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Abstract. In this paper, we consider and compute various inter-
esting families of binomial double sums including products of the
Fibonacci and Lucas numbers. These sums have nice representations
in terms of again the Fibonacci and Lucas numbers.

1. Introduction

For n > 1, the well-known Fibonacci sequence {Fn} is defined by
Fn = Fn−1 + Fn−2

with initial values F0 = 0 and F1 = 1.
For n > 1, the well-known Lucas sequence {Ln} is defined by

Ln = Ln−1 + Ln−2

with initial values L0 = 2 and L1 = 1.
For various properties of these sequences as well as their different gener-

alizations, we refer to [2, 3, 12, 14].
The Binet formulæ are

Fn =
αn − βn

α− β and Ln = αn + βn,

where α and β are
(
1±
√
5
)
/2.

The relationships between negatively and positively subscripted terms
of these sequences are

F−n = (−1)n+1Fn and L−n = (−1)nLn.
For later use, we recall that for any real number x, the floor function bxc

gives the greatest integer less than or equal to x. The ceiling function dxe
gives the least integer greater than or equal to x.
There are many types of summation identities including the binomial or

Fibonomial coeffi cients, the Fibonacci, Lucas, Pell and Pell-Lucas numbers
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(see [1, 10, 11, 13, 15, 16, 17, 19]). Carlitz [1] derive various binomial sums
including one binomial coeffi cient and the Fibonacci numbers.
The authors of [7] compute the sums including one binomial coeffi cient

and products of the Fibonacci or Lucas numbers as well as their alternating
analogues of the forms

n∑
i=0

(
n

i

)
Tk(a+bi)Tk(c+di) and

n∑
i=0

(
n

i

)
(−1)iTk(a+bi)Tk(c+di),

where Tn is either generalized Fibonacci or Lucas sequences.
Kılıç et. al. [4] give general expansion formulæ for the binomial sums

with the powers of Fibonacci or Lucas numbers.
The authors of [6] derive various double binomial sums. For example,

they show that ∑
i,j

(
n− i
j

)(
n− j
i

)
= F2n+2.

Kılıç and Arıkan [5] compute many binomial sums including double sums
and one binomial coeffi cient of the forms∑

0≤i,j≤n

(
i+ j

i− j

)
= F2n+2 and

∑
0≤i,j≤n

(
i

j − i

)
= Fn+3 − 1.

Recently, Kılıç and Taşdemir [9] also consider some special families of
binomial double sums including one binomial coeffi cient and the Fibonacci
numbers of the form ∑

0≤i,j≤n

(
i

j

)
Fri+tj

as well as their alternating analogues∑
0≤i,j≤n

(
i

j

)
(−1)i Fri+tj ,

∑
0≤i,j≤n

(
i

j

)
(−1)j Fri+tj ,

∑
0≤i,j≤n

(
i

j

)
(−1)i+j Fri+tj

for some integers r and t.
More recently, Taşdemir and Toska [18] compute the binomial double

sums including the Lucas numbers as well as their alternating analogues.
For example, they show that

∑
0≤i,j≤n

(
i

j

)
L4ti+j =

1

L2t+1

{
L(2t+1)nL(2t+1)(n+1) if n is even,
5F(2t+1)nF(2t+1)(n+1) if n is odd.

In this study, we consider various binomial double sums families whose
coeffi cients will be chosen as products of the Fibonacci or Lucas numbers
with indices in linear combination of the summation indices. These sums
will be again expressed via certain linear combinations of terms Fn and
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Ln. Furthermore, we compute some kinds of alternating analogues of these
sums whose signs are of the forms (−1)i+j and (−1)j+r .

2. Binomial Double Sums with Products of Fibonacci and
Lucas Numbers

We start with an auxiliary lemma from [8] before giving the results.

Lemma 1. For any real numbers x and y such that x(1 + y) 6= 1.∑
0≤i,j≤k

(
i

j

)
xiyj =

(x+ xy)
k+1 − 1

x+ xy − 1 .

For later use, we define

Gn :=

{
Ln if n is even,
Fn if n is odd,

and

Hn :=

{
Fn if n is even,
Ln if n is odd.

Now we are ready to give our main results.

Theorem 1. For any integer r,
(1) ∑

0≤i,j≤n

(
i

j

)
Fi+j+rFi+j−r = (−1)r+1F 2r +

1

2
5bn2 cH3n

(2) ∑
0≤i,j≤n

(
i

j

)
Fi+j+rLi+j−r = −1 + (−1)rF2r +

1

2
5dn2 eG3n

(3) ∑
0≤i,j≤n

(
i

j

)
Li+j+rLi+j−r = (−1)rL2r +

1

2
5bn2 c+1H3n

(4) ∑
0≤i,j≤n

(
i

j

)
Fi−j+rFi−j−r = −1 + (−1)r+1F 2r + 5b

n
2 cGn−1

(5) ∑
0≤i,j≤n

(
i

j

)
Fi−j+rLi−j−r = 1 + (−1)rF2r + 5d

n
2 eHn−1
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(6) ∑
0≤i,j≤n

(
i

j

)
Li−j+rLi−j−r = −1 + 5(−1)rF 2r + 5b

n
2 c+1Gn−1

(7) ∑
0≤i,j≤n

(
i

j

)
F 2i−j−r = −F 2r+1 + 5b

n
2 cGn−2r−1

(8) ∑
0≤i,j≤n

(
i

j

)
F2(i−j−r) = F2(r+1) + 5

dn2 eHn−2r−1

(9) ∑
0≤i,j≤n

(
i

j

)
L2i−j−r = −L2r+1 + 5b

n
2 c+1Gn−2r−1

(10)∑
0≤i,j≤n

(
i

j

)
(−1)i+jFi+j+rFi−j+r = Fr−1Fr+1 + (−1)r+15b

n
2 cGn−1

(11)∑
0≤i,j≤n

(
i

j

)
(−1)i+jFi+j+rLi−j+r = Fr−1Lr+1 + (−1)r5d

n
2 eHn−1

(12)∑
0≤i,j≤n

(
i

j

)
(−1)i+jLi+j+rFi−j+r = Lr−1Fr+1 + (−1)r+15d

n
2 eHn−1

(13)∑
0≤i,j≤n

(
i

j

)
(−1)i+jLi+j+rLi−j+r = Lr−1Lr+1 + (−1)r5b

n
2 c+1Gn−1

(14)∑
0≤i,j≤n

(
i

j

)
(−1)i+jFi+j+rFi−j−r = (−1)rF 2r−1 + (−1)r+15b

n
2 cGn+2r−1

(15)∑
0≤i,j≤n

(
i

j

)
(−1)i+jFi+j+rLi−j−r = (−1)r+1F2(r−1) + (−1)r5d

n
2 eHn+2r−1
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(16)∑
0≤i,j≤n

(
i

j

)
(−1)i+jLi+j+rFi−j−r = (−1)rF2(r−1) + (−1)r+15d

n
2 eHn+2r−1

(17)∑
0≤i,j≤n

(
i

j

)
(−1)i+jLi+j+rLi−j−r = (−1)r+1L2r−1 + (−1)r5b

n
2 c+1Gn+2r−1

(18) ∑
0≤i,j≤n

(
i

j

)
Fj+rFj−r = −1 + (−1)r+1F 2r + 5b

n
2 cGn−1

(19) ∑
0≤i,j≤n

(
i

j

)
Fj+rLj−r = 1 + (−1)rF2r + 5d

n
2 eHn−1

(20) ∑
0≤i,j≤n

(
i

j

)
Lj+rLj−r = −1 + 5(−1)rF 2r + 5b

n
2 c+1Gn−1

(21) ∑
0≤i,j≤n

(
i

j

)
F 2j−r = −F 2r+1 + 5b

n
2 cGn−2r−1

(22) ∑
0≤i,j≤n

(
i

j

)
F2(j−r) = F2(r+1) + 5

dn2 eHn−2r−1

(23) ∑
0≤i,j≤n

(
i

j

)
L2j−r = −L2r+1 + 5b

n
2 c+1Gn−2r−1

(24) ∑
0≤i,j≤n

(
i

j

)
F2i−j+rF2i−j−r = (−1)r+1F 2r +

1

2
5bn2 cH3n

(25) ∑
0≤i,j≤n

(
i

j

)
F2i−j+rL2i−j−r = −1 + (−1)rF2r +

1

2
5dn2 eG3n
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(26) ∑
0≤i,j≤n

(
i

j

)
L2i−j+rL2i−j−r = (−1)rL2r +

1

2
5bn2 c+1H3n

(27)∑
0≤i,j≤n

(
i

j

)
(−1)j−rF2i−j−rF2i+j−r = (−1)rFr−1Fr+1 − 5b

n
2 cGn−1

(28)∑
0≤i,j≤n

(
i

j

)
(−1)j−rF2i−j−rL2i+j−r = (−1)r+1Fr−1Lr+1 − 5d

n
2 eHn−1

(29)∑
0≤i,j≤n

(
i

j

)
(−1)j−rL2i−j−rF2i+j−r = (−1)r+1Lr−1Fr+1 + 5d

n
2 eHn−1

(30)∑
0≤i,j≤n

(
i

j

)
(−1)j−rL2i−j−rL2i+j−r = (−1)rLr−1Lr+1 + 5b

n
2 c+1Gn−1

(31) ∑
0≤i,j≤n

(
i

j

)
(−1)j−rF2i−j+rF2i+j−r = F 2r+1 − 5b

n
2 cGn−2r−1

(32)∑
0≤i,j≤n

(
i

j

)
(−1)j−rF2i−j+rL2i+j−r = −F2(r+1) − 5d

n
2 eHn−2r−1

(33) ∑
0≤i,j≤n

(
i

j

)
(−1)j−rL2i−j+rF2i+j−r = F2(r+1) + 5

dn2 eHn−2r−1

(34)∑
0≤i,j≤n

(
i

j

)
(−1)j−rL2i−j+rL2i+j−r = −L2r+1 + 5b

n
2 c+1Gn−2r−1

Proof. As showcases, we only prove the first and eighth identities. The
others could be similarly proven. We start with the first one. By the Binet
formula, we write∑
0≤i,j≤n

(
i

j

)
Fi+j+rFi+j−r =

1

(α− β)2
∑

0≤i,j≤n

(
i

j

)
(αi+j+r−βi+j+r)(αi+j−r−βi+j−r),



BINOMIAL DOUBLE SUMS 7

which, by α−β =
√
5 and αβ = −1 and after some rearrangements, equals

1

5

∑
0≤i,j≤n

(
i

j

)[
α2i+2j + β2i+2j + (−1)i+j+r+1(α2r + β2r)

]

=
1

5

 ∑
0≤i,j≤n

(
i

j

)(
α2i+2j + β2i+2j

)
+ (−1)r+1

∑
0≤i,j≤n

(
i

j

)
(−1)i+j

(
α2r + β2r

)
=
1

5

 ∑
0≤i,j≤n

(
i

j

)
(α2)i(α2)j +

∑
0≤i,j≤n

(
i

j

)
(β2)i(β2)j + (−1)r+1

(
α2r + β2r

) ∑
0≤i,j≤n

(
i

j

)
(−1)i(−1)j


which, by Lemma 1, equals

1

5

((
α2 + α4

)n+1 − 1
α2 + α4 − 1 +

(
β2 + β4

)n+1 − 1
β2 + β4 − 1

+ (−1)r+1(α2r + β2r) (−1 + 1)
n+1 − 1

−1 + 1− 1

)

=
1

5

((
α2 + α4

)n+1 − 1
α2 + α4 − 1 +

(
β2 + β4

)n+1 − 1
β2 + β4 − 1

+ (−1)r+1(α2r + β2r)
)
.

From [19], we have that L2n − 2(−1)n = 5F 2n and since α2 + α4 = α3
√
5,

β2 + β4 = −β3
√
5, the last expression equals

1

5

[(
α3
√
5
)n+1 − 1

α3
√
5− 1

+

(
−β3
√
5
)n+1 − 1

−β3
√
5− 1

+ (−1)r+1(5F 2r + 2(−1)r)
]

which, since α3 = (
√
5− 2)−1 and β3 = −(

√
5 + 2)−1, equals

1

5

(
5
n+1
2 α3n+3 − 1
2α3

+
(−1)n+15n+12 β3n+3 − 1

2β3

)
+ (−1)r+1F 2r −

2

5

=
1

10

(
5
n+1
2

[
α3n − (−1)nβ3n

]
+ α3 + β3

)
+ (−1)r+1F 2r −

2

5

=
1

2
5
n−1
2

[
α3n − (−1)nβ3n

]
+ (−1)r+1F 2r

In order to complete the proof, now we examine on the latest expression
according to the parity of n. First, if n is even, then

1

2
5
n
2 F3n + (−1)r+1F 2r

= (−1)r+1F 2r +
1

2
5bn2 cF3n.



8 EMRAH KILIÇ AND FUNDA TAŞDEMİR

And if n is odd, then

1

2
5
n−1
2 L3n + (−1)r+1F 2r

= (−1)r+1F 2r +
1

2
5bn2 cL3n.

Thus the claim follows.
Now we prove the eighth identity. Consider

∑
0≤i,j≤n

(
i

j

)
F2(i−j−r) =

1

α− β

α−2r ∑
0≤i,j≤n

(
i

j

)
α2i−2j − β−2r

∑
0≤i,j≤n

(
i

j

)
β2i−2j


=

1

α− β

α−2r ∑
0≤i,j≤n

(
i

j

)
(α2)i(α−2)j − β−2r

∑
0≤i,j≤n

(
i

j

)
(β2)i(β−2)j

 ,
which, by Lemma 1, and since α+ α−1 =

√
5 and β + β−1 = −

√
5, equals

1

α− β

[
α−2r

(
α2 + 1

)n+1 − 1
α2 + 1− 1 − β−2r

(
β2 + 1

)n+1 − 1
β2 + 1− 1

]

=
1

α− β

[
α−2r

(
α
√
5
)n+1 − 1
α2

− β−2r
(
−β
√
5
)n+1 − 1
β2

]

=
1

α− β

(
α−2r

5
n+1
2 αn+1 − 1

α2
+ β−2r

(−1)n5n+12 βn+1 + 1

β2

)

=
1

α− β

(
α−2r[5

n+1
2 αn−1 − β2] + β−2r[(−1)n5

n+1
2 βn−1 + α2]

)
= 5

n
2 αn−2r−1 + (−1)n5n2 βn−2r−1 + −α

−2r−2 + β−2r−2

α− β
= 5

n
2

(
αn−2r−1 + (−1)nβn−2r−1

)
+ F2(r+1).

Here we consider the latest statement to complete the proof. If n is even,
then it equals

5
n
2 Ln−2r−1 + F2(r+1),

as expected. And if n is odd, then it equals

5
n+1
2 Fn−2r−1 + F2(r+1),

as claimed. Thus the proof is complete. �

As some special cases, we note the followings from our main result with
r = 0.
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Corollary 1. ∑
0≤i,j≤n

(
i

j

)
F 2i+j =

1

2
5bn2 cH3n,

∑
0≤i,j≤n

(
i

j

)
F 2i−j = −1 + 5b

n
2 cGn−1,

∑
0≤i,j≤n

(
i

j

)
F2(i−j) = 1 + 5

dn2 eHn−1,

∑
0≤i,j≤n

(
i

j

)
(−1)i+jFi+jLi−j = 1 + 5d

n
2 eHn−1,

∑
0≤i,j≤n

(
i

j

)
L2j = −1 + 5b

n
2 c+1Gn−1

∑
0≤i,j≤n

(
i

j

)
(−1)jF2i−jL2i+j = −1− 5d

n
2 eHn−1
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