0.

(B3)

It is also possible to find the root by using Newton’s method.

APPENDIX C: THE DISTRIBUTION OF WEALTH

Notice that for each asset, we have

1

P(i)

dP(i)

dt
=

k(i)M

k̃(i)N(i)P(i)
− 1

[see Eqs. (8) and (9) with Fi(x) = x − 1] so that in equilibrium

P(i) =
k(i)M

k̃(i)N(i)
.

The fraction of assets in cash is then

WC(k(1), k(2), k̃(1), k̃(2)) :=
M

M + N(1)P(1) + N(2)P(2)

=
M

M +
k(1)

k̃(1)
M +

k(2)

k̃(2)
M

=
1

1 +
k(1)

k̃(1)
+

k(2)

k̃(2)

.
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Similarly, the fractions of the total wealth in stock 1 and stock 2
are

W1(k
(1), k(2), k̃(1), k̃(2)) :=

k(1)

k̃(1)

1 +
k(1)

k̃(1)
+

k(2)

k̃(2)

,

W2(k
(1), k(2), k̃(1), k̃(2)) :=

k(2)

k̃(2)

1 +
k(1)

k̃(1)
+

k(2)

k̃(2)

.

APPENDIX D: THE ROOTS OF THE FOURTH DEGREE

POLYNOMIALS

The following theorem was proved by Asada and
Yoshida.35

Theorem 6. (i) The polynomial equation

δ(λ) = λ4 + b1λ
3 + b2λ

2 + b3λ + b4 = 0 (D1)

has a pair of pure imaginary roots and two roots with non-zero
real parts if and only if either of the following set of conditions
(A) or (B) is satisfied:

(A) b1b3 > 0, b4 6= 0, and φ ≡ b1b2b3 − b21 b4 − b23 = 0.
(B) b1 = 0, b3 = 0, and b4 < 0.

(ii) The polynomial equation (D1) has a pair of pure imagi-
nary roots and two roots with negative real parts if and only if
the following set of conditions (C) is satisfied:

(C) b1 > 0, b3 > 0, b4 > 0, and φ ≡ b1b2b3 − b21 b4 − b23 = 0.
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