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Abstract. We consider a circulant-tridiagonal matrix and compute its deter-
minant by using generating function method. Then we explicitly determine
its spectrum. Finally we present applications of our results for trigonometric
factorizations of the generalized Lucas sequences.

1. Introduction

Tridiagonal matrices have been used in many different fields, especially in ap-
plicative fields such as numerical analysis (e.g., orthogonal polynomials), engineer-
ing, telecommunication system analysis, system identification, signal processing
(e.g., speech decoding, deconvolution), special functions, partial differential equa-
tions and naturally linear algebra (see [1, 3, 4, 12, 16, 17]). Some authors consider
a general tridiagonal matrix of finite order and then compute its LU factorizations,
determinant and inverse (see [2, 5, 8, 13]).
A tridiagonal Toeplitz matrix of order n has the form:

An =


a b 0
c a b

c a
. . .

. . . b
0 c a

 ,
where a, b and c’s are nonzero complex numbers.
A tridiagonal 2-Toeplitz matrix has the form:

Tn =



a1 b1 0 0 0 · · ·
c1 a2 b2 0 0 · · ·
0 c2 a1 b1 0 · · ·
0 0 c1 a2 b2 · · ·
0 0 0 c2 a1 · · ·
...

...
...

...
...

. . .


,

where a, b and c’s are nonzero complex numbers.
Let a1, a2, b1 and b2 be real numbers. The period two second order linear recur-

rence system is defined to be the sequence f0 = 1, f1 = a1, and

f2n = a2f2n−1 + b1f2n−2 and f2n+1 = a1f2n + b2f2n−1
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for n ≥ 1. Let D = a1a2 + b1 + b2 and D2 − 4b1b2 6= 0.
Gover [6] and Marcellán and Petronilho [15] showed that the eigenvalues of ma-

trix T2n+1 are a1 and

a1 + a2
2

±

√(
a1 − a2

2

)2
+ b1c1 + b2c2 + 2

√
b1b2c1c2 cos

kπ

n+ 1

for 1 ≤ k ≤ n.
They also gave a closed equation for the eigenvalues of T2n : They are the solu-

tions of the following quadratic equations

(λ− a1) (λ− a2)−
[
b1c1 + b2c2 +

√
b1b2c1c2znk

]
= 0, k = 1, 2, . . . , n,

where znk, k = 1, 2, . . . , n, are the zeros of the polynomial Rn (z) defined by

Rn+1 (x) = xRn (x)−Rn−1 (x) , n ≥ 1

with initials R0 (x) = 1, R1 (x) = x+ β where β2 = b2c2/b1c1.
Meanwhile, a matrix Cn is called a circulant matrix if it has the form

Cn =


a1 a2 a3 an−1 an
an a1 a2 an−2 an−1
an−1 an a1 an−3 an−2

a3 a4 a5 a1 a2
a2 a3 a4 an a1

 .

Circulant matrices are a special type of Toeplitz matrix and have many interest-
ing properties. Circulant matrices have been used in many areas such as physics,
differential equations and digital image processing. Also circulant and skew circu-
lant matrices have become an important tool in networks engineering.
Define generalized Fibonacci and Lucas sequences by the recursion for n > 1

Un = PUn−1 −QUn−2 and Vn = PVn−1 −QVn−2,
with the initials U0 = 0, U1 = 1, and, V0 = 2, V1 = P, resp. When P = 1 and
Q = −1, Un = Fn (nth Fibonacci number) and Vn = Ln (nth Lucas number) .
Recently some authors have studied various interesting combinatorial matrices

defined by terms of certain sequences. We could refer to the works [10, 14, 11,
18] for details about combinatorial matrix examples: In [9], the authors consider
skew circulant type matrices with any continuous Fibonacci numbers. Then they
discuss the invertibility of the skew circulant type matrices and present explicit
determinants and inverse matrices of them.
In this paper, we consider a circulant-tridiagonal matrix and then compute its

determinant by using generating function method. Then we explicitly determine its
all eigenvalues. We show that determinant of the matrix satisfies a period second
order recurrence system. We give applications for trigonometric factorizations of
the Lucas sequences.

2. The main results

We define a tridiagonal matrix Hn = [hij ] of order n with h11 = a, hi+1,i =
hi,i+1 = b for odd i, hi,i+1 = hi+1,i = a for even i and hnn = a if n is even and
hnn = b if n is odd.
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Then the matrix H2n takes the form

H2n =



a b
b 0 a

a 0 b

b
. . .

. . .
. . . 0 b

b a


.

We define a period two second order linear recurrence system {hn} given by
h0 = 0, h1 = a+ b, and the recursions

h2n = (a− b)h2n−1 − abh2n−2,
h2n+1 = (−a+ b)h2n − abh2n−1

for n ≥ 1.
We give relationships between the period two second order linear recurrence

system {hn} and the determinant of Hn. Then we determine the eigenvalues of
matrix Hn.
By expanding the determinant of Hn with respect to the first row, we have the

following result without proof.

Lemma 1. For n > 1,

detH2n = (−1)
n+1 (

a2n − b2n
)
and detH2n+1 = (−1)

n (
a2n+1 + b2n+1

)
.

Let
H (x) =

∑
n≥0

hnx
n.

Also let
H1 (x) =

∑
n≥0

h2n+1x
2n+1 and H2 (x) =

∑
n≥0

h2nx
2n.

By these equations, we get the equation system

H2 (x) = (a− b)xH1 (x)− abx2H2 (x) ,

H1 (x)− (a+ b)x = (−a+ b)xH2 (x)− abx2H1 (x) .

By Cramer solution of the system, we obtain

H1 (x) =
(a+ b) abx3 + (a+ b)x

1 + (a2 + b2)x2 + a2b2x4

and

H2 (x) =

(
a2 − b2

)
x2

1 + (a2 + b2)x2 + a2b2x4
.

Thus we get

H (x) = H1 (x) +H2 (x) =
(b+ a)x+

(
a2 − b2

)
x2 +

(
a2b+ ab2

)
x3

1 + (a2 + b2)x2 + a2b2x4
.

Here note that

1 +
(
a2 + b2

)
x2 + a2b2x4 =

(
1− α2x2

) (
1− β2x2

)
= (1− αx) (1 + αx) (1− βx) (1 + βx) ,

where α = ia, β = ib and i =
√
−1.
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By partial fraction decomposition, we find A1, A2, B1 and B2 such that

H (x) =
∑
n≥0

hnx
n =

A1
(1− αx)

+
A2

(1 + αx)
+

B1
(1− βx)

+
B2

(1 + βx)
.

Solving the equation above, we get the coeffi cients have the forms:

A1 = − (1 + i)

2
, A2 = −1− i

2
, B1 =

1− i
2

and B2 =
1 + i

2
.

Therefore

hn =
1

2
(− (1 + i)αn − (1− i) (−α)

n
+ (1− i)βn + (1 + i) (−β)

n
) .

Especially we have that

h2n+1 = (−1)
n (
a2n+1 + b2n+1

)
and h2n = (−1)

n+1 (
a2n − b2n

)
.

By the results above, we have the following result:

Corollary 1. For n > 1,
detHn = hn.

If we choose a and b as the roots of the characteristic equation of the general
Lucas sequences, x2 − Px+Q = 0, then we have

h2n+1 = (−1)
n
V2n+1 and h2n = (−1)

n+1
U2n
√

∆,

where ∆ = P 2 − 4Q.

Lemma 2. For n > 1, detHn = 0 if and only if{
a = ±b or a2 + b2 = 2ab cos 2kπn for 1 ≤ k ≤ n−2

2 if n is even,
a+ b = 2

√
ab cos (2k−1)π2n for 1 ≤ k ≤ n if n is odd.

Proof. Since hn = detHn and by our result mentioned before, hn = detHn = 0 if
and only if

1

2
(− (1 + i)αn − (1− i) (−α)

n
+ (1− i)βn + (1 + i) (−β)

n
) = 0.

Thus
(1 + i)αn + (1− i) (−1)

n
αn = (1− i)βn + (1 + i) (−1)

n
βn

or
αn

βn
=

(1− i) + (1 + i) (−1)
n

(1 + i) + (1− i) (−1)
n .

For even n such that n = 2m, we find the all solution of the equation

α2m

β2m
=

(1− i) + (1 + i)

(1 + i) + (1− i) = 1,

which, by α = ia and β = ib, satisfies

a2m = b2m

or
a2m − b2m = 0.

From (pp. 34, formula 1.396.2, [7]), we recall the known result
m−1∏
k=1

(
x2 + 1− 2x cos

kπ

m

)
=
x2m − 1

x2 − 1
.
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By taking x = a/b, we get

(
a2 − b2

)m−1∏
k=1

(
a2 + b2 − 2ab cos

kπ

m

)
= a2m − b2m.

Thus a2m − b2m = 0 if and only if

a = ±b or a2 + b2 = 2ab cos
kπ

m

for some 1 ≤ k ≤ m− 1 where n = 2m.

For odd n such that n = 2m+ 1, detHn = 0 if and only if

α2m+1

β2m+1
= −1

or
α2m+1 + β2m+1 = 0,

which, by α = ia and β = ib, is equivalent to

a2m+1 + b2m+1 = 0.

By the product form of Chebyshev polynomials of the first kind, we have that

am + bm =

m∏
k=1

(
(a+ b)− 2

√
ab cos

(2k − 1)π

2m

)
and so

a2m+1 + b2m+1 =

2m+1∏
k=1

(
(a+ b)− 2

√
ab cos

(2k − 1)π

2 (2m+ 1)

)
.

Finally a2m+1+b2m+1 = 0 if and only if a+b = 2
√
ab cos (2k−1)π

2(2m+1) for 1 ≤ k ≤ 2m+1.

Thus the claim is proven. �

Now we can determine eigenvalues of the matrix Hn. For this, we define a new
period second order recurrence system {gn} by the recursion

g2n = (a− b− x) g2n−1 − (ab) g2n−2,

g2n+1 = (−a+ b− x) g2n − (ab) g2n−1

with g0 = 0 and g1 = a+ b− x for n > 0.
On the other hand, by straightforward computations gives us the characteristic

equation of matrix Hn as

det (H2n − xI2n) = g2n

and
det (H2n+1 − xI2n+1) = g2n+1,

where In is the identity matrix of order n.
Combining them, we determine the eigenvalues of matrix Hn :

Theorem 1. The eigenvalues of H2n are

a± b and ±
√
a2 + b2 − 2ab cos

kπ

n
, 1 ≤ k ≤ n− 1,
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and the eigenvalues of H2n+1 are

a+ b and ±
√

(a2 + b2)− 2ab cos
(2k − 1)π

2n+ 1
, 1 ≤ k ≤ n.

3. Two Applications

Now we will give two applications of our results on trigonometric factorizations
of the second order recurrences {Un} and {Vn} . If we choose the entries of the
matrix Hn as a =

(
P +

√
P 2 − 4Q

)
/2 and b =

(
P −

√
P 2 − 4Q

)
/2, then we will

obtain the following results :

V2n+1 = V1

n∏
k=1

(
V2 − 2Q cos

2k − 1

2n+ 1
π

)
and

U2n = U2

n−1∏
k=1

(
V2 − 2Q cos

kπ

n

)
.

Especially when P = 1 and Q = −1, then we get

L2n+1 =

n∏
k=1

(
3 + 2 cos

2k − 1

2n+ 1
π

)
and F2n =

n−1∏
k=1

(
3 + 2 cos

kπ

n

)
.
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