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Abstract. We introduce an asymmetric matrix defined by q-integers. Explicit
formulæ are derived for its LU -decomposition, the inverse matrices L−1 and U−1

and its inverse. The asymmetric variants of the Filbert and Lilbert matrices
come out as consequences of our results for a special value of q. The approach
consists of guessing the relevant quantities and proving them later by traditional
means.

1. Introduction

In classical q-analysis, the q-analogue of a nonnegative integer is defined by

[n]q =
1− qn

1− q
=

n−1∑
k=0

qk. (1)

From the definition, it is easily seen that

lim
q→1

[n]q = n.

The q-Pochhammer symbol, also known as q-shifted factorial, is defined as

(x; q)n = (1− x)(1− xq) . . . (1− xqn−1),
with (x; q)0 = 1. Especially, when x = q, it is called q-factorial. (For more detail
we refer to [1]).

Define the generalized Fibonacci sequence {Un} and generalized Lucas sequence
{Vn} by

Un = pUn−1 + Un−2 and Vn = pVn−1 + Vn−2

for n > 1, with initial values U0 = 0, U1 = 1, and V0 = 2, V1 = p, respectively.
In particular, when p = 1, the sequences {Un} and {Vn} are reduced to the

Fibonacci sequence {Fn} and the Lucas sequence {Ln}, respectively.
The Binet formulæ are

Un =
αn − βn

α− β
= αn−1

1− qn

1− q
(2)

and
Vn = αn + βn = αn(1 + qn), (3)
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where α, β =
(
p∓
√

∆
)
/2 with q = β/α = −α2 and ∆ = p2+4, so that α = iq−1/2.

The RHS of (2) and (3) gives us the q-forms of the generalized Fibonacci and Lucas
sequences.

The Hilbert matrix H = [Hij] is defined by the entries

Hij =
1

i+ j − 1
.

As an analogue of the Hilbert matrix, Richardson [7] defined and studied the
Filbert matrix F = [Fij] with entries

Fij =
1

Fi+j−1
.

After the Filbert matrix, several generalizations and analogues of it have been
investigated and studied by several authors. For the readers convenience, we briefly
summarize some of these:

• In [3], Kılıç and Prodinger studied a generalization of the Filbert matrix
by defining the matrix

[
1

Fi+j+r

]
, where r ≥ −1 is an integer parameter.

• After this, Prodinger [6] defined a new generalization of the generalized
Filbert matrix by introducing 3 additional parameters by taking its entries

as xiyj

Fλ(i+j)+r
, where r ≥ −1 and λ > 0 are integers.

• In another paper [4], Kılıç and Prodinger introduced the matrix G by

Gij =
1

Fλ(i+j)+rFλ(i+j+1)+r . . . Fλ(i+j+k−1)+r
,

where r ≥ −1, k ≥ 0 and λ > 0 are integer parameters.
• Kılıç and Prodinger [5] gave four variants of the Filbert matrix, by defining

the matrices P , T , Y and Z with entries

Pij =
1

Fλi+µj+r
, Tij =

Fλi+µj+r
Fλi+µj+s

, Yij =
1

Lλi+µj+r
and Zij =

Lλi+µj+r
Lλi+µj+s

,

respectively, where s, r, λ and µ are integer parameters such that s 6= r,
r, s ≥ −1 and λ, µ > 0.
• More recently, Kılıç and Arıkan [2] studied the nonlinear generalization of

the Filbert matrix with indices in geometric progression with entries

1

Uλ(i+r)k+µ(j+s)m+c

,

where Un is the nth generalized Fibonacci number and λ, µ, k and m
are positive integers, r, s and c are any integers such that λ (i+ r)k +
µ (j + s)m + c > 0 for all positive integers i and j. They also gave its
Lilbert analogue.
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In the works summarized above, the authors derived explicit formulæ for the
LU -decomposition, their inverses, and the Cholesky factorization. They proved
the claimed results by considering the q-forms of the related quantities, and then
using the celebrated q-Zeilberger algorithm and/or some algebraic manipulations.

In this paper, we introduce a new matrix A = [Aij]i,j≥0 defined by

Aij =
1− xqλi−µj

1− xqλi+µj
,

where λ and µ are positive integers and x is a real number such that x 6= q−λi−µj

for all i, j ≥ 0.
We will derive explicit formulæ for the LU-decompositions and the inverse of the

matrix A in the following section. Afterwards, we will provide proofs of the these
formulæ in Section 3. It is worthwhile to note that, although all the sum identities
we need to prove are q-hypergeometric summations, the q-analogue of Zeilberger’s
algorithm does not work for general parameters λ and µ (however, it computes
the specialized sums for fixed numerical values of λ and µ). In the last section,
as applications, we will give some particular results related with the generalized
Fibonacci and Lucas numbers as variants of Filbert and Lilbert matrices.

Throughout the paper, the size of the matrices does not really matter and one
can think of an infinite matrix A and restrict it whenever necessary to the first N
rows resp. columns and write AN .

2. Main Results

In this section, we will list the LU -decomposition of the matrix A and the
L−1, U−1 matrices and the inverse matrix A−1. In the following section, we will
provide the proofs of these results.

Theorem 1. For i, j ≥ 0,

Lij =
(xqλj+µ; qµ)j(q

λ(i−j+1); qλ)j
(xqλi+µ; qµ)j(qλ; qλ)j

,

and

Uij =


1− xq−µj

1− xqµj
if i = 0,

q−µj+(λ+µ)(i2)xi(1 + qµj)
(qµ(j−i+1); qµ)i(q

λ; qλ)i
(xqµj; qλ)i+1(xqλi+µ; qµ)i−1

if i > 0.

As a consequence, one can easily compute the determinant of A, since it is
simply evaluated as the product of the diagonal entries of the matrix U .

Theorem 2. For i, j ≥ 0,

L−1ij = (−1)i+jqλ(
i−j
2 ) (xqλj+µ; qµ)i−1(q

λ(i−j+1); qλ)j
(xqλi+µ; qµ)i−1(qλ; qλ)j

,
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and

U−1ij =



1 if i=j=0

q−λ(
j
2)(−1)j+1(xqλj+µ; qµ)j

xj(qλ; qλ)j

×
j∑
t=1

qµ((
t+1
2 )+t−tj)(−1)t(1− xq−µt)(xqµt; qλ)j

(1− xqµt)(1− q2µt)(qµj; qµ)j−t(qµ; qµ)t−1
if j ≥ 1 and i = 0

(−1)i+j
q−λ(

j
2)+µ((

i+1
2 )+i−ij)

xj(1− q2µi)
(xqµi; qλ)j(xq

λj+µ; qµ)j
(qλ; qλ)j(qµ; qµ)j−i(qµ; qµ)i−1

if j ≥ i ≥ 1,

0 otherwise.

For the inverse matrix A−1N of order N we have the following result.

Theorem 3. For 1 ≤ i < N and 0 ≤ j < N ,

A−1ij =
(−1)i+j

xN−1
qλ(

j
2)+µ(

i+1
2 )−(N−2)(λj+µi)

(1− xqµi+λj)(1− q2µi)

× (xqλj+µ; qµ)N−1(xq
µi; qλ)N

(qµ; qµ)N−i−1(qλ; qλ)N−j−1(qλ; qλ)j(qµ; qµ)i−1

and for 0 ≤ j < N ,

A−10j = [j = 0] + (−1)j+1qλ(
j
2)−λ(N−2)j x

N−1(xqλj+µ; qµ)N−1
(qλ; qλ)N−j−1(qλ; qλ)j

×
N∑
t=1

1− xq−µt

1− xqµt
(−1)tqµ(

t+1
2 )−µ(N−2)t

1− q2µt
(xqµt; qλ)N

(1− xqµt+λj)(qµ; qµ)N−t−1(qµ; qµ)t−1
,

where [P ] is the Iversion notation, which is 1 when P is true, and 0 otherwise.

3. Proofs

Define the following four sums:

S1(K) =

min(i,j)∑
d=K

q(λ+µ)(
d
2)xd(1− xqd(λ+µ))(qλ(i−d+1); qλ)d(q

µ(j−d+1); qµ)d−1
(xqλi+µ; qµ)d(xqµj; qλ)d+1

,

S2(K) =
K∑
d=j

(−1)dqλ(
d−j
2 )(1− xqd(λ+µ))(xqλj+µ; qµ)d−1(q

λ(i−d)+λ; qλ)d
(xqλi+µ; qµ)d(qλ; qλ)d−j

,

S3(K) =
K∑
d=i

(−1)dqµ(
d
2)−µid(1− xqd(λ+µ))(xqµi; qλ)d(q

µ(j−d)+µ; qµ)d
(xqµj; qλ)d+1(qµ; qµ)d−i

,
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and

S4(K) =
K∑

d=max(i,j)

q−µid−λdjx−d(1−xqd(λ+µ))(xqµid; qλ)d(xq
λj+µ; qµ)d−1(q

λ(d−j+1); qλ)j
(qµ; qµ)d−i(qλ; qλ)d

.

We provide the following lemmas for later use.

Lemma 4.

S1(K) = xKq(λ+µ)(
K
2 ) (qλ(i−K+1); qλ)K(qµ(j−K+1); qµ)K−1

(1− xqλi+µj)(xqµj; qλ)K(xqλi+µ; qµ)K−1
.

Proof. We will use the backward induction method. Let us denote the summand
term by sd for brevity.

Firstly, assume that i ≥ j so when K = j the claim is obvious. Similarly for the
case j > i, the initial claim is clear.

The backward induction step amounts to show that

S1(K − 1) = S1 (K) + sK−1

= xKq(λ+µ)(
K
2 ) (qλ(i−K+1); qλ)K(qµ(j−K+1); qµ)K−1

(1− xqλi+µj)(xqµj; qλ)K(xqλi+µ; qµ)K−1

+ q(λ+µ)(
K−1

2 )xK−1(1− xq(K−1)(λ+µ))(qλ(i−K+2); qλ)K−1(q
µ(j−K+2); qµ)K−2

(xqλi+µ; qµ)K−1(xqµj; qλ)K

= xK−1q(λ+µ)(
K−1

2 ) (qλ(i−K+2); qλ)K−1(q
µ(j−K+2); qµ)K−2

(1− xqλi+µj)(xqµj; qλ)K(xqλi+µ; qµ)K−1

× (xq(λ+µ)(K−1)(1− qλj−λ(K−1))(1− qµj−µk+µ) + (1− xqλi+µj)(1− xq(K−1)(λ+µ))).
After some simplifications, the expression in the last line can be rewritten as

(1− xqλi+µ+µ(K−2))(1− xqµj+λ(K−1)).
Finally,

S1(K − 1) = xK−1q(λ+µ)(
K−1

2 ) (qλ(i−K+2); qλ)K−1(q
µ(j−K+2); qµ)K−2

(1− xqλi+µj)(xqµj; qλ)K−1(xqλi+µ; qµ)K−2

which completes the proof. �

Lemma 5. For i > j,

S2(K) = (−1)Kqλ(
K−j+1

2 ) (xqλj+µ; qµ)K(qλ(i−K); qλ)K+1

(1− qλ(i−j))(xqλi+µ; qµ)K(qλ; qλ)K−j
.

Proof. This time we will use the usual induction method. Similarly, we denote the
summand term by sd. The initial case K = j is easily verified. So, the induction
step amounts to show that

S2(K + 1) = S2(K) + sK+1.
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Consider

S2(K) + sK+1 = (−1)Kqλ(
K−j+1

2 ) (xqλj+µ; qµ)K(qλ(i−K); qλ)K+1

(1− qλ(i−j))(xqλi+µ; qµ)K(qλ; qλ)K−j

+ (−1)K+1qλ(
K+1−j

2 )(1− xq(K+1)(λ+µ))
(xqλj+µ; qµ)K(qλ(i−K); qλ)K+1

(xqλi+µ; qµ)K+1(qλ; qλ)K+1−j

= (−1)K+1qλ(
K−j+1

2 ) (xqλj+µ; qµ)K(qλ(i−K); qλ)K+1

(1− qλ(i−j))(xqλi+µ; qµ)K+1(qλ; qλ)K+1−j

×
(
(1− xq(K+1)(λ+µ))(1− qλ(i−j))− (1− xqλi+µ(K+1))(1− qλ(K+1−j))

)
= (−1)K+1qλ(

K−j+1
2 ) (xqλj+µ; qµ)K(qλ(i−K); qλ)K+1

(1− qλ(i−j))(xqλi+µ; qµ)K+1(qλ; qλ)K+1−j

× qλ(K−j+1)(1− xqλj+µ(K+1))(1− qλ(i−K)−λ),

which is equal to S2(K + 1), as desired. �

We omit the proofs of the following two lemmas due to the similarities to the
proof of Lemma 5.

Lemma 6. For j > i,

S3(K) = (−1)Kqµ(
K
2 )+µ(K(1−i)−i) (xq

µi; qλ)K+1(q
µ(j−i+1); qµ)i(q

µ(j−K); qµ)K−i
(xqµj; qλ)K+1(qµ; qµ)K−i

.

Lemma 7.

S4(K) = q−µKi−λKjx−K
(xqλj+µ; qµ)K(xqµi; qλ)N

(1− xqµi+λj)(qµ; qµ)K−i(qλ; qλ)K−j
.

Now we can give the proofs of our main results.
For the LU -decomposition of the matrix A, we have to prove that∑

0≤d≤min{i,j}

LidUdj = Aij.

By Lemma 4, we obtain∑
0≤d≤min{i,j}

LidUdj =
1− xq−µj

1− xqµj
+ q−µj(1− q2µj)S1(1)

=
1− xq−µj

1− xqµj
+ q−µj

(1− q2µj)(1− qλi)
(1− xqλi+µj)(1− xqµj)

=
1− xqλi−µj

1− xqλi+µj
,

which completes the proof.
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For L and L−1, it is obvious that liil
−1
ii = 1. For i > j,∑

j≤d≤i

LidL
−1
dj =

(−1)j

(qλ; qλ)j
S2(i),

which equals 0 by Lemma 5. So we conclude∑
j≤d≤i

LidL
−1
dj = [i = j],

as desired.
Before moving on, notice that the matrices U−1 and A−1 can be also written as

follows:

U−1 = BC and A−1N = BNDN ,

where the matrix B is defined by

B00 = 1 and B0j = −1− xq−µj

1− xqµj
for j > 0,

Bij = [i = j] for j ≥ 0 and i ≥ 1

and

C00 = 1 and C0j = 0 for j > 0 and Cij = U−1ij for j ≥ i ≥ 1,

D00 = 1 and D0j = 0 for 0 < j < N, and Dij = A−1ij otherwise.

It is easily seen that the inverse matrix B−1 is given by

B−100 = 1 and B−10j =
1− xq−µj

1− xqµj
for j > 0,

B−1ij = [i = j] for j ≥ 0 and i ≥ 1.

In order to show that U−1U = I, we will show the BCU = I. Consider the
product matrix CU . The first row of this matrix is the same as the first row of
the matrix U . Then for i ≥ 1, obviously CiiUii = 1, so when i 6= j we have∑

i≤d≤j

CidUdj = (−1)iq−µj+
1
2
µi(i+3) 1 + qµj

(1− q2µi)(qµ; qµ)i−1
S3(j) = 0,

which gives CU = B−1; so the claim follows.
Finally, for the inverse matrix A−1N , we use the fact A−1N = U−1N L−1N = BNCNL

−1
N .

The first row of the matrix CNL
−1
N is [j = 0] for 0 ≤ j ≥ N − 1. For i ≥ 1, by

Lemma 7, we obtain∑
max{i,j}≤d≤N−1

CidL
−1
dj =

(−1)i+jqµ(
i+1
2 )+λ(j2)

(1− q2µj)(qλ; qλ)j(qµ; qµ)i−1
S4(N − 1) = A−1ij .

So CNL
−1
N = DN , which completes the proof.
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We have the following useful lemma to easily obtain results for the transpose of
a nonsymmetric matrix. For a given sequence {an}, we define the diagonal matrix
D(ai) = [dij] as

dij =

{
ai for i = j,

0 otherwise.

Lemma 8. Let A be a nonsingular square matrix whose LU-decomposition is
known, where L = [Lij], U = [Uij], respectively. Then we have

AT = L′U ′,

where

L′ij =
Uji
Ujj

and U ′ij = LjiUii.

Proof. Consider

AT = UTLT = UTD
( 1

Uii

)
D(Uii)L

T .

Then L′ = UTD( 1
Uii

) and U ′ = D(Uii)L
T , which completes the proof. �

So by the above lemma, one can easily derive the results for the transposed

matrix AT =
[1− xqλj−µi

1− xqλj+µi
]
i,j≥0

.

4. Applications

In this section, we will give some applications of our main results. For example,
consider the matrix F , defined by

Fij =
Uλi−µj+d
Uλi+µj+d

with positive integers λ, µ and d. By (2), the entries of the matrix F can be
rewritten as

Fij = qµj(−1)µj
1− qλi−µj+d

1− qλi+µj+d
,

where q = β/α. So, for x = qd and q = β/α, we can write

F = AD(qµi(−1)µi),

where D(ai) is the diagonal matrix defined as before. So one can easily derive all
related results for the matrix F from the results of the matrix A.

Note that an interesting feature of the matrix F is that it includes some zero
terms as entries. Especially, when λ = µ = 1, then the entries on the dth super-
diagonal are all zero.
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After some manipulations and converting the factors again to generalized Fi-
bonacci numbers, we find the LU -decomposition of the matrix F and L−1, U−1

and F−1 as follows:

Lij =

(∏j
k=1 Uλj+µk+d

)(∏j
k=1 Uλ(i+1)−λk

)
(∏j

k=1 Uλi+µk+d

)(∏j
k=1 Uλk

) ,

Uij =


U−µj+d
Uµj+d

if i = 0,

(−1)µj+(λ+µ)(i2)+diU2µj

(∏i−1
k=1 Uµj−µk

)(∏i
k=1 Uλk

)
(∏i+1

k=1 Uµj+λ(k−1)+d

)(∏i−1
k=1 Uλi+µk+d

) if i > 0,

L−1ij = (−1)i+j+λ(
i−j
2 )

(∏i−1
k=1 Uλj+µk+d

)(∏j
k=1 Uλ(i+1)−λk

)
(∏i−1

k=1 Uλi+µk+d

)(∏j
k=1 Uλk

) ,

and U−1ij =
1 if i = j = 0,

(−1)i+j+λ(
j
2)+dj+µij+µ(

i
2) 1

U2µi

(∏j
k=1 Uµi+λ(k−1)+d

)(∏j
k=1 Uλj+µk+d

)
(∏j

k=1 Uλk

)(∏j−i
k=1 Uµk

)(∏i−1
k=1 Uµk

) if j ≥ i ≥ 1,

and for j ≥ 1

U−10j =
(−1)j+1+dj+λ(j2)

∏j
k=1 Uλj+µk+d∏j

k=1 Uλk

×
j∑
t=1

(−1)t+µtj+µ(
t
2) U−µt+d
U2µtUµt+d

∏j
k=1 Uµt+λ(k−1)+d(∏j−t

k=1 Uµk

)(∏t−1
k=1 Uµk

) ,
and 0 otherwise.

For the inverse matrix, we have for 1 ≤ i < N and 0 ≤ j < N ,

F−1ij =
(−1)i+j+λ(

j
2)+µ(

i+1
2 )+N(λj+µi)+d(N−1)

U2µi

( i−1∏
k=1

UµN+λj−µk+d

)

×

(∏j
k=1 Uµi+λ(k−1)+d

)(∏N−j−1
k=1 UλN+µi−λk+d

)(∏N−i
k=1 Uλj+µk+d

)
(∏N−i−1

k=1 Uµk

)(∏N−j−1
k=1 Uλk

)(∏j
k=1 Uλk

)(∏i−1
k=1 Uµk

)
and for 0 ≤ j < N ,

F−10j = [j = 0]−
N−1∑
k=1

U−µk+d
Uµk+d

F−1kj .
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Similarly, for the Lucas analogue, we define the matrix L with

Lij =
Vλi−µj+d
Vλi+µj+d

= qµj(−1)µj
1 + qλi−µj+d

1 + qλi+µj+d

with positive integers λ, µ and integer d and q = β/α. By choosing x = −qd in
our main results, we have the following results for the matrix L.

Lij =

(∏j
k=1 Vλj+µk+d

)(∏j
k=1 Uλ(i+1)−λk

)
(∏j

k=1 Vλi+µk+d

)(∏j
k=1 Uλk

) ,

Uij =


V−µj+d
Vµj+d

if i = 0,

∆i(−1)µj+(λ+µ)(i2)+d(i+1)U2µj

(∏i−1
k=1 Uµj−µk

)(∏i
k=1 Uλk

)
(∏i+1

k=1 Vµj+λ(k−1)+d

)(∏i−1
k=1 Vλi+µk+d

) if i > 0,

where ∆ defined as before.

L−1ij = (−1)i+j+λ(
i−j
2 )

(∏i−1
k=1 Vλj+µk+d

)(∏j
k=1 Uλ(i+1)−λk

)
(∏i−1

k=1 Vλi+µk+d

)(∏j
k=1 Uλk

) ,

and U−1ij =
1 if i = j = 0

(−1)i+λ(
j
2)+dj+µij+µ(

i
2)

∆j

1

U2µi

(∏j
k=1 Vµi+λ(k−1)+d

)(∏j
k=1 Vλj+µk+d

)
(∏j

k=1 Uλk

)(∏j−i
k=1 Uµk

)(∏i−1
k=1 Uµk

) if j ≥ i ≥ 1,

and for j ≥ 1

U−10j =
(−1)dj+λ(

j
2)+1

(∏j
k=1 Vλj+µk+d

)
∆j
(∏j

k=1 Uλk

)
×

j∑
t=1

(−1)t+µtj+µ(
t
2) V−µt+d
U2µtVµt+d

(∏j
k=1 Vµt+λ(k−1)+d

)
(∏j−t

k=1 Uµk

)(∏t−1
k=1 Uµk

) ,
and 0 otherwise.
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For the inverse matrix, we have for 1 ≤ i < N and 0 ≤ j < N ,

L−1ij =
(−1)i+j+λ(

j
2)+µ(

i+1
2 )−N(µi+λj)+(d+1)(N−1)

∆N−1U2µi

( i−1∏
k=1

VµN+λj−µk+d

)

×

(∏j
k=1 Vµi+λ(k−1)+d

)(∏N−j−1
k=1 VλN+µi−λk+d

)(∏N−i
k=1 Vλj+µk+d

)
(∏N−i−1

k=1 Uµk

)(∏N−j−1
k=1 Uλk

)(∏j
k=1 Uλk

)(∏i−1
k=1 Uµk

) ,

and for 0 ≤ j < N ,

L−10j = [j = 0]−
N−1∑
k=1

V−µk+d
Vµk+d

L−1kj .

More specially, by choosing x = qd such that d > 0 is an integer and performing
the limit q → 1 in our main results, we obtain the related results for the matrix
H = [Hij]i,j≥0 as a variant of Hilbert matrix with entries

Hij =
λi− µj + d

λi+ µj + d
.

References

[1] Andrews G. E., Askey R., Roy R. Special functions. Cambridge: Cambridge University
Press; 2000.
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[4] Kılıç E., Prodinger H. The generalized q-Pilbert matrix. Math. Slovaca 2014; 64(5): 1083–

1092.
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