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      value due to errors in construction 

calc  = Calculated value of the relevant quantity, which is different from the  
      true value due to errors 

cert  = The value of the relevant quantity after certification test 

d  = Deterministic design 

design  = The design value of the relevant quantity 

spec  = Specified value of the relevant qunatity 

target  = Target value of the relevant quantity 

true  = The true value of the relevant quantity 

worst  = The worst value of the relevant quantity 

W  = Wing 

T  = Tail 

 

Subscripts 

ave  = Average value of the relevant quantity 

ini  = Initial value of the relevant quantity 

upd  = Updated value of the relevant quantity 
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U  = Upper limit of the relevant quantity 

L  = Lower limit of the relevant quantity 
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Aircraft structural safety is achieved by using different safety measures such as 

safety and knockdown factors, tests and redundancy. Safety factors or knockdown factors 

can be either explicit (e.g., load safety factor of 1.5) or implicit (e.g., conservative design 

decisions). Safety measures protect against uncertainties in loading, material and 

geometry properties along with uncertainties in structural modeling and analysis. The two 

main objectives of this dissertation are: (i) Analyzing and comparing the effectiveness of 

structural safety measures and their interaction. (ii) Allocating the resources for reducing 

uncertainties, instead of living with the uncertainties and allocating the resources for 

heavier structures for the given uncertainties. 

Certification tests are found to be most effective when error is large and variability 

is small. Certification testing is more effective for improving safety than increased safety 

factors, but it cannot compete with even a small reduction in errors. Variability reduction 

is even more effective than error reduction for our examples.  
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The effects of structural element tests on reducing uncertainty and the optimal 

choice of additional knockdown factors are explored. We find that instead of using 

implicit knockdown factors based on worst-case scenarios (current practice), using test-

dependent explicit knockdown factors may lead weight savings. Surprisingly, we find 

that a more conservative knockdown factor should be used if the failure stresses 

measured in tests exceeds predicted failure stresses in order to reduce the variability in 

knockdown factors generated by variability in material properties. 

Finally, we perform probabilistic optimization of a wing and tail system under 

limited statistical data for the stress distribution and show that the ratio of the 

probabilities of failure of the probabilistic design and deterministic design is not sensitive 

to errors in statistical data. We find that the deviation of the probabilistic design and 

deterministic design is a small perturbation, which can be achieved by a small 

redistribution of knockdown factors.  
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CHAPTER 1 
INTRODUCTION 

Motivation 

Traditionally, the design of aerospace structures relies on a deterministic design 

(code-based design) philosophy, in which safety factors (both explicit and implicit), 

conservative material properties, redundancy and certification testing are used to design 

against uncertainties. An example of explicit safety factor is the load safety factor of 1.5 

(FAR 25-303), while the conservative decisions employed while updating the failure 

stress allowables based on structural element tests are examples for implicit safety 

factors. In the past few years, however, there has been growing interest in applying 

probabilistic methods to design of aerospace structures (e.g., Lincoln 1980, Wirsching 

1992, Aerospace Information Report of SAE 1997, Long and Narciso 1999) to design 

against uncertainties by effectively modeling them.  

Even though probabilistic design is a more efficient way of improving structural 

safety than deterministic design, many engineers are skeptical of probability of failure 

calculations of structural designs for the following reasons. First, data on statistical 

variability in material properties, geometry and loading distributions are not always 

available in full (e.g., joint distributions), and it has been shown that insufficient 

information may lead to large errors in probability calculations (e.g., Ben-Haim and 

Elishakoff 1990, Neal et al. 1992). Second, the magnitude of errors in calculating loads 

and predicting structural response is not known precisely, and there is no consensus on 

how to model these errors in a probabilistic setting. As a result of these concerns, it is 
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possible that transition to probability based design will be gradual. An important step in 

this transition is to understand the way safety is built into aircraft structures now, via 

deterministic design practices. 

One step taken in the transition to probabilistic design is in the definition of 

conservative material properties (A-basis or B-basis material property values depending 

on the failure path in the structure) by the Federal Aviation Administration (FAA) 

regulation (FAR 25.613). A-basis material property is one in which 99 percent of the 

material property distribution is better than the design value with a 95 percent level of 

confidence, and B-basis material property is one in which 90 percent of the material 

property distribution is better than the design value with a 95 percent level of confidence. 

The use of conservative material properties is intended to protect against variability in 

material properties. 

In deterministic design the safety of a structure is achieved through safety factors. 

Even though some safety factors are explicitly specified, others are implicit. Examples of 

explicit safety factors are the load safety factor and material property knock-down values. 

The FAA regulations require a load safety factor equal to 1.5 for aircraft structures (FAR 

25-303). The load safety factor compensates for uncertainties such as uncertainty in 

loading and errors in load calculations, structural stress analysis, accumulated damage, 

variations in material properties due to manufacturing defects and imperfections, and 

variations in fabrication and inspection standards. Safety factors are generally developed 

from empirically based design guidelines established from years of structural testing of 

aluminum structures. Muller and Schmid (1978) review the historical evolution of the 

load safety factor of 1.5 in the United States. Similarly, the use of A-basis or B-basis 
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material properties leads to a knock-down factor from the average values of the material 

properties measured in the tests. Note that these knock-down factors depend on the 

number of tests, because they compensate for both variability in material properties and 

uncertainty due to a finite number of tests.  

As noted earlier, an important step in transition to probabilistic design is to analyze 

the probabilistic impact of the safety measures used in deterministic design. This 

probabilistic analysis requires quantification of uncertainties encountered in design, 

manufacturing and actual service conditions of the aircraft structures. 

A good analysis of different sources of uncertainty in engineering modeling and 

simulations is provided by Oberkampf et al. (2000, 2002). These papers also supply good 

literature reviews on uncertainty quantification and divide the uncertainty into three 

types: variability, uncertainty, and error. In this distinction, variability refers to aleatory 

uncertainty (inherent randomness), uncertainty refers to epistemic uncertainty (due to 

lack of knowledge), and error is defined as a recognizable deficiency in any phase or 

activity of modeling and simulation that is not due to lack of knowledge.  

To simplify the treatment of uncertainty control, in this dissertation we combine the 

unrecognized (epistemic) and recognized error in the classification of Oberkampf et al. 

and name it error. That is, we use a simple classification that divides the uncertainty in 

the failure of a structural member into two types: errors and variability. Errors reflect 

inaccurate modeling of physical phenomena, errors in structural analysis, errors in load 

calculations, or deliberate use of materials and tooling in construction that are different 

from those specified by the designer. Errors affect all the copies of the structural 

components made and are therefore fleet-level uncertainties. Variability, on the other 
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hand, reflects the departure of material properties, geometry parameters or loading of an 

individual component from the fleet-average values and hence are individual 

uncertainties. 

Modeling and quantification of variability are much easier compared to that of 

error. Improvements in tooling and construction or application of tight quality control 

techniques can reduce variability. Quantification of variability control can be easily done 

by statistical analysis of records taken throughout process of quality control. However, 

quantification of errors is not as easy, because errors are largely not known before a 

structure is built. So, errors can only be quantified after the structure has been built. 

Errors can be controlled by improving accuracy of load and stress calculations, by using 

more sophisticated analysis and failure prediction techniques or by testing of structural 

components.  

Testing of aircraft structural components is performed in a building block type of 

approach starting with material characterization tests, followed by testing of structural 

elements and including a final certification test. Testing of structures is discussed in detail 

in the next chapter. 

The comparison of deterministic design and probabilistic design can be performed 

in many views. First of all, input and output variables of deterministic design are all 

deterministic values, while input and output variables of probabilistic design are random 

(along with some deterministic variables, of course). Here, on the other hand, we 

compare probabilistic design and deterministic design in terms of use of safety factors. In 

deterministic design uniform safety factors are used; that is, the same safety factor is used 

for all components of a system. However, probabilistic design allows using variable 
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safety factors through allowing risk and reliability allocation between different 

components. That is, instead of using the same safety factor for all components, 

probabilistic design allows to use higher factors for components or failure modes that can 

be controlled with low weight expenditure (Yang, 1989). This means the failure modes 

with small scatter and lightweight components. In addition, probabilistic design allows a 

designer to trade off uncertainty control for lower safety factors. That is, by reducing 

uncertainty, the designer can avoid using high safety factors in the design and thereby can 

reduce the weight of the structural system. This design paradigm allows the designer to 

allocate risk and reliability between different components in a rational way to achieve a 

safer design for a fixed weight compared to the deterministic design. 

Objectives 

There are two main objectives of this dissertation. The first is to analyze and 

compare the effectiveness of safety measure that improve structural safety such as safety 

factors (explicit or implicit), structural tests, redundancy and uncertainty reduction 

mechanisms (e.g., improved structural analysis and failure prediction, manufacturing 

quality control). The second objective is to explore the advantage of uncertainty 

reduction mechanisms (e.g., improved structural analysis and failure prediction, tighter 

manufacturing quality control) versus safety factors. That is, we consider the possibility 

of allocating the resources for reducing uncertainties, instead of living with the 

uncertainties and allocating the resources for designing the aircraft structures for the 

given uncertainties. 

We aim to analyze the effectiveness of safety measures taken in deterministic 

design methodology and investigate the interaction and effectiveness of these safety 

measures with one another and also with uncertainties. In particular, the effectiveness of 
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uncertainty reduction mechanisms is analyzed and compared. The uncertainty reduction 

mechanisms considered in this dissertation are reduction of errors by improving the 

accuracy of structural analysis and failure prediction (analytically or through tests), and 

reduction of variability in failure stress as a result of tighter quality control. 

We explore the optimal choice of additional company safety factors used on top of 

the FAA regulation safety factors by using probabilistic design, which provides a rational 

way in the analysis. Additional company safety factors we consider are the conservative 

decisions of aircraft companies while updating the allowable stresses based on the results 

of structural element tests. 

We perform probabilistic design optimization for the case of limited statistical data 

on stress distribution and show that when the probabilistic design is achieved by taking 

the deterministic design as a starting point, the ratio of probabilities of failure of the 

probabilistic design and deterministic design is not sensitive to errors due to limited 

statistical data, which would lead to substantial errors in the probabilistic design if the 

probabilistic design starts from scratch. In addition, we propose a probabilistic design 

methodology in which the probability of failure calculation is confined only to stress 

limits, thereby eliminating the necessity for assessment of stress distribution that usually 

requires computationally expensive finite element analyses. 

Methodology 

Probability of failure calculation of structures can be performed by using either 

analytical techniques or simulation techniques. Analytical methods are more accurate but 

for complex systems they may not be practical. Simulation techniques include direct 

Monte Carlo simulation (MCS) as well as many variance-reduction methods including 
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stratified sampling, importance sampling, and adaptive importance sampling (Ayyub and 

McCuen 1995).  

In probabilistic design of structures, the use of inverse reliability measures helps a 

designer to have an easy estimate of the change in structural weight from the values of 

probabilistic performance measure and its target value as well as computational 

advantages (Ramu et al. 2004). Amongst those measures we use probabilistic sufficiency 

factor (PSF) developed by Qu and Haftka (2003).  

Here we consider a simplified design problem for illustration purposes, so that the 

reliability analysis can be performed by analytical means. The effect of testing then can 

be analyzed by using Bayesian approach. The Bayesian approach has special importance 

in engineering design where the available information is limited and it is often necessary 

to make subjective decisions. Bayesian updating is used to obtain the updated (or 

posterior) distribution of a random variable upon combining the initial (or prior) 

distribution with new information about the random variable. The detailed theory and 

procedures for applying Bayesian methods in reliability and risk analysis can be found in 

texts by Morgan (1968) and Martz and Waller (1982). 

Outline 

A literature survey on the historical evolution of probabilistic design, comparison 

of deterministic design and probabilistic design practices, uncertainty control measures 

and testing of aircraft structures is given in Chapter 2. 

Chapter 3 investigates the effects of error, variability, safety measures and tests on 

structural safety of aircraft. A simple example of point stress design and a simple error 

model are used to illustrate the effects of several safety measures taken in aircraft design: 

safety factors, conservative material properties, and certification tests. This chapter serves 
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as the opening chapter; therefore the analysis and the number of safety measures are kept 

at a minimum level. For instance, only certification tests are included in the analysis. The 

effects of coupon tests and structural element tests are delayed until Chapter 7. The 

simplifying assumptions in Chapter 3 allow us to perform analytical calculations for 

probability of failure and Bayesian updating. The interactions of the safety measures with 

one another and also with errors and variabilities are investigated. For instance, we find 

that the certification tests are most effective when errors are large and variabilities are 

small. We also find that as safety measures combine to reduce the probability of failure, 

our confidence in the probability of failure estimates is reduced. 

Chapter 4 extends the analysis presented in Chapter 3 by delivering the following 

refinements. The effectiveness of safety measures is compared with one another in terms 

of safety improvement and weight savings. Structural redundancy, a safety measure 

which is omitted in Chapter 3, is also included in the analysis. The simple error model 

used in Chapter 3 is replaced with a more detailed error model in which we consider 

individual error components in load calculation, stress calculation, material properties 

and geometry parameters including the effect of damage. The analysis in Chapter 4 

enables us to discover that while certification testing is more effective than increased 

safety factors for improving safety, it cannot compete with even a small reduction in 

errors. We also find that variability reduction is even more effective than error reduction. 

Realizing in Chapter 4 how powerful uncertainty reduction mechanisms are, we 

analyze the tradeoffs of uncertainty reduction mechanisms, structural weight and 

structural safety in Chapters 5 and 6. The effect of error reduction (due to improved 

failure prediction model) on increasing the allowable flight loads of existing aircraft 
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structures is investigated in Chapter 5. The analysis is performed for a sandwich panel 

because the improved model is developed by Prof. Bhavani Sankar (co-chair of the 

advisory committee for this dissertation) so that we had good access to the details of 

experiments and computations. We find that the improved modeling can increase the 

allowable load of a sandwich panel on average by about 13 percent without changing the 

safety level of the panel when deterministic design principles is followed. The use of 

probabilistic design is found to double the load increase. 

Similarly to improvements of accuracy in failure predictions, the improvements in 

the accuracy of structural analysis also lead to error reduction. The improved structural 

analysis through taking the chemical shrinkage of composite laminates is considered as 

the error reduction mechanism in Chapter 6. The work by Qu et al. (2003), which 

explored the effect of variability reduction through quality control, is extended in Chapter 

6 to investigate the tradeoffs of error and variability reduction mechanisms for reducing 

the weight of the composite laminates at cryogenic temperatures. Tradeoff plots of 

uncertainty reduction mechanisms, probability of failure and weight are generated that 

enable a designer to choose the optimal uncertainty control mechanism combination to 

reach a target probability of failure with minimum cost. 

Chapter 7 finalizes the analysis of effects of explicit and implicit knockdown 

factors and uncertainty control mechanisms. In particular, Chapter 7 analyzes the optimal 

choice of the knockdown factors. These knockdown factors refer to conservative 

decisions of aircraft companies in choice of material properties and while updating the 

allowable stresses based on the results of structural element tests. We find that instead of 

using implicit knockdown factors based on worst-case scenarios (current practice), using 
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test-dependent explicit knockdown factors may lead weight savings. Surprisingly, we 

find that a more conservative knockdown factor should be used if the failure stresses 

measured in tests exceeds predicted failure stresses in order to reduce the variability in 

knockdown factors generated by variability in material properties. In addition, the effects 

of coupon tests, structural element tests and uncertainty control mechanisms (such as 

error reduction by improved structural modeling or improved failure prediction, 

variability reduction by tighter quality control) on the choice of company safety factors 

are investigated. Using a simple cost function in terms of structural weight, we show that 

decisions can be made whether to invest resources on coupon tests, structural element 

tests, uncertainty reduction mechanisms or extra structural weight.  

The analyses presented in Chapters 3-7 show how probabilistic design can be 

exploited to improve aircraft structural safety by allowing a rational analysis of 

interactions of safety and knockdown factors and uncertainty reduction mechanisms. 

There are, however, two main reasons for reluctance of engineers for pursuing the 

probabilistic design: the sensitivity of probabilistic design to limited statistical data and 

computational expense associated to the probabilistic design. Besides, Chapters 3-7 

include analyses of a single aircraft structural component, so in Chapter 8 the 

probabilistic design of an aircraft structural system is presented. We show in Chapter 8, 

by use of probabilistic design of a representative wing and tail system, that errors due to 

limited statistical data affect the probability of failure of both probabilistic and 

deterministic designs, but the ratio of these probabilities is quite insensitive to even very 

large errors. In addition, to alleviate the problem of computational expense, a 

probabilistic design optimization method is proposed in which the probability of failure 
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calculation is limited to failure stresses to dispense with most of the expensive structural 

response calculations (typically done via finite element analysis). The proposed 

optimization methodology is illustrated with the design of the wing and tail system. 

Chapter 8 reveals that the difference between probabilistic design and deterministic 

design is a small perturbation, which can be achieved by choosing the additional 

knockdown factors through probabilistic design, instead of choosing them based on 

experience. In addition, the proposed approximate method is found to lead to similar re-

distribution of material between structural components and similar system probability of 

failure. 

Finally, the dissertation culminates with Chapter 9, where the concluding remarks 

are listed. 
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CHAPTER 2 
LITERATURE REVIEW 

The literature review in this chapter first compares deterministic and probabilistic 

design methodologies. Then, we review structural safety analysis, followed by 

probability of failure estimation techniques. Next, reliability-based design optimization is 

reviewed. Then, uncertainty classifications available in the literature are discussed 

followed by our simplified classification based on simplifying the analysis of uncertainty 

reduction measures. Finally, the utilization of structural tests in probabilistic design is 

reviewed. 

Probabilistic vs. Deterministic Design 

Aircraft structural design still relies on the Federal Aviation Administration (FAA) 

deterministic design code. In deterministic design, conservative material properties are 

used and safety factors are introduced to protect against uncertainties. The FAA 

regulations (FAR-25.613) state that conservative material properties are characterized as 

A-basis or B-basis values. Detailed information on these values was provided in Chapter 

8 of Volume 1 of Composite Materials Handbook (2002). The safety factor compensates 

for uncertainties such as uncertainty in loading and errors in load calculations, errors in 

structural stress analysis and accumulated damage, variations in material properties due 

to manufacturing defects and imperfections, and variations in fabrication and inspection 

standards. Safety factors are generally developed from empirically based design 

guidelines established from years of structural testing and flight experience. In transport 

aircraft design, the FAA regulations state the use of safety factor of 1.5 (FAR-25.303). 
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Muller and Schmid (1978) reviewed the historical evolution of the 1.5 factor of safety in 

the United States. 

On the other hand, probabilistic design methodology deals with uncertainties by the 

use of statistical characterization of uncertainties and attempts to provide a desired 

reliability in the design. The uncertainties of individual design parameters and loads are 

modeled by appropriate probability density functions. The credibility of this approach 

depends on several factors such as the accuracy of the analytical model used to predict 

the structural response, the accuracy of the data and the probabilistic techniques 

employed. Examples of the use of probabilistic design in aerospace applications include 

the following.  

Pai et al. (1990, 1991 and 1992) performed probabilistic structural analysis of 

space truss structures for a typical space station. Murthy and Chamis (1995) performed 

probabilistic analysis of composite aircraft structure based on first ply failure using 

FORM*. The probabilistic methodology has shown some success in the design of 

composite structures where parameter uncertainties are relatively well known. For 

example, the IPACS (Integrated Probabilistic Assessment of Composite Structures) 

computer code was developed at NASA Glenn Research Center (Chamis and Murthy 

1991). Fadale and Sues (1999) performed reliability-based design optimization of an 

integral airframe structure lap joint. A probabilistic stability analysis for predicting the 

buckling loads of compression loaded composite cylinders was developed at Delft 

University of Technology (Arbocz et al. 2000). 

                                                 
* The FORM method is discussed later in this chapter. 
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Although probabilistic design methodology offers the potential of safer and lighter 

designs than deterministic design, transition from deterministic design to probabilistic 

design is difficult to achieve. Zang et al. (2002) discussed the reasons for this difficulty, 

and some of these reasons are given below. 

• Industry feels comfortable with traditional design methods. 

• Few demonstrations of the benefits of probabilistic design methods are available. 

• Current probabilistic design methods are more complex and computationally 
expensive than deterministic methods. 

• Characterization of structural imperfections and uncertainties necessary to facilitate 
accurate analysis and design of the structure is time-consuming and is highly 
dependent on structural configuration, material system, and manufacturing 
processes. 

• Effective approaches for characterizing model form error are lacking. 

• Researchers and analysts lack training in statistical methods and probabilistic 
assessment. 

Structural Safety Analysis 

In probabilistic design, the safety of a structure is evaluated in terms of its 

probability of failure Pf. The structures are designed such that the probability of failure of 

the structure is kept below a pre-specified level. The term reliability is defined in terms of 

probability of failure such that 

 1 fReliability P= −  (2.1) 

A brief history of development of the methods for probability of failure calculation 

for structures was presented in a report by Wirsching (1992). As Wirsching noted, the 

development of theories goes back some 50 to 60 years.  

The modern era of probabilistic design started with the paper by Fruedenthal 

(1947). Most of the ingredients of structural reliability such as probability theory, 
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statistics, structural analysis and design, quality control existed prior to that time; 

however, Fruedenthal was the first to put them together in a definitive and compressive 

manner. The development of reliability theory progressed in 1950s and 1960s. There are 

three cornerstone papers in 1960’s. The first one is the paper by Cornell (1967), who 

suggested the use of a second moment method and demonstrated that Cornell’s safety 

index could be used to derive set of factors on loads and resistance. However, Cornell’s 

safety index had a problem of invariance in that it was not constant when the problem 

was reformulated in a mechanically equivalent way. Hasofer and Lind (1974) defined a 

generalized safety index which was invariant to mechanical formulation. The third paper 

is the one by Turkstra (1970), who presented structural design as a problem of decision 

making under uncertainty and risk. More recent papers are sophisticated extensions of 

these papers, and some of them are referenced in the following sections. 

Probability of Failure Estimation 

This section reviews the literature on probability of failure estimation. First, 

analytical calculation of probability of failure is discussed, followed by moment-based 

methods and simulation techniques. 

Analytical calculation of probability of failure 

In its most general form, the probability of failure can be expressed as 

 ( )∫ ∫≤
= xxX

x
dfP

G
f

0)(
L  (2.2) 

where ( )G x  is the limit-state function whose negative values corresponds to failure and 

( )fX x  is the joint probability density function for the vector X of random variables. The 

analytical calculation of this expression is challenging due to the following reasons 
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(Melchers 1999). First, the joint probability density function ( )fX x  is not always readily 

obtainable. Second, for the cases when ( )fX x  is obtainable, the integration over the 

failure domain is not easy. The calculation of probability of failure can be made more 

tractable by simplifying (1) the limit-state definition, (2) the integration process, and (3) 

the integrand ( )fX x . 

Moment-based techniques 

When the calculation of limit-state is expensive, moment-based techniques such as 

First Order Reliability Method (FORM) or Second Order Reliability Method (SORM) are 

used (Melchers, 1999). The basic idea behind these techniques is to transform the original 

random variables into a set of uncorrelated standard normal random variables, and then 

approximate the limit-state function linearly (FORM) or quadratically (SORM) about the 

most probable failure point (MPP). The probability of failure of the component is 

estimated in terms of reliability index β  such that 

 ( )β−Φ=fP  (2.3) 

where Φ  is the cumulative distribution function of a standard normal variable. 

The first paper on the use of FORM is probability of failure calculation appears to 

be Hasofer and Lind’s (1974). There exist enormous amount of papers on the use of 

FORM. The pioneer papers include Rackwitz and Fiessler (1978), Hohenbichler and 

Rackwitz (1983), Gollwitzer and Rackwitz (1983).  

FORM is usually accurate for limit state functions that are not highly nonlinear. 

SORM has been proposed to improve the reliability estimation by using a quadratic 

approximation of the limit state surface. Some papers on the use of SORM include 
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Fiessler et al. (1979), Breitung (1984), Der Kiureghian et al. (1987), Hohenbichler et al. 

(1987), Der Kiureghian and De Stefano (1991), Koyluoglu and Nielsen (1994) and Zhao 

and Ono (1999). 

Simulation techniques 

For most problems the number of variables in the problem definition is high, so the 

analytical calculation of the integral in Eq. (2.2) requires challenging multidimensional 

integration. Also the moment based approximations gives inaccurate results for high 

number of random variables (Melchers 1999). Under such conditions, simulation 

techniques such as Monte Carlo simulations (MCS) are used to compute the probability 

of failure. 

In MCS technique, samples of the random variables are generated according to 

their probabilistic distributions and then failure condition is checked. The probability of 

failure Pf can be estimated by 

 
N

N
P f

f =  (2.4) 

where Nf is the number of simulations leading to failure and N is the total number of 

simulations. The statistical accuracy of the probability of failure estimation is commonly 

measured by its coefficient of variation ( ). . . fc o v P  as 
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From Eqs. (2.4) and (2.5) it is seen that a small probability of failure will require a 

very large number of simulations for acceptable accuracy. This usually results in an 

increase in computational cost. When limit-state function calculations are obtained 
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directly from analysis, then computational cost of MCS is not sensitive to the number of 

variables. When surrogate models are used, on the other hand, the computational cost of 

MCS is dependent on the number of variables. To overcome the deficiency of MCS, 

several more efficient alternative sampling methods are introduced. Ayyub and McCuen 

(1995) supplied basic information and good references for these sampling techniques. 

Some useful references taken from Ayyub and McCuen (1995) are the followings: 

Importance sampling (Madsen et al., 1986, Melchers, 1989), stratified sampling (Law 

and Kelton 1982, Schuller et al. 1989), Latin hypercube sampling (Iman and Canover 

1980, Ayyub and Lai 1989), adaptive importance sampling (Busher 1988, 

Karamchandani et al. 1989, Schuller et al. 1989), conditional expectation (Law and 

Kelton 1982, Ayyub and Haldar 1984), antithetic variates (Law and Kelton 1982, Ayyub 

and Haldar 1984).  

In this study, we mainly deal with problems with simple limit-state functions. For 

these simple cases the integrand ( )fX x  can easily be obtained when the random 

variables are statistically independent. The beneficial properties of normal and lognormal 

distributions are utilized for the variables with small coefficients of variations. 

Approximate analytical calculations of probability of failure are checked with Monte 

Carlo simulations to validate the acceptability of assumptions. When limit-state functions 

are complex, Monte Carlo simulations are used to calculate the probability of failure. 

Separable Monte Carlo simulations 

As noted earlier, when estimating very low probabilities, the number of required 

samples for MCS can be high, thus MCS becomes a costly process. In most structural 

problems, the failure condition may be written as response exceeding capacity. When the 
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response and capacity are independent, it may be possible to analyze them separately 

with a moderate sample size, and still be able to estimate very low probabilities of failure. 

This is due to the fact that most failures do not involve extreme values of response or 

capacity but instead moderately high response along with moderately low capacity. 

Therefore, to bypass the requirement of sampling the extreme tail of the limit-state 

function, the variables could be considered independently, by separating the response and 

the capacity, as discussed by Melchers (1999, Chapter 3). A good analysis of efficiency 

and accuracy of separable Monte Carlo simulations can be found in Smarslok et al. 

(2006). 

The common formulation of the structural failure condition is in the form of a 

stress exceeding the material limit. This form, however, does not satisfy the separability 

requirement. For example, the stress depends on variability in material properties as well 

as design area, which reflects errors in the analysis process. In that case, the limit-state 

function can still be re-formulated in a separable form. In this dissertation we re-write the 

limit-state in terms of the required area (depends only on variabilities) and built area 

(depends only on errors) to bring the limit state to separable form (see Chapter 4).  

Response surface approximations 

Response surface approximations (RSA) can be used to obtain a closed-form 

approximation to the limit state function to facilitate reliability analysis. Response surface 

approximations usually fit low-order polynomials to the structural response in terms of 

random variables. The probability of failure can then be calculated inexpensively by 

Monte Carlo simulation or by FORM or SORM using the fitted polynomials. 

Response surface approximations can be applied in different ways. One approach is 

to construct local response surfaces in the MPP region that contributes most to the 
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probability of failure of the structure. Bucher and Bourgund (1990), Rajashekhar and 

Ellingwood (1993), Koch and Kodiyalam (1999), Das and Zheng (2000a, 2000b) and 

Gayton, Bourinet and Lemaire (2003) used local response surfaces. 

Another approach is to construct global response surface over the entire range of 

random variables. The examples include Fox (1994, and 1996), Romero and Bankston 

(1998), Qu et al. (2003), Youn and Choi (2004) and Kale et al. (2005). 

Reliability-Based Design Optimization 

Design optimization under a probability of failure constraint is usually referred as 

reliability-based design optimization (RBDO). The basic structure of an RBDO problem 

is stated as 

 
ettPPts

f

arg..
min

≤
 (2.6) 

where f is the objective function (for most problems it is weight), and P and Ptarget are the 

probabilistic performance function and the target value for it. The probabilistic 

performance function can be probability of failure Pf, reliability index β or an inverse 

reliability measure such as probabilistic sufficiency factor, PSF. 

Double loop (Nested) RBDO 

Conventional RBDO approach is formulated as a double-loop optimization 

problem, where an outer loop performs the design optimization, while an inner loop 

optimization is also used for estimating probability of failure (or another probabilistic 

performance function). The reliability index approach (RIA) is the most straightforward 

approach. In RIA, the probability of failure is usually calculated via FORM, which is an 

iterative process an so computationally expensive and sometimes troubled by 
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convergence problems (Tu et al. 1999). To reduce the computational cost of double loop 

approach, various techniques has been proposed, which can be divided into two 

categories: (i) techniques that improve the efficiency of uncertainty analysis methods, 

such as the methods of fast probability integration (Wu 1994) and two-point adaptive 

nonlinear approximations (Grandhi and Wang 1998); (ii) techniques that modify the 

formulation of probabilistic constraints, for instance, using inverse reliability measures, 

such as the performance measure approach (Tu et al. 1999), probabilistic sufficiency 

factor (Qu and Haftka 2003).  

Inverse reliability measures are based on margin of safety or safety factors, which 

are safety measures in deterministic design. The safety factor is usually defined as the 

ratio of structural resistance (e.g., failure stress) to structural response (e.g., stress). 

Safety factors permit the designer to estimate the change in structural weight to satisfy a 

target safety factor requirement. In probabilistic design, however, the difference between 

the probabilistic performance measure and its target value does not provide the designer 

with an estimate of the required change in structural weight. Inverse safety measures thus 

help the designer to easily estimate the change in structural weight from the values of 

probabilistic performance measure and its target value and the inverse safety measures 

also improve the computational efficiency (Qu and Haftka 2004). A good analysis and 

survey on safety factor and inverse reliability measures was presented by Ramu et al. 

(2004).  

Single loop RBDO 

Single loop formulation avoids nested loops of optimization and reliability 

assessment. Some single loop formulations are based on formulating the probabilistic 

constraints as deterministic constraints by either approximating the Karush-Kuhn-Tucker 
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conditions at the MPP or defining a relationship between probabilistic design and safety 

factors of deterministic design (e.g., Chen et al. 1997, Kuschel and Rackwitz 2000, Wu et 

al. 2001, Qu et al. 2004, Liang et al. 2004). Single loop formulation increases the 

efficiency by allowing the solution to be infeasible before convergence and satisfying the 

probability constraints only at the optimum. There exist also singe loop formulations that 

performs optimization and reliability assessment sequentially (e.g., Royset et al. 2001, 

Du and Chen 2004). Sequential optimization and reliability assessment (SORA) of Du 

and Chen (2004), for instance, decouples the optimization and reliability assessment by 

separating each random design variable into a deterministic component, which is used in 

a deterministic optimization, and a stochastic component, which is used in reliability 

assessment. 

Error and Variability 

Uncertainty Classification 

Over years researchers proposed many different classifications for uncertainty. For 

instance, Melchers (1999) divided uncertainty into seven types: phenomenological 

uncertainty, decision uncertainty, modeling uncertainty, prediction uncertainty, physical 

uncertainty, statistical uncertainty and human error. Haimes et al. (1994) and Hoffman 

and Hammonds (1994) distinguished uncertainty into two types: uncertainty (epistemic 

part) and variability (aleatory part). Epistemic uncertainties arise from lack of knowledge 

about the behavior of a phenomenon. They may be reduced by review of literature, expert 

consultation, close examination of data and further research. Tools such as scoring 

system, expert system and fish-bone diagram can also help in reducing epistemic 

uncertainties. Aleatory uncertainties arise from possible variation and random errors in 
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the values of the parameters and their estimates. They can be reduced by using reliable 

manufacturing tools and quality control measures.  

Oberkampf et al. (2000, 2002) provided a good analysis of different sources of 

uncertainty in engineering modeling and simulations, supply good literature review on 

uncertainty quantification and divide the uncertainty into three types: variability, 

uncertainty and error. The classification provided by Oberkampf et al. is discussed in the 

Motivation section of Chapter 1. 

Reliability Improvement by Error and Variability Reduction 

Before designing a new structure, material properties and loading conditions are 

assessed. The data is collected to constitute the probability distributions of material 

properties and loads. The data on material properties is obtained by performing tests on 

batches of materials and also from the material manufacturer. To reduce the variability in 

material properties quality controls may be applied. Qu et al. (2003) analyzed the effect 

of application of quality controls over material allowables in the design of composite 

laminates for cryogenic environments. They found that employing quality control reduces 

the probability of failure significantly, allowing substantial weight reduction for the same 

level of safety. 

Similarly, before a newly designed structure is put into service, its performance 

under predicted operational conditions is evaluated by collecting data. The data is used to 

validate the initial assumptions being made through the design and manufacturing 

processes to reduce error in those assumptions. This can be accomplished by the use of 

Bayesian statistical methods to modify the assumed probability distributions of error. The 

present author will investigate this issue on following the chapters. 
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After the structure is put into service inspections are performed to detect the 

damage developed in the structure. Hence, the inspections are another form of uncertainty 

reduction. The effect of inspections in the safety of structures was analyzed (among 

others) by Harkness et al. (1994), Provan et al. (1994), Fujimoto et al. (1998), Kale et al. 

(2003) and Acar et al. (2004b). 

Testing and Probabilistic Design 

In probabilistic design, models for predicting uncertainties and performance of 

structures are employed. These models involve idealizations and approximations; hence, 

validation and verification of these models is necessary. The validation is done by testing 

of structures, and verification is done by using more detailed models.  

Historical development of testing of structures was given in the papers by Pugsley 

(1944) and Whittemore (1954). A literature survey of load testing by Hall and Lind 

(1979) presented many uses for load testing in design and safety validation of structures. 

Conventional “design by calculation” relies upon tensile coupon tests to estimate material 

strength (Hall and Tsai, 1989). Coupon testing is a destructive test to measure loads and 

displacements at failure. On the other hand, proof load testing is not a destructive test in 

which the structure is tested at a fixed load to measure resistance level of the structure. 

Proof load testing in a variety of applications was studied by several authors such as 

Barnett and Herman (1965), Shinozuka (1969), Yang (1976), Fujino and Lind (1977), 

Rackwitz and Schurpp (1985) and Herbert and Trilling (2006). 

Jiao and Moan (1990) illustrated a methodology for probability density function 

updating of structural resistance by additional events such as proof loading and non-

destructive inspection by utilizing FORM or SORM methods. Ke (1999) proposed an 

approach that specifically addressed the means to design component tests satisfying 
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reliability requirements and objectives by assuming that the component life distribution 

follows Weibull distribution. Zhang and Mahadevan (2001) developed a methodology 

that utilizes Bayesian updating to integrate testing and analysis for test plan determination 

of a structural components. They considered two kinds of tests: failure probability 

estimation and life estimation tests. Soundappan et al. (2004) presented a method for 

designing targeted analytical and physical tests to validated reliability of structures 

obtained from reliability based designs. They found that the optimum number of tests for 

a component is nearly proportional to the square root of probability of failure. 

Guidelines for testing of composite materials were presented in Volume 1, Chapter 

2 of Composite Materials Handbook (2002). The following are quoted from this source 

(pages 2-1 and 2-2). Analysis alone is generally not considered adequate for 

substantiation of composite structural designs. Instead, the "building-block approach" to 

design development testing is used in concert with analysis. This approach is often 

considered essential to the qualification/certification of composite structures due to the 

sensitivity of composites to out-of-plane loads, the multiplicity of composite failure 

modes and the lack of standard analytical methods. The building-block approach is also 

used to establish environmental compensation values applied to full-scale tests at room-

temperature ambient environment, as it is often impractical to conduct these tests under 

the actual moisture and temperature environment. Lower-level tests justify these 

environmental compensation factors. Similarly, other building-block tests determine 

truncation approaches for fatigue spectra and compensation for fatigue scatter at the full-

scale level. The building-block approach is shown schematically in Figure 2.1. 
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Figure 2-1. Building block approach (Reprinted, with permission, from MIL 17- The 

Composite Materials Handbook, Vol. 1, Chapter 2, copyright ASTM 
International, 100 Barr Harbor Drive, West Conshohocken, PA 19428) 

The approach can be summarized in the following steps: 
1. Generate material basis values and preliminary design allowables. 
2. Based on the design/analysis of the structure, select critical areas for subsequent 

test verification. 
3. Determine the most strength-critical failure mode for each design feature. 
4. Select the test environment that will produce the strength-critical failure mode. 

Special attention should be given to matrix-sensitive failure modes (such as 
compression, out-of-plane shear, and bondlines) and potential "hot-spots" caused 
by out-of-plane loads or stiffness tailored designs. 

5. Design and test a series of test specimens, each one of which simulates a single 
selected failure mode and loading condition, compare to analytical predictions, and 
adjust analysis models or design allowables as necessary. 

6. Design and conduct increasingly more complicated tests that evaluate more 
complicated loading situations with the possibility of failure from several potential 
failure modes. Compare to analytical predictions and adjust analysis models as 
necessary. 

7. Design (including compensation factors) and conduct, as required, full-scale 
component static and fatigue testing for final validation of internal loads and 
structural integrity. Compare to analysis. 
 
As noted earlier, validation is done by testing of structures, and verification is done 

by using more detailed models. Detailed models may reduce the errors in analysis 

models; however errors in the uncertainty models cannot be reduced by this approach. In 
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addition, very detailed models can be computationally prohibitive. Similarly, while 

testing of structures reduces both the errors in response models and uncertainty models, it 

is expensive. Therefore, the testing of structures needs to be performed simultaneously 

with the structural design to reduce cost while still keeping a specified reliability level. 
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CHAPTER 3 
WHY ARE AIRPLANES SO SAFE STRUCTURALLY? EFFECT OF VARIOUS 

SAFETY MEASURES 

This chapter investigates the effects of error, variability, safety measures and tests 

on the structural safety of aircraft. A simple point stress design problem and a simple 

uncertainty classification are used. Since this chapter serves as the opening chapter, the 

level of analysis and the number of safety measures are kept at a minimum level. Safety 

measures considered in this chapter are the load safety factor of 1.5, the use of 

conservative material properties and certification test. Other safety measures such as 

structural redundancy, coupon and structural element tests will be included in the 

following chapters. Interaction of the considered safety measures with one another and 

their effectiveness with respect to uncertainties are also explored.  

The work given in this chapter was also published in Acar et al. (2006a). My 

colleague Dr. Amit Kale’s contribution to this work is acknowledged. 

Introduction 

In the past few years, there has been growing interest in applying probability 

methods to aircraft structural design (e.g., Lincoln 1980, Wirsching 1992, Aerospace 

Information Report of Society of Automotive Engineers 1997, Long and Narciso 1999). 

However, many engineers are skeptical of our ability to calculate the probability of 

failure of structural designs for the following reasons. First, data on statistical variability 

in material properties, geometry and loading distributions are not always available in full 

(e.g., joint distributions), and it has been shown that insufficient information may lead to 
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large errors in probability calculations (e.g., Ben-Haim and Elishakoff 1990, Neal et al. 

1992). Second, the magnitude of errors in calculating loads and predicting structural 

response is not known precisely, and there is no consensus on how to model these errors 

in a probabilistic setting. As a result of these concerns, it is possible that transition to 

probability based design will be gradual. In such circumstances it is important to 

understand the impact of existing design practices on safety. This chapter is a first 

attempt to explore the effects of various safety measures taken during aircraft structural 

design using the deterministic design approach based on FAA regulations.  

The safety measures that we include in this chapter are (i) the use of safety factors, 

(ii) the use of conservative material properties (A-basis), and (iii) the use of final 

certification tests. These safety measures are representative rather than all inclusive. For 

example, the use of A-basis properties is a representative measure for the use of 

conservative material properties. The safety measures (e.g., structural redundancy) are 

discussed in the following chapters. We use A-Basis value rather than B-basis because 

we did not include redundancy in this chapter. FAA suggests that (FAR 25.613) when 

there is a single failure path, A-Basis properties should be employed, but in case of 

multiple failure paths, B-Basis properties are to be used. In next chapter, for instance, we 

include structural redundancy in our analysis, so we use B-basis values in Chapter 4. The 

effect of the three individual safety measures and their combined effect on the probability 

of structural failure of the aircraft are demonstrated. We use Monte Carlo simulations to 

calculate the effect of these safety measures on the probability of failure of a structural 

component. 
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We start with a structural design employing all considered safety measures. The 

effects of variability in geometry, loads, and material properties are readily incorporated 

by the appropriate random variables. However, there is also uncertainty due to various 

errors such as modeling errors in the analysis. These errors are fixed but unknown for a 

given airplane. To simulate these epistemic uncertainties, we transform the error into a 

random variable by considering the design of multiple aircraft models. As a consequence, 

for each model the structure is different. It is as if we pretend that there are hundreds of 

companies (Airbus, Boeing, Bombardier, Embraer, etc.) each designing essentially the 

same airplane, but each having different errors in their structural analysis. This 

assumption is only a device to model lack of knowledge or errors in probabilistic setting. 

However, pretending that the distribution represents a large number of aircraft companies 

helps to motivate the probabilistic setting. 

For each model we simulate certification testing. If the airplane passes the test, then 

an entire fleet of airplanes with the same design is assumed to be built with different 

members of the fleet having different geometry, loads, and material properties based on 

assumed models for variability in these properties. That is, the uncertainty due to 

variability is simulated by considering multiple realizations of the same design, and the 

uncertainty due to errors is simulated by designing different structures to carry the same 

loads. 

Structural Uncertainties 

A good analysis of different sources of uncertainty is provided by Oberkampf et al. 

(2000, 2002). Here we simplify the classification, with a view to the question of how to 

control uncertainty. We propose in Table 3-1 a classification that distinguishes between 

errors (uncertainties that apply equally to the entire fleet of an aircraft model) and 
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variabilities (uncertainties that vary for the individual aircraft). The distinction is 

important because safety measures usually target one or the other. While variabilities are 

random uncertainties that can be readily modeled probabilistically, errors are fixed for a 

given aircraft model (e.g., Boeing 737-400) but they are largely unknown. 

Errors reflect inaccurate modeling of physical phenomena, errors in structural 

analysis, errors in load calculations, or use of materials and tooling in construction that 

are different from those specified by the designer. Systemic errors affect all the copies of 

the structural components made and are therefore fleet-level uncertainties. They can 

reflect differences in analysis, manufacturing and operation of the aircraft from an ideal. 

The ideal aircraft is an aircraft designed assuming that it is possible to perfectly predict 

structural loads and structural failure for a given structure, that there are no biases in the 

average material properties and dimensions of the fleet with respect to design 

specifications, and that there exists an operating environment that on average agrees with 

the design specifications. The other type of uncertainty reflects variability in material 

properties, geometry, or loading between different copies of the same structure and is 

called here individual uncertainty. 

Table 3-1. Uncertainty classification 
Type of 

uncertainty Spread Cause Remedies 

Systemic error 
(modeling errors) 

Entire fleet of 
components designed 

using the model 

Errors in predicting 
structural failure and 
differences between 

properties used in design 
and average fleet 

properties. 

Testing and 
simulation to improve 
math model and the 

solution. 

Variability Individual component 
level 

Variability in tooling, 
manufacturing process, 

and flying environments. 

Improve tooling and 
construction. 

Quality control. 
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Safety Measures 

Aircraft structural design is still done, by and large, using code-based design rather 

than probabilistic approaches. Safety is improved through conservative design practices 

that include use of safety factors and conservative material properties. It is also improved 

by tests of components and certification tests that can reveal inadequacies in analysis or 

construction. In the following we detail some of these safety measures.  

Load Safety Factor: Traditionally all aircraft structures are designed with a load 

safety factor to withstand 1.5 times the limit-load without failure.  

A-Basis Properties: In order to account for uncertainty in material properties, the 

Federal Aviation Administration (FAA) states the use of conservative material properties. 

This is determined by testing a specified number of coupons selected at random from a 

batch of material. The A-basis property is determined by calculating the value of a 

material property exceeded by 99% of the population with 95% confidence.  

Component and Certification Tests: Component tests and certification tests of 

major structural components reduce stress and material uncertainties for given extreme 

loads due to inadequate structural models. These tests are conducted in a building block 

procedure. First, individual coupons are tested, and then a sub assembly is tested 

followed by a full-scale test of the entire structure. Since these tests cannot apply every 

load condition to the structure, they leave uncertainties with respect to some loading 

conditions. It is possible to reduce the probability of failure by performing more tests to 

reduce uncertainty or by extra structural weight to reduce stresses. If certification tests 

were designed together with the structure, it is possible that additional tests would 

become cost effective because they would allow reduced structural weight.  
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We simulate the effect of these three safety measures by assuming the statistical 

distribution of the uncertainties and incorporating them in approximate probability 

calculations and Monte Carlo simulation. For variability the simulation is 

straightforward. However, while systemic errors are uncertain at the time of the design, 

they will not vary for a single structural component on a particular aircraft. Therefore, to 

simulate the uncertainty, we assume that we have a large number of nominally identical 

aircraft being designed (e.g., by Airbus, Boeing, Bombardier, Embraer, etc.), with the 

errors being fixed for each aircraft. This creates a two-level Monte Carlo simulation, with 

different aircraft models being considered at the upper level, and different instances of 

the same aircraft at the lower level.  

To illustrate the procedure we consider point stress design of a small part of an 

aircraft structure. Aircraft structures have more complex failure modes, such as fatigue 

and fracture, which require substantially different treatment and the consideration of the 

effects of inspections (See Kale et al., 2003). However, this simple example serves to 

further our understanding of the interaction between various safety measures. The 

procedure is summarized in Fig. 3-1, which is described in detail in the next section. 

Design of a Generic Component 

Design and Certification Testing 

We assume that we have N different aircraft models, i.e., we have N different 

companies producing a model with errors. We consider a generic component to represent 

the entire aircraft structure. The true stress ( trueσ ) is found from the equation 

 true
P
wt

σ =  (3.1) 
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where P is the applied load on the component of width w and thickness t. In a more 

general situation, Eq. (3.1) may apply to a small element in a more complex component.  

When errors are included in the analysis, the true stress in the component is 

different from the calculated stress. We include the errors by introducing an error factor e 

while computing the stress as  

 (1 )calc trueeσ σ= +  (3.2) 

Positive values of e yield conservative estimates of the true stress and negative 

values yield unconservative stress estimation. The other random variables account for 

variability. Combining Eqs. (3.1) and (3.2), the stress in the component is calculated as 

 (1 )calc
Pe

w t
σ = +  (3.3) 

The design thickness is determined so that the calculated stress in the component is 

equal to material allowable stress for a design load Pd multiplied by a safety factor SF, 

hence the design thickness of the component is calculated from Eq. (3.3) as 

 (1 ) F d
design

design a

S Pt e
w σ

= +   (3.4) 

where the design component width, wdesign, is taken here to be 1.0, and σa is the material 

stress allowable obtained from testing a batch of coupons according to procedures that 

depend on design practices. Here, we assume that A-basis properties are used (see 

Appendix A). During the design process, the only random quantities are σa and e. The 

thickness obtained from Eq. (3.4), step A in Fig. 3-1, is the nominal thickness for a given 

aircraft model. The actual thickness will vary due to individual–level manufacturing 

uncertainties.  
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Figure 3-1. Flowchart for Monte Carlo simulation of component design and failure 

After the component has been designed (that is, thickness is determined from Eq. 

(3.4)), we simulate certification testing for the aircraft. Here we assume that the 

component will not be built with complete fidelity to the design due to variability in 

geometry (width and thickness). The component is then loaded with the design axial 

force of SF times Pd, and the stress in the component is recorded. If this stress exceeds the 

failure stress (itself a random variable, see Table 3-2) then the design is rejected, 

otherwise it is certified for use. That is, the airplane is certified (step B in Fig. 3-1) if the 

following inequality is satisfied 

 0F d
f f

S P
wt

σ σ σ− = − ≤  (3.5) 

and we can build multiple copies of the airplane. We subject the component in each 

airplane to actual random maximum (over a lifetime) service loads (step D in Fig. 3-1) 

and decide whether it fails using Eq. (3.6). 
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 fP C t wσ≥ =  (3.6) 

Here, P is the applied load, and C is the load carrying capacity of the structure in 

terms of the width w, thickness t and failure stress σf. A summary of the distributions for 

the random variables used in design and certification is listed in Table 3-2. 

Table 3-2. Distribution of random variables used for component design and certification 
Variables Distribution Mean Scatter 

Plate width (w) Uniform 1.0 (1%) bounds 
Plate thickness (t) Uniform designt  (3%) bounds 

Failure stress (σf) Lognormal 150.0 8 % coefficient of variation 
Service Load (P) Lognormal 100.0 10 % coefficient of variation 
Error factor (e) Uniform 0.0 10% to 50% 

 
This procedure of design and testing is repeated (steps A-B) for N different aircraft 

models. For each new model, a different random error factor e is picked for the design, 

and different allowable properties are generated from coupon testing (Appendix A). Then 

in the testing, different thicknesses and widths, and different failure stresses are generated 

at random from their distributions. 

Effect of Certification Tests on Distribution of Error Factor e 

One can argue that the way certification tests reduce the probability of failure is by 

changing the distribution of the error factor e. Without certification testing, we assume 

symmetric distribution of this error factor. However, designs based on unconservative 

models are more likely to fail certification, and so the distribution of e becomes 

conservative for structures that pass certification. In order to quantify this effect, we 

calculated the updated distribution of the error factor e. The updated distribution is 

calculated analytically by Bayesian updating by making some approximations, and 

Monte Carlo simulations are conducted to check the validity of those approximations.  
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Bayesian updating is a commonly used technique to obtain updated (or posterior) 

distribution of a random variable upon obtaining new information about the random 

variable. The new information here is that the component has passed the certification test. 

Using Bayes’ Theorem, the updated (posterior) distribution )(θUf  of a random 

variable θ is obtained from the initial (prior) distribution )(θIf  based on new information 

as 

 

∫
∞

∞−

∈

∈
=

θθθ

θθθ

df

ff
I

I
U

)()|Pr(

)()|Pr()(  (3.7) 

where Pr(∈|θ) is the conditional probability of observing the experimental data ∈ given 

that the value of the random variable is θ. 

For our case, the posterior distribution )(ef U of the error factor e is given as 

 Pr( | ) ( )( )
Pr( | ) ( )

I
U

b
I

b

CT e f ef e
CT e f e de

−

=

∫
 (3.8) 

where CT is the event of passing certification, and Pr(CT|e) is the probability of passing 

certification for a given e. Initially, e is assumed to be uniformly distributed. The 

procedure of calculation of Pr(CT|e) is described in Appendix B, where we approximate 

the distribution of the geometrical variables, t and w as lognormal, taking advantage of 

the fact that their coefficient of variation is small compared to that of the failure stress 

(see Table 3-2). 

We illustrate the effect of certification tests for the components designed with A-

Basis material properties. An initial and updated distribution plot of error factor e with 50 

% bound is shown in Fig. 3-2. Monte Carlo simulation with 50,000 aircraft models is also 
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shown. Figure 3-2 shows that the certification tests greatly reduce the probability of 

negative error, hence eliminating most unconservative designs. As seen from the figure, 

the approximate distribution calculated by the analytical approach matches well the 

distribution obtained from Monte Carlo simulations. 

Initial and Updated Distribution of Error Factor e
and

Comparison of Analytical Approx. with Monte Carlo Simulations
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Figure 3-2. Initial and updated probability distribution functions of error factor e. Error 
bound is 50% and Monte Carlo simulation done with sample size of 50,000. 

Probability of Failure Calculation by Analytical Approximation 

The stress analysis represented by Eq. (3.1) is trivial, so that the computational cost 

of Monte Carlo simulation of the probability of failure is not high. However, it is 

desirable to obtain also analytical probabilities that may be used for more complex stress 

analysis and to check the Monte Carlo simulations. 

In order to take advantage of simplifying approximations of the distribution of the 

geometry parameters, it is convenient to perform the probability calculation in two stages, 

corresponding to the inner and outer loops of Fig. 3-1. That is, we first obtain expressions 
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for the probability of failure of a single aircraft model (that is, given e and allowable 

stress). We then calculate the probability of failure over all aircraft models. 

The mean value of the probability of failure over all aircraft models is calculated as 

 ( ) ( )f f design design designP P t f t dt= ∫  (3.9) 

where designt  is the non-deterministic distribution parameter, and ( )designf t  is the 

probability density function of designt . 

It is important to have a measure of variability in this probability from one aircraft 

model to another. The standard deviation of failure probability gives a measure of this 

variability. In addition, it provides information on how accurate is the probability of 

failure obtained from Monte Carlo simulations. The standard deviation can be calculated 

from 

 { }1/ 22
( ) ( )P f design f design designf P t P f t dtσ ⎡ ⎤= −⎣ ⎦∫  (3.10) 

Probability of Failure Calculation by Monte Carlo Simulations 

The inner loop in Fig. 3-1 (steps C-E) represents the simulation of a population of 

M airplanes (hence components) that all have the same design. However, each component 

is different due to variability in geometry, failure stress, and loading (step D). We subject 

the component in each airplane to actual random maximum (over a lifetime) service loads 

(step E) and calculate whether it fails using Eq. (3.6). 

For airplane model that pass certification, we count the number of components 

failed. The failure probability is calculated by dividing the number of failures by the 
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number of airplane models that passed certification, times the number of copies of each 

model. 

The analytical approximation for the probability of failure suffers due to the 

approximations used, while the Monte Carlo simulation is subject to sampling errors, 

especially for low probabilities of failure. Using large samples, though, can reduce the 

latter. Therefore, we compared the two methods for a relatively large sample of 10,000 

aircraft models with 100,000 instances of each model. In addition, the comparison is 

performed for the case where mean material properties (rather than A-basis properties) 

are used for the design, so that the probability of failure is high enough for the Monte 

Carlo simulation to capture it accurately. Table 3-3 shows the results for this case. 

Table 3-3. Comparison of probability of failures for components designed using safety 
factor of 1.5, mean value for allowable stress and error bound of 50% 

Value Analytical 
Approximation 

Monte Carlo
Simulation* 

% 
error 

Average Value of Pf without certification (Pnt) 1.715×10-1 1.726×10-1 0.6 
Standard Deviation of Pnt 3.058×10-1 3.068×10-1 0.3 
Average Value of Pf with certification (Pt) 3.166×10-4 3.071×10-4 3.1 
Standard Deviation of Pt 2.285×10-3 2.322×10-3 1.6 
Average Value of Initial error factor (ei) 0.0000 -0.00024 --- 
Standard Deviation of eI 0.2887 0.2905 0.6 
Average Value of Updated error factor (eup) 0.2468 0.2491 0.9 
Standard Deviation of eup 0.1536 0.1542 0.4 

* N = 10,000 and M = 100,000 is used in the Monte Carlo Simulations 
 
The last column of Table 3-3 shows the percent error of the analytical 

approximation compared to Monte Carlo simulations. It is seen that the analytical 

approximation is in good agreement with the values obtained through Monte Carlo 

simulations. It is remarkable that the standard deviation of the probability of failure is 

almost twice the average value of the probability (the ratio, the coefficient of variation, is 

about 178%) before certification, and about seven times larger after certification. This 
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indicates huge variability in the probability of failure for different aircraft models, and 

this is due to the large error bound, be=50%. With 10,000 different aircraft models (N), 

the standard deviation in the Monte Carlo estimates is about 1%, and the differences 

between the Monte Carlo simulation and the analytical approximation are of that order. 

Effect of Three Safety Measures on Probability of Failure 

We next investigate the effect of other safety measures on failure probability of the 

components using Monte Carlo simulations. We performed the simulation for a range of 

variability in error factor e for 5000 airplane models (N samples in outer loop) and 20,000 

copies of each airplane model (M samples in inner loop). Here, we compare the 

probability of failure of a structure designed with three safety measures (safety factor, 

conservative material property and certification testing) to that of a structure designed 

without safety measures. 

Table 3-4 presents the results when all safety measures are used for different 

bounds on the error. The second column shows the mean and standard deviation of 

design thicknesses generated for components that passed certification. These components 

correspond to the outer loop of Fig. 3-1. The variability in design thickness is due to the 

randomness in the error e and in the stress allowable. The average thickness before 

certification was 1.269, so that the column shows the conservative effect of certification 

testing. When the error bound is 10%, 98.8% of the components pass certification (third 

column in Table 3-4), and the average thickness is increased by only 0.24% due to the 

certification process. On the other hand, when the error bound is 50%, 29% of the 

components do not pass certification, and this raises the average thickness to 1.453. Thus, 

the increase in error bound has two opposite effects. Without certification testing, 

increasing the error bound greatly increases the probability of failure. For example, when 
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the error bound changes from 30% to 50%, the probability of failure without certification 

changes from 0.00091 to 0.0449, or by a factor of 49. On the other hand, with the 

increased average thickness, after certification the probability increases only from 

1.343x10-4 to 1.664x10-4.  

Table 3-4. Probability of failure for different bounds on error e for components designed 
using safety factor of 1.5 and A-basis property for allowable stress. Numbers 
in parenthesis denote the coefficient of variation of the quantity. Average 
design thickness without certification is 1.271. 

Error 
Bound 

be 

Average 
design 

thickness 
after 

certificati
on* 

Certifi
cation 
failure 
rate % 

Probability 
of failure 

after 
certification 

(Pt)×10-4 

Probability of 
failure 
without 

certification 
(Pnt)×10-4 

Probability 
ratio (Pt/Pnt) 

Probabilit
y 

difference 
(Pnt-Pt) 

50% 1.453 
(0.19) 29.3 1.664 (7.86) 449.0 (2.74) 3.706×10-3 4.473×10-2 

40% 1.389 
(0.17) 24.3 1.586 (6.92) 89.77 (3.22) 1.767×10-2 8.818×10-3 

30% 1.329 
(0.15) 16.3 1.343 (5.28) 9.086 (3.46) 1.479×10-1 7.742×10-4 

20% 1.283 
(0.12) 6.2 0.304 (4.81) 0.477 (3.51) 6.377×10-1 1.727×10-5 

10% 1.272 
(0.07) 1.2 0.027 (4.71) 0.029 (4.59) 9.147×10-1 2.490×10-7 

*Average over N=5000 models 
 

The effectiveness of the certification tests can be expressed by two measures of 

probability improvement. The first measure is the ratio of the probability of failure with 

the test, Pt, to the probability of failure without tests, Pnt. The second measure is the 

difference of these probabilities. The ratio is a more useful indicator for low probabilities 

of failure, while the difference is more meaningful for high probabilities of failure. 

However, when Pt is high, the ratio can mislead. That is, an improvement from a 

probability of failure of 0.5 to 0.1 is more substantial than an improvement in probability 

of failure of 0.1 to 0.01, because it “saves” more airplanes. However, the ratio is more 

useful when the probabilities are small, and the difference is not very informative. 
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Table 3-4 shows that certification testing is more important for large error bounds 

e. For these higher values the number of components that did not pass certification is 

higher, thereby reducing the failure probability for those that passed certification. While 

the effect of component tests (building block tests) is not simulated, their main effect is to 

reduce the error magnitude e. This is primarily due to the usefulness of component tests 

in improving analytical models and revealing unmodeled failure modes. With that in 

mind, we note that the failure probability for the 50% error range is 1.7×10-4, and it 

reduces to 2.7×10-6 for the 10% error range-that is, by a factor of 63. 

The actual failure probability of aircraft components is expected to be of the order 

of 10-8 per flight, much lower than the best number in the fourth column of Table 3-4. 

However, the number in Table 3-4 is for a lifetime for a single structural component. 

Assuming about 10,000 flights in the life of a component and 100 independent structural 

components, this 10-5 failure probability for a component will translate to a per flight 

probability of failure of 10-7 per airplane. This factor of 10 discrepancy is exacerbated by 

other failure modes like fatigue that have not been considered. However, other safety 

measures, such as conservative load specifications may account for this discrepancy. 

Table 3-5 shows results when average rather than conservative material properties 

are used. It can be seen from Table 3-5 that the average thickness determined using the 

mean value of allowable stress is lower than that determined using the A-basis value of 

allowable stress (Table 3-4). This is equivalent to adding an additional safety factor over 

an already existing safety factor of 1.5. For the distribution (lognormal with 8% 

coefficient of variation) and number of batch tests (40 tests) considered here, a typical 

value of the safety factor due to A-Basis property is around 1.27. 
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Table 3-5. Probability of failure for different bounds on error e for components designed 
using safety factor of 1.5 and mean value for allowable stress. Numbers in 
parenthesis denote the coefficient of variation of the quantity. Average design 
thickness without certification is 1.000. 

Error 
bound 

be 

Average 
design 

thickness 
after 

certification * 

Certificat
ion 

failure 
rate+ % 

Probability of 
Failure after 
certification 

(Pt)×10-4 

Probability of 
failure 
without 

certification 
(Pnt)×10-4 

Probability 
ratio 

(Pt/Pnt) 

Probability 
difference 

(Pnt-Pt) 

50% 1.243 (0.13) 50.1 3.420 (5.82) 1681 (1.81) 2.035×10-3 1.677×10-1 
40% 1.191 (0.11) 50.1 4.086 (6.78) 969.0 (1.99) 4.217×10-3 9.649×10-2 
30% 1.139 (0.09) 50.8 5.616 (5.45) 376.6 (2.00) 1.495×10-2 3.700×10-2 
20% 1.086 (0.07) 50.7 6.253 (3.19) 92.67 (1.83) 6.748×10-2 8.642×10-3 
10% 1.029 (0.05) 51.0 9.209 (1.70) 19.63 (1.25) 4.690×10-1 1.043×10-3 

*Average over N=5000 models  
+With only 5000 models, the standard deviation in the certification failure rate is about 
0.71%. Thus, all the numbers in this column are about 50% as may be expected when mean 
material properties are used. 

 
Without the A-basis properties, the stress in the certification test is approximately 

equal to the average ultimate service stress, so that about 50% of the components fail 

certification. When the errors are large, this raises substantially the average thickness of 

the components that pass certification, so that for an error bound of 50% the certification 

test is equivalent to a safety factor of 1.243. Large errors produce some super-strong and 

some super-weak components (see Fig. 3-3b). The super-weak components are mostly 

caught by the certification tests, leaving the super-strong components to reduce the 

probability of failure. Another way of looking at this effect is to note that when there are 

no errors, there is no point to the tests. Indeed, it can be seen that the probability of 

failure without certification tests improves with reduced error bound e, but that the 

reduced effect of the certification tests reverses the trend. Thus for this case we obtain the 

counter-intuitive results that larger errors produce safer designs. 

Comparing the first row of Table 3-5 to that of Table 3-3 we see the effect of the 

smaller sample for the Monte Carlo simulations. Table 3-3 was obtained with 10,000 
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models and 100,000 copies per model, while Table 3-5 was obtained with 5000 models, 

and 20,000 copies per model. The difference in the probability of failure after 

certification between the two tables is about 11 percent. However, the two values straddle 

the analytical approximation.  

The effects of building block type of tests that are conducted before certification 

are not included in this study. These tests reduce the errors in analytical models. For 

instance, if there is 50% error in the analytical model the building block type of tests may 

reduce this error to lower values. Hence, the difference between the rows of Table 3-4, 

may be viewed as indicating the benefits of reducing the error by building block tests. 

 
Figure 3-3. Design thickness variation with low and high error bounds. Note that after 

certification testing only the designs above the minimum thickness are built 
and flown. Those on the right have a much higher average design thickness 
than those on the left. 

Table 3-6 shows the effect of not using a safety factor. Although certification tests 

improve the reliability, again in a general trend of high improvement with high error, the 

lack of safety factor of 1.5 limits the improvement. Comparing Tables 3-4 and 3-6 it can 

be seen that the safety factor reduces the probability of failure by two to four orders of 

magnitudes. It is interesting to note that the effect of the error bound on the probability of 
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failure after certification is not monotonic, and this phenomenon is discussed in 

Appendix C. 

Table 3-6. Probability of failure for different bounds on error e for safety factor of 1.0 
and A-basis allowable stress. Numbers in parenthesis denote the c.o.v. of the 
quantity. Average design thickness without certification is 0.847. 

Error 
bound 

be 

Average 
design 

thickness 
after 

certification * 

Certificat
ion 

failure 
rate % 

Failure 
probability 

after 
certification 

(Pt)×10-2 

Failure 
probability 

with no 
certification 

(Pnt)×10-2 

Probability 
ratio (Pt/Pnt) 

Probability 
difference 

(Pnt-Pt) 

50% 0.969 (0.19) 29.4 6.978 (2.12) 29.49 (1.31) 2.366×10-1 2.251×10-1 
40% 0.929 (0.17) 25.0 7.543 (1.98) 24.56 (1.38) 3.071×10-1 1.702×10-1 
30% 0.886 (0.15) 16.6 8.923 (1.73) 17.11 (1.43) 5.216×10-1 8.184×10-2 
20% 0.855 (0.11) 5.7 8.171 (1.40) 9.665 (1.34) 8.454×10-1 1.494×10-2 
10% 0.847 (0.06) 1.3 4.879 (0.97) 4.996 (0.97) 9.767×10-1 1.163×10-3 

*Average over N=5000 models 
 
Table 3-7, shows results when the only safety measure is certification testing. 

Certification tests can reduce the probability of failure of components by 38%, the 

highest improvement corresponds to the highest error. As can be expected, without 

certification tests and safety measures, the probability of failure is near 50%. Tables 3-4 

through 3-7 illustrate the probability of failure for a fixed 8 % coefficient of variation in 

failure stress. The general conclusion that can be drawn from these results is that the error 

bound e is one of the main parameters affecting the efficacy of certification tests to 

improve reliability of components. 

Table 3-7. Probability of failure for different error bounds for safety factor of 1.0 and 
mean value for allowable stress. Average design thickness without 
certification is 0.667. 

Error 
bound 

be 

Average design 
thickness after 
certification * 

Certific
ation 

failure 
rate % 

Probability of 
Failure after 
certification 

(Pt) 

Probability of 
failure without 

certification 
(Pnt) 

Probability 
ratio 

(Pt/Pnt) 

Probability 
difference 

(Pnt-Pt) 

50% 0.830 (0.12) 50.1 0.125 (1.39) 0.505 (0.83) 2.463×10-1 3.808×10-1 
40% 0.796 (0.11) 50.2 0.158 (1.20) 0.504 (0.79) 3.140×10-1 3.459×10-1 
30% 0.761 (0.09) 50.4 0.205 (0.92) 0.503 (0.72) 4.075×10-1 2.981×10-1 
20% 0.727 (0.08) 50.9 0.285 (0.64) 0.503 (0.58) 5.653×10-1 2.189×10-1 
10% 0.686 (0.05) 50.7 0.412 (0.34) 0.500 (0.34) 8.228×10-1 8.869×10-2 

*Average over N=5000 models 
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Next, we will explore how another parameter, variability, influences the efficacy of 

tests. This is accomplished by changing the coefficient of variation of failure stress σf 

between 0–16% and keeping the error bound constant. 

Table 3-8. Probability of failure for different uncertainty in failure stress for the 
components designed with safety factor of 1.5, 50% error bounds e and A-
basis allowable stress.  

Coeffi
cient 

of 
variati
on of 

σf 

Average 
design 

thickness 
without 

certificati
on * 

Average 
design 

thickness 
after 

certificati
on * 

Certific
ation 

failure 
rate % 

Probability 
of failure 

after 
certificatio

n 
(Pt)×10-4 

Probability 
of failure 
without 

certificatio
n 

(Pnt)×10-4 

Probability 
ratio 

(Pt/Pnt) 

Probability 
difference 

(Pnt-Pt) 

0 % 0.998 
(0.29) 

1.250 
(0.11) 50.2 0.017 

(6.85) 
1699 
(1.87) 1.004×10-5 1.698×10-1 

4% 1.127 
(0.29) 

1.347 
(0.15) 38.9 0.087 

(7.20) 
970.4 
(2.35) 8.973×10-5 9.703×10-2 

8 % 1.269 
(0.29) 

1.453 
(0.19) 29.3 1.664 

(7.86) 
449.0 
(2.74) 3.706×10-3 4.473×10-2 

12 % 1.431 
(0.29) 

1.574 
(0.22) 20.9 13.33 

(7.71) 
206.1 
(3.08) 6.469×10-2 1.927×10-2 

16% 1.616 
(0.30) 

1.723 
(0.25) 14.1 22.52 

(5.54) 
107.3 
(3.24) 2.100×10-1 8.476×10-3 

*Average over N=5000 models 
 

Table 3-9. Probability of failure for different uncertainty in failure stress for the 
components designed with safety factor of 1.5, 30% error bound e and A-basis 
allowable stress. 

Coeffi
cient 

of 
variati
on of 

σf 

Average 
design 

thickness 
without 

certificati
on * 

Average 
design 

thickness 
after 

certificati
on * 

Certific
ation 

failure 
rate % 

Probability 
of failure 

after 
certificatio

n 
(Pt)×10-4 

Probability 
of failure 
without 

certificatio
n 

(Pnt)×10-4 

Probability 
ratio 

(Pt/Pnt) 

Probability 
difference 

(Pnt-Pt) 

0 % 1.001 
(0.17) 

1.148 
(0.08) 50.1 0.026 

(4.79) 
223.8 
(2.50) 1.163×10-4 2.238×10-2 

4 % 1.126 
(0.17) 

1.232 
(0.11) 31.6 0.146 

(6.03) 
35.25 
(2.97) 4.149×10-3 3.511×10-3 

8 % 1.269 
(0.17) 

1.329 
(0.15) 16.3 1.343 

(5.28) 
9.086 
(3.46) 1.479×10-1 7.742×10-4 

12 % 1.431 
(0.18) 

1.459 
(0.17) 7.2 2.404 

(3.87) 
4.314 
(3.45) 5.572×10-1 1.911×10-4 

16% 1.617 
(0.18) 

1.630 
(0.18) 3.3 2.513 

(3.73) 
3.102 
(3.54) 8.099×10-1 5.896×10-5 

* Average over N=5000 models 
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Table 3.10. Probability of failure for uncertainty in failure stress for components designed 
using safety factor of 1.5, 10% error bounds e and A-basis properties 

Coeffi
cient 

of 
variati
on of 

σf 

Average 
design 

thickness 
without 

certificati
on * 

Average 
design 

thickness 
after 

certificati
on * 

Certific
ation 

failure 
rate % 

Probabili
ty of 

failure 
after 

certificati
on 

(Pt)×10-4 

Probability 
of failure 
without 

certificatio
n 

(Pnt)×10-4 

Probability 
ratio (Pt/Pnt) 

Probability 
difference 

(Pnt-Pt) 

0 % 1.000 
(0.06) 

1.048 
(0.03) 50.3 0.075 

(2.91) 
1.745 
(1.78) 4.304×10-2 1.669×10-4 

4 % 1.126 
(0.06) 

1.131 
(0.06) 5.9 0.053 

(3.85) 
0.070 
(3.56) 7.548×10-1 1.716×10-6 

8% 1.269 
(0.06) 

1.272 
(0.07) 1.2 0.027 

(4.71) 
0.029 
(4.59) 9.147×10-1 2.490×10-7 

12 % 1.431 
(0.07) 

1.432 
(0.07) 0.8 0.049 

(4.30) 
0.051 
(4.23) 9.623×10-1 1.926×10-7 

16% 1.623 
(0.08) 

1.624 
(0.08) 0.5 0.085 

(3.50) 
0.083 
(3.55) 9.781×10-1 1.853×10-7 

*Average over N=5000 models 
 
The increase in the variability in failure stress has a large effect on the allowable 

stress because A-basis properties specify an allowable that is below 99% of the sample. 

Increased variability reduces the allowable stress and therefore increases the design 

thickness. It is seen from Tables 3-8 through 3-10 that when the variability increases 

from 0% to 16%, the design thickness increases by more than 60%. This greatly reduces 

the probability of failure without certification. However, the probability of failure with 

certification still deteriorates. That is, the use of A-basis properties fails to fully 

compensate for the variability in material properties. This opposite behavior of the 

probability of failure before and after certification is discussed in more detail in 

Appendix C. 

The variability in failure stress greatly changes the effect of certification tests. 

Although the average design thicknesses of the components increase with the increase in 

variability, we see that when the variability is large, the value of the tests is reduced 

because the tested aircraft can be greatly different from the airplanes in actual service. 
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We indeed see from the Tables 3-8, 3-9 and 3-10 that the effect of certification tests is 

reduced as the variability in the failure stress increases. Recall that the effect of 

certification tests is also reduced when the error e decreases. Indeed, Table 3-8 shows a 

much smaller effect of the tests than Table 3-10. Comparing the second and third 

columns of Tables 3-8, 3-9 and 3-10 we see that as the bound of error decreases, the 

change in the average value of design thicknesses of the components become less which 

is an indication of loss in the efficacy of certification tests. 

Up to now, both the probability difference (Pnt-Pt) and the probability ratio (Pt/Pnt) 

seem to be good indicators of efficacy of tests. To allow easy visualization, we combined 

the errors and the variability in a single ratio (Bound of e) / VR(σ/σf) ratio (ratio of error 

bound e to the coefficient of variation of the stress ratio). The denominator accounts for 

the major contributors to the variability. The value in the denominator is a function of 

four variables; service load P, width w, thickness t, and failure stress σf. Here, P and σf 

have lognormal distributions but w and t are uniformly distributed. Since the coefficient 

of variations of w and t is very small, they can also be treated as lognormally distributed 

to make calculation of the denominator easy while plotting the graphs. Since the standard 

deviations of the variables are small, the denominator is now the square root of the sum 

of the squares of coefficient of variations of the four variables mentioned above, that is 

 )()()()()( 2222
fRRRRfR VtVwVPVV σσ

σ +++≅  (3.11) 

The effective safety factor is the ratio of the design thickness of the component 

when safety measures (such as usage of A-basis values for material properties and safety 

factor) are applied to the thickness of the component when no safety measures are taken. 
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Figures 3-4 and 3-5, present the Pt/Pnt ratio in visual formats. It can be seen that as 

expected, the ratio decreases as the (Bounds on e)/VR(σ/σf) ratio increases. However, 

these two figures do not give a clear indication of how certification tests are influenced 

by the effective safety factor. 

 

Figure 3-4. Influence of effective safety 
factor, error, and variability on the 
probability ratio (3-D view) 

Figure 3-5. Influence of effective safety 
factor, error and variability on the 
probability ratio (2-D plot) 

Figures 3-6 and 3-7 show the probability difference, Pnt-Pt. In these cases, the 

dependence on the effective safety factor is monotonic. As expected, it is seen that as the 

effective safety factor increases, the improvement in the safety of component decreases; 

meaning that the certification tests become less useful. The probability difference is more 

descriptive as it is proportional to the number of aircraft failures prevented by 

certification testing. The probability ratio lacks such clear physical interpretation, even 

though it is a more attractive measure when the probability of failure is very small. 

Considering the results presented by Figures 3-4 through 3-7, the probability 

difference (Pnt-Pt) is the more appropriate choice for expressing the effectiveness of tests. 
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Figure 3-6. Influence of effective safety 

factor, error and variability on the 
probability difference (3-D view) 

Figure 3-7. Influence of effective safety 
factor, error and variability on the 
probability difference (2-D plot) 

Summary 

We have used a simple example of point stress design for yield to illustrate the 

effects of several safety measures taken in aircraft design: safety factors, conservative 

material properties, and certification tests. Analytical calculations and Monte Carlo 

simulation were performed to account for both fleet-level uncertainties (such as errors in 

analytical models) and individual uncertainties (such as variability in material properties). 

It was seen that an increase of the systemic errors in the analysis causes an increase 

in the probability of failure. We found that the systemic errors can be reduced by the use 

of certification tests, thereby reducing the probability of failure. Also we found that 

design thicknesses of the components increased as the bounds of systemic errors 

increased. 

We found that the effect of certification tests is most important when errors in 

analytical models are high and when the variability between airplanes is low. This leads 

to the surprising result that in some situations larger error variability in analytical models 

reduces the probability of failure if certification tests are conducted. For the simple 
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example analyzed here, the use of conservative (A-basis) material properties was 

equivalent to a safety factor of up to 1.6, depending on the scatter in failure stresses. 

The effectiveness of the certification tests is expressed by two measures of 

probability improvement. The ratio of the probability of failure with the test, Pt, to the 

probability of failure without tests, Pnt, is useful when Pt is small. The difference is more 

meaningful when the probability is high. Using these measures we have shown that the 

effectiveness of certification tests increases when the ratio of error to variability is large 

and when the effective safety factor is small. 

The effect of building-block type tests that are conducted before certification was 

not assessed here. However, these tests reduce the errors in the analytical models, and on 

that basis we determined that they can reduce the probability of failure by one or two 

orders of magnitude. 

The calculated probabilities of failure with all the considered safety margins 

explain why passenger aircraft are so safe structurally. They were still somewhat high —

about 10-7—compared to the probability of failure of actual aircraft structural 

components—about 10-8. This may be due to additional safety measures, such as 

conservative design loads or to the effect of design against additional failure modes. 
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CHAPTER 4 
COMPARING EFFECTIVENESS OF MEASURES THAT IMPROVE AIRCRAFT 

STRUCTURAL SAFETY 

Chapter 3 explored how safety measures compensate for errors and variability. The 

major finding of that chapter was that certification tests are most effective when errors 

are large, variability is low, and the overall safety factor is low. Chapter 3 mainly focused 

on the effectiveness of certification testing, but the relative effectiveness of safety 

measures was not addressed. The present chapter takes a further step and aims to discover 

how measures that improve aircraft structural safety compare with one another in terms 

of weight effectiveness. In addition, structural redundancy—another safety measure—is 

included in the analysis. In addition the simple error model of Chapter 3 is replaced by a 

more detailed error model. Comparison of the effectiveness of error and variability 

reduction with other safety measures is also given.  

The research presented in this chapter is submitted for publication (Acar et al. 

2006d). My colleague Dr. Amit Kale’s contribution to this work is acknowledged. 

Introduction 

As noted earlier, aircraft structural design is still carried out by using code-based 

design, rather than probabilistic design. Safety is improved through conservative design 

practices that include the use of safety factors and conservative material properties. 

Safety is also improved by testing of components, redundancy, improved modeling to 

reduce errors and improved manufacturing to reduce variability. The following gives 

brief description of these safety measures. 
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Load Safety Factor 

In transport aircraft design, FAA regulations state the use of a load safety factor of 

1.5 (FAR 25.303). That is, aircraft structures are designed to withstand 1.5 times the limit 

load without failure. 

Conservative Material Properties 

In order to account for uncertainty in material properties, FAA regulations state the 

use of conservative material properties (FAR 25.613). The conservative material 

properties are characterized as A-basis and B-basis material property values, and the use 

of A-basis or B-basis values depends on the redundancy. If there is single failure path in 

the structure, A-basis values are used, while for the case of multiple failure paths (i.e., 

redundant structures), B-basis values are used. Detailed information on these values is 

provided in Chapter 8 of Volume 1 of the Composite Materials Handbook (2000). The 

basis values are determined by testing a number of coupons selected at random from a 

material batch. The A-basis value is determined by calculating the value of a material 

property exceeded by 99% of the population with 95% confidence, while the B-basis 

value is the value of a material property exceeded by 90% of the population with 95% 

confidence. Here, we take the redundancy of the structure into account, so we use B-basis 

values (see Appendix A for the B-basis value calculation). The number of coupon tests is 

assumed to be 40. 

Tests 

Tests of major structural components reduce stress and material uncertainties for 

given extreme loads due to inadequate structural models. These tests are conducted in a 

building block procedure (Composite Materials Handbook (2000), Volume 1, Chapter 2). 

First, individual coupons are tested, and then a sub-assembly is tested, followed by a full-
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scale test of the entire structure. Here, we only consider the final certification test for an 

aircraft. Other tests are assumed to be error reduction measures and their effect is 

analyzed indirectly by considering the effect of error reduction. 

Redundancy 

Transport airliners are designed with double and triple redundancy features in all 

major systems to minimize the failure probability. Redundancy is intended to ensure that 

a single component failure does not lead to catastrophic failure of the system. In the 

present work, we assume that an aircraft structure will fail if two local failures occur in 

the structure. 

Error Reduction 

Improvements in the accuracy of structural analysis and failure prediction of 

aircraft structures reduce errors and enhance the level of safety of the structures. These 

improvements may be due to better modeling techniques developed by researchers, more 

detailed finite element models made possible by faster computers, or more accurate 

failure predictions due to extensive testing. 

Variability Reduction 

Examples of mechanisms that reduce variability in material properties include 

quality control and improved manufacturing processes. Variability in damage and ageing 

effects is accomplished through inspections and structural health monitoring. Variability 

in loads may be reduced by better pilot training and information that allows pilots to 

more effectively avoid regions of high turbulence. Here we investigate only the effect of 

reduced variability in material properties. 

The next section of this chapter discusses the more detailed error model used in this 

chapter, along with variability and total safety factor. Next, the effect of certification tests 



56 

 

on error distribution is analyzed. Then, details of the calculation of the probability of 

failure via separable Monte Carlo simulations (MCS) are given. Finally, the chapter 

finalizes with the results and summary. 

Errors, Variability and Total Safety Factor 

The simplified uncertainty classification used in Chapter 3 is also used in this 

chapter, where errors are uncertainties that apply equally to the entire fleet of an aircraft 

model and variabilities are uncertainties that vary for the individual aircraft (see Table 3-

1, Chapter3). This section first discusses the errors in design and construction. Next, total 

error factor and total safety factor are introduced, finally, simulation of variability is 

discussed. 

Errors in Design 

We consider static point stress design for simplicity. Other types of failures such as 

fatigue, corrosion or crack instability are not taken into account. We assume that an 

aircraft structure will fail only if two local failure events occur. For example, we assume 

that the wing will fail structurally if two local failures occur at the wing panels. The 

correlation coefficient between the probabilities of these two events is assumed to be 0.5. 

Before starting the structural design, aerodynamic analysis needs to be performed 

to determine the loads acting on the aircraft. However, the calculated design load value, 

Pcalc, differs from the actual loading Pd under conditions corresponding to FAA design 

specifications (e.g., gust-strength specifications). Since each company has different 

design practices, the error in load calculation, ep, is different from one company to 

another. The calculated design load Pcalc is expressed in terms of the true design load Pd 

as 
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 dPcalc PeP )1( +=  (4.1) 

Besides the error in load calculation, an aircraft company may also make errors in 

stress calculation. We consider a small region in a structural part, characterized by a 

thickness t and width w, that resists the load in that region. The value of the stress in a 

structural part calculated by the stress analysis team, σcalc, can be expressed in terms of 

the load values calculated by the load team Pcalc, the design width wdesign, and the 

thickness t of the structural part by introducing the term eσ representing error in the stress 

analysis 

 
tw

P
e

design

calc
calc )1( σσ +=  (4.2) 

Equation (4.3) is used by a structural designer to calculate the design thickness 

tdesign required to carry the calculated design load times the safety factor SFL. That is, 

 ( ) ( ) ( )( ) ( )
1 1 1FL calc FL d

design P
design a design acalc calc

S P S Pt e e e
w wσ σσ σ

= + = + +  (4.3)  

where ( )a calcσ  is the value of allowable stress for the structure used in the design, which 

is calculated based on coupon tests using failure models such as Tresca or von Mises. 

Since these failure theories are not exact, we have 

 ( ) ( )( )1a f acalc trueeσ σ= −  (4.4)  

where ef is the error associated with failure prediction. Moreover, the errors due to the 

limited amount of coupon testing to determine the allowables, and the differences 

between the material properties used by the designer and the average true properties of 

the material used in production are included in this error. Note that the formulation of Eq. 

(4.4) is different to that of Eqs. (4.1) and (4.2) in that the sign in front of the error factor 
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ef is negative, because we consistently formulate the expressions such that positive error 

implies a conservative decision.  

Combining Eqs. (4.3) and (4.4), we can express the design value of the load 

carrying area as 

 
( )( )

( )
1 1

1
P FL d

design design design
f a true

e e S PA t w
e

σ

σ
+ +

= =
−

 (4.5) 

Errors in Construction 

In addition to the above errors, there will also be construction errors in the 

geometric parameters. These construction errors represent the difference between the 

values of these parameters in an average airplane (fleet-average) built by an aircraft 

company and the design values of these parameters. The error in width, ew, represents the 

deviation of the design width of the structural part, wdesign, from the average value of the 

width of the structural part built by the company, wbuilt. Thus, 

 (1 )built w designw e w= +  (4.6) 

Similarly, the built thickness value will differ from its design value such that 

 (1 )built t designt e t= +  (4.7) 

Then, the built load carrying area Abuilt can be expressed using the first equality of 

Eq. (4.5) as 

 (1 ) (1 )built t w designA e e A= + +  (4.8) 

Table 4-1 presents nominal values for the errors assumed here. In the results 

section of this chapter we will vary these error bounds and investigate the effects of these 

changes on the probability of failure. As seen in Table 4-2, the error having the largest 
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bound in its distribution is the error in failure prediction ef, because we use it to model 

also the likelihood of unexpected failure modes. 

Table 4-1. Distribution of error factors and their bounds 
Error factors Distribution Type Mean Bounds 
Error in stress calculation, eσ Uniform 0.0 ± 5% 
Error in load calculation, eP Uniform 0.0 ± 10% 
Error in width, ew Uniform 0.0 ± 1% 
Error in thickness, et Uniform 0.0 ± 2% 
Error in failure prediction, ef Uniform 0.0 ± 20% 

 
The errors here are modeled by uniform distributions, following the principle of 

maximum entropy. For instance, the error in the built thickness of a structural part (et) is 

defined in terms of the error bound ( )t builtb  via Eq. (4.9). 

 ( )0,t t builte U b⎡ ⎤= ⎣ ⎦  (4.9) 

Here ‘U’ indicates that the distribution is uniform and ‘0 (zero)’ is the average 

value of et. Table 4-1 shows that ( )t builtb  = 0.02. Hence, the lower bound for the 

thickness value is the average value minus 2% of the average and the upper bound for the 

thickness value is the average value plus 2% of the average. Commonly available random 

number generators provide random numbers uniformly distributed between 0 and 1. 

Then, the error in the built thickness can be calculated from Eq. (4.10) using such random 

numbers r as 

 ( )( )2 1t t builte r b= −  (4.10) 

Total Error Factor 

The expression for the built load carrying area, Abuilt, of a structural part can be 

reformulated by combining Eqs. (4.5) and (4.8) as 

 ( ) ( )
1 FL d

built total
a true

S PA e
σ

= +  (4.11) 
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where 

 
( )( )( )( )1 1 1 1

1
1
P t w
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f

e e e e
e

e
σ+ + + +

= −
−

 (4.12) 

Here etotal represents the cumulative effect of the individual errors (eσ, eP, …) on the load 

carrying capacity of the structural part. 

Total Safety Factor 

The total safety factor, SF, of a structural part represents the effects of all safety 

measures and errors on the built structural part. Without safety measures and errors, we 

would have a load carrying area, A0, required to carry the design load 

 0
d

f

PA
σ

=  (4.13) 

where fσ  is the average value of the failure stress. Then, the total safety factor of a built 

structural component can be defined as the ratio of Abuilt/A0 

 ( ) ( ) ( )0
1 fbuilt

F total FLbuilt
a true

AS e S
A

σ
σ

= = +  (4.14) 

Here we take SFL = 1.5 and conservative material properties are based on B-basis values. 

Certification tests add another layer of safety. Structures with large negative etotal 

(unconservative) fail certification, so the certification process adds safety by biasing the 

distribution of etotal. Denoting the built area after certification (or certified area) by Acert, 

the total safety factor of a certified structural part is 

 ( )
0

cert
F cert

AS
A

=  (4.15) 
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Variability 

In the previous sections, we analyzed the different types of errors made in the 

design and construction stages, representing the differences between the fleet average 

values of geometry, material and loading parameters and their corresponding design 

values. For a given design, these parameters vary from one aircraft to another in the fleet 

due to variabilities in tooling, construction, flying environment, etc. For instance, the 

actual value of the thickness of a structural part, tact, is defined in terms of its fleet 

average built value, tbuilt, by 

 ( )1act t builtt v t= +  (4.16) 

We assume that vt has a uniform distribution with 3% bounds (see Table 4-2). 

Then, the actual load carrying area Aact can be defined as 

 ( ) ( ) ( )( )1 1 1 1act act act t built w built t w builtA t w v t v w v v A= = + + = + +  (4.17)  

where vw represents effect of the variability on the built width. 

Table 4-2 presents the assumed distributions for variabilities. Note that the 

thickness error in Table 4-1 is uniformly distributed with bounds of ±2%. Thus the 

difference between all thicknesses over the fleets of all companies is up to ±5%. 

However, the combined effect of the uniformly distributed error and variability is not 

uniformly distributed. 

Table 4-2. Distribution of random variables having variability 
Variables Distribution Mean Scatter 
Actual service load, Pact Lognormal Pd = 100 10% c.o.v. 
Actual structural part width, wact Uniform wbuilt 1% bounds 
Actual structural part thickness, tact Uniform tbuilt 3% bounds 
Failure stress, σf Lognormal 150 8% c.o.v. 
Variability in built width, vw Uniform 0 1% bounds 
Variability in built thickness, vt Uniform 0 3% bounds 

c.o.v.= coefficient of variation 
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Certification Tests 

After a structural part has been built with random errors in stress, load, width, 

allowable stress and thickness, we simulate certification testing for the structural part. 

Recall that the structural part will not be manufactured with complete fidelity to the 

design due to variability in the geometric properties. That is, the actual values of these 

parameters wact and tact will be different from their fleet-average values wbuilt and tbuilt due 

to variability. The structural part is then loaded with the design axial force of SFL times 

Pcalc, and if the stress exceeds the failure stress of the structure σf, then the structure fails 

and the design is rejected; otherwise it is certified for use. That is, the structural part is 

certified if the following inequality is satisfied 

 0FL calc
f f

act act

S P
w t

σ σ σ− = − ≤  (4.18) 

The total safety factor (see Eq. (4.14)) depends on the load safety factor, the ratio of 

the failure stress to the B-basis allowable stress and the total error factor. Note that the B-

basis properties are affected by the number of coupon tests. As the number of tests 

increases, the B-basis value is also increases, so a lower total safety factor is used. 

Amongst the terms in the total safety factor expression, the error term is subject to the 

largest change due to certification testing. Certification tests reduce the probability of 

failure by mainly changing the distribution of the error factor etotal. Without certification 

testing, we assume uniform distributions for all the individual errors. However, since 

designs based on unconservative models are more likely to fail certification, the 

distribution of etotal becomes conservative for structures that pass certification. In order to 

quantify this effect, we calculated the updated distribution of the error factor etotal by 

Monte Carlo Simulation (MCS) of a sample size of 1,000,000.  
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In Chapter 3, we represented the overall error with a single error factor e, 

hereinafter termed the “Single Error Factor model (SEF model)”, and we used uniform 

distribution for the initial (i.e., built) distribution of this error. In the present work, we use 

a more complex representation of error with individual error factors, hereinafter termed 

the “Multiple Error Factor model (MEF model)”, and we represent the initial distribution 

of each individual error factor with uniform distribution. In this case, the distribution of 

the total error is no longer uniform. Figure 4-1 shows how certification tests update the 

distribution of the total error for the SEF and MEF models. For both models the initial 

distribution is updated such that the likelihood of conservative values of the total error is 

increased. This is due to the fact that structures designed with unconservative (negative) 

errors are likely to be rejected in certification tests. Notice that the SEF model 

exaggerates the effectiveness of certification testing. The reader is referred to Appendix 

D for a detailed comparison of the two error models. 

 

Figure 4-1. Comparing distributions of built and certified total error etotal of SEF and 
MEF models. The distributions are obtained from simulation of 1,000,000 
structural parts. The lower and upper bounds for the single error are taken as -
22.3% and 25.0%, respectively, to match the mean and standard deviation of 
the total error factor in the MEF model (see Table D-1 of Appendix D). 
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Figure 4-2 shows the distributions of the built and certified total safety factors of 

the MEF model. Notice that the structural parts designed with low total safety factors are 

likely to be rejected in the certification testing. The mean and standard deviations of built 

and certified distributions of the error factor and the total safety factor are listed in Table 

4-3. Comparing the mean and standard deviation of the built and certified total error (and 

similarly the total safety factor), we see that the mean is increased and the standard 

deviation is reduced due to certification testing. 

 

Figure 4-2. Initial and updated distribution of the total safety factor SF. The distributions 
are obtained via Monte Carlo Simulations with 1,000,000 structural part 
models. 

Table 4-3. Mean and standard deviations of the built and certified distributions of the 
error factor etotal and the total safety factor SF shown in Figures 4-1 and 4-2. 
The calculations are performed with 1,000,000 MCS. 

 Mean Std. dev. 
Built total error 0.0137 0.137 
Certified total error 0.0429 0.130 
Built safety factor 1.747 0.237 
Certified safety factor 1.799 0.226 
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Probability of Failure Calculation 

As noted earlier, we assume that structural failure requires the failure of two 

structural parts. In this section, we first describe the probability of failure calculations of 

a single structural part by using separable MCS. Then, we discuss the calculation of the 

system probability of failure. 

Probability of Failure Calculation by Separable MCS 

To calculate the probability of failure, we first incorporate the statistical 

distributions of errors and variability in a Monte Carlo simulation. Errors are uncertain at 

the time of design, but do not change for individual realizations (in actual service) of a 

particular design. On the other hand, all individual realizations of a particular design are 

different from each other due to variability. In Chapter 3, we implemented this through a 

two-level Monte Carlo simulation. At the upper level we simulated different aircraft 

companies by assigning random errors to each, and at the lower level we simulated 

variability in dimensions, material properties, and loads related to manufacturing 

variability and variability in service conditions. This provided not only the overall 

probability of failure, but also its variation from one company to another (which we 

measured by the standard deviation of the probability of failure). This variation is 

important because it is a measure of the confidence in the value of the probability of 

failure due to the epistemic uncertainty (lack of knowledge) in the errors. However, the 

process requires trillions of simulations for good accuracy. 

In order to address the computational burden, we turned to the separable Monte 

Carlo procedure (e.g., Smarslok and Haftka (2006)). This procedure applies when the 

failure condition can be expressed as g1(x1)>g2(x2), where x1 and x2 are two disjoint sets 

of random variables. To take advantage of this procedure, we need to formulate the 
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failure condition in a separable form, so that g1 will depend only on variabilities and g2 

only on errors. The common formulation of the structural failure condition is in the form 

of a stress exceeding the material limit. This form, however, does not satisfy the 

separability requirement. For example, the stress depends on variability in material 

properties as well as design area, which reflects errors in the analysis process. To bring 

the failure condition to the right form, we instead formulate it as the required cross 

sectional area reqA′  being larger than the built area Abuilt, as given in Eq. (4.19) 

 
( )( )1 1

req
built req

t w

A
A A

v v
′< ≡

+ +
 (4.19) 

where reqA  is the cross-sectional area required to carry the actual loading conditions for a 

particular copy of an aircraft model, and reqA′  is what the built area (fleet-average) needs 

to be in order for the particular copy to have the required area after allowing for 

variability in width and thickness. 

 req fA P σ=  (4.20) 

The required area depends only on variability, while the built area depends only on 

errors. When certification testing is taken into account, the built area, Abuilt, is replaced by 

the certified area, Acert, which is the same as the built area for companies that pass 

certification. However, companies that fail are not included. That is, the failure condition 

is written as 

Failure without certification tests:     0req builtA A′ − >   (4.21-a) 

Failure with certification tests:         0req certA A′ − >  (4.21-b) 
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Equation (4.21) can be normalized by dividing the terms with A0 (load carrying 

area without errors or safety measures, Eq. (4.13)). Since Abuilt/A0 or Acert/A0 are the total 

safety factors, Eq. (4.21) is equivalent to the requirement that failure occurs when the 

required safety factor is larger than the built one. 

Failure without certification tests: ( ) ( ) 0F Freq builtS S− >  (4.22-a)  

Failure with certification tests:  ( ) ( ) 0F Freq certS S− >  (4.22-b)  

where ( )F builtS  and ( )F certS  are the built and certified total safety factors given in Eqs. 

(4.14) and (4.15), and the required total safety factor ( )F reqS  is calculated from 

 ( )
0

req
F req

A
S

A
′

=  (4.23) 

For a given ( )F builtS   we can calculate the probability of failure, Eq. (4.22.a), by 

simulating all the variabilities with MCS. Figure 4-3 shows the dependence of the 

probability of failure on the total safety factor using MCS with 1,000,000 variability 

samples. The zigzagging in Figure 4-3 at high safety factor values is due to the limited 

MCS sample. Note that the probability of failure for a given total safety factor is one 

minus the cumulative distribution function (CDF) of the total required safety factor. This 

required safety factor depends on the four random variables Pact, σf, vt and vw. Among 

them Pact and σf have larger variabilities compared to vt and vw (see Table 4-2). We found 

that ( )F reqS  is accurately represented with a lognormal distribution, since Pact and σf 

follow lognormal distributions. Figure 4-3 also shows the probability of failure from the 

lognormal distribution with the same mean and standard deviation. Note that the nominal 

load safety factor of 1.5 is associated with a probability of failure of about 10-3, while the 
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probabilities of failure observed in practice (about 10-7) correspond to a total safety factor 

of about two. 

 

Figure 4-3. The variation of the probability of failure with the built total safety factor. 
Note that Pf is one minus the cumulative distribution function of ( )F reqS . 

Figure 4-4 represents flowchart of a separable MCS procedure. Stage-1 represents 

the simulation of variabilities in the actual service conditions to generate the probability 

of failure as shown in Figure 4-3. This probability of failure is one minus the cumulative 

distribution function (CDF) of the required safety factor ( )F reqS . In Stage-1, 

M=1,000,000 simulations are performed and CDF of ( )F reqS  is assessed. A detailed 

discussion on CDF assessment for ( )F reqS  is given in Appendix E. 
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Figure 4-4. Flowchart for MCS of component design and failure 

In Stage-2, N=1,000,000 designs are generated for N different aircraft companies. 

For each new design, different random error factors eσ, eP, ew, et and ef are picked from 

their corresponding distributions to generate the built safety factor, ( )F builtS . Then, each 

design is subjected to certification testing. If it passes, we obtain the probability of failure 

from the distribution obtained in Stage-1 (Figure 4-3). We calculate the average and 

coefficient of variation (c.o.v.) of the failure probability over all designs and explore the 

effects of error, variability, and safety measures on these values in Results section. 

The separable Monte Carlo procedure reduces the computational burden greatly. 

For instance, if the probability of failure is 2.5×10-5, a million simulations varying both 

errors and variability simultaneously estimate this probability with 20% error. We found 

for our problem that the use of the separable Monte Carlo procedure requires only 20,000 
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simulations (10,000 simulations for Stage-1 and 10,000 for Stage-2) for the same level of 

accuracy. 

Including Redundancy 

The requirement of two failure events is modeled here as a parallel system. We 

assume that the limit-states of the both failure events follow normal distribution to take 

advantage of known properties of the bivariate normal distribution. For a parallel system 

of two elements with equal failure probabilities, Eq. (4.24) is used to calculate the system 

probability of failure PFS (see Appendix F for details) 

 
2

2
2

0

1 1 exp
2 11

FS fP P dz
zz

ρ β
π

⎛ ⎞
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∫  (4.24) 

where Pf is the probability of failure of a single structural part, ρ is the correlation 

coefficient of the two limit-states and β is the reliability index for a single structural part, 

which is related to Pf through Eq. (4.25) 

 ( )fP β= Φ −  (4.25) 

Results 

In this section, the effectiveness of safety measures is investigated and the results 

are reported. First, we discuss the effects of error reduction. Then, the relative 

effectiveness of error reduction and certification is compared. Next, the effectiveness of 

redundancy is explored. Finally, the effectiveness of variability reduction is investigated. 

Effect of Errors 

We first investigate the effect of errors on the probability of failure of a single 

structural part. For the sake of simplicity, we scale all error components with a single 

multiplier, k, replacing Eq. (4.12) by 
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and explore the effect of k on the probability of failure. 

Table 4-4 presents the average and coefficient of variation of the probability of 

failure of a single structural part. The coefficient of variation of the failure probability is 

computed to explore our confidence in the probability of failure estimate, since it reflects 

the effect of the unknown errors. Columns 5 and 6 of Table 4-4 show a very high 

coefficient of variation for the failure probabilities (variability in the probability of failure 

for different aircraft models). We see that as the error grows (i.e., k increases), the 

coefficient of variation of failure probabilities after certification also grows. Comparing 

the failure probabilities before certification (column 5) and after certification (column 6), 

we notice that even though certification tests reduce the mean failure probability, they 

increase the variability in failure probability. 

Table 4-4 shows that for nominal error (i.e., k=1) the total safety factor before 

certification is 1.747, which is translated into a probability of failure of 8.83×10-4. When 

the certification testing is included, the safety factor is increased to 1.799, which reduces 

the probability of failure to 3.79×10-4. Notice also that the coefficient of variation of the 

safety factor is reduced from 13.6% to 12.5%, which is a first glimpse of an indication 

that the certification testing is more effective than simply increasing the safety factor with 

an increased built area. A detailed analysis of the effectiveness of certification testing is 

given in the next subsection. 

Column 2 of Table 4-4 shows a rapid increase in the certification failure rate with 

increasing error. This is reflected in a rapid increase in the average safety factor of 
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certified designs in column 4, ( )F certS . This increased safety factor manifests itself in the 

last column of Table 4-4 that presents the effect of certification tests on failure 

probabilities. As we can see from that column, when the error increases, the ratio of the 

two failure probabilities decreases, demonstrating that the certification tests become more 

effective. This trend of the increase of the design areas and the probability ratios is 

similar to the one observed in Chapter 3. Note, however, that even the average safety 

factor before certification ( ( )F builtS  in column 3) increases with the error due to the 

asymmetry of the initial total error distribution (see Figure 4-1). 

Table 4-4. Average and coefficient of variation of the probability of failure for the 
structural parts designed with B-basis properties and SFL=1.5. The numbers 
inside the parentheses represent the coefficient of variation of the relevant 
quantity. 

k CFR(a) 
(%) ( )F builtS  (b) ( )F certS  (b) Pnc

 (c)/10-4 Pc
 (c)/10-4 /c ncP P

0.25 6.4 1.725 (4.2%) 1.728 (4.1%) 0.244 (148%) 0.227 (148%) 0.930 
0.50 9.3 1.730 (6.9%) 1.741 (6.7%) 0.763 (247%) 0.609 (257%) 0.798 
0.75 13.4 1.737 (10.2%) 1.764 (9.7%) 2.70 (324%) 1.66 (357%) 0.616 
0.82 14.7 1.740 (11.2%) 1.773 (10.6%) 3.79 (340%) 2.13 (384%) 0.561 
1 18.0 1.747 (13.6%) 1.799 (12.5%) 8.83 (371%) 3.79 (450%) 0.430 
1.5 26.0 1.779 (20.5%) 1.901 (17.8%) 60.0 (385%) 11.5 (583%) 0.191 

(a) CFR: Certification failure rate.  
(b) ( )F builtS  and ( )F certS  are the total safety factors before and after certification testing, 
respectively. 
(c) Pnc and Pc are the probabilities of failure before and after certification testing, respectively. 

 
Table 4-4 shows the huge waste of weight due to errors. For instance, for the 

nominal error (i.e., k=1.0), an average built total safety factor of 1.747 corresponds to a 

probability of failure of 8.83×10-4 according to Table 4-4, but we see from Figure 4-3 that 

a safety factor of 1.747 approximately corresponds to a probability of failure of 7×10-6, 

two orders of magnitude lower. This discrepancy is due to the high value of the 

coefficient of variation of the safety factor. For the nominal error, the coefficient of 

variation of the total safety factor is 14%. Two standard deviations below the mean safety 
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factor is 1.272, and two standard deviations above the mean safety factor is 2.222. The 

probability of failure corresponding to the safety factor of 1.272 (from Figure 4-3) is 

about 2.98×10-2, while the safety of 1.985 the probability of failure is essentially zero. So 

even though about 0.8% of the designs a have safety factor below 1.272 (Figure 4-2), 

these designs have a huge impact on the probability of failure. Reducing the error by half 

(i.e., k=0.50), reduces the weight by 1%, while at the same time the probability of failure 

is reduced by a factor of 3. 

Weight Saving Due to Certification Testing and Error Reduction 

We have seen in Table 4-4 that since structures built with unconservative errors are 

eliminated by certification testing; the tests increase the average safety factor of the 

designs and therefore reduce the average probability of failure. Since certification testing 

is expensive, it is useful to check if the same decrease in the probability of failure can be 

achieved by simply increasing the load carrying area by the same amount (i.e., by 

increasing the safety factor) without certification testing. Column 2 of Table 4-5 shows 

that the required area with no certification testing, Ar,nc, is greater than the certified area, 

Acert, (i.e., area after certification testing) shown in column 3. The last column shows that 

the weight saving by using certification test instead of a mere increase of the safety 

factor. We notice that weight saving increases rapidly as the error increases. For instance, 

when k=0.25 the weight saving is very small. Columns 4 and 5 show that even though we 

match the average probability of failure, there are small differences in the coefficients of 

variation. 
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Table 4-5. Reduction of the weight of structural parts by certification testing for a given 
probability of failure. The numbers inside the parentheses represent the 
coefficient of variation of the relevant quantity. 

k Ar,nc/A0
 (a) Acert/A0 Pnc

 (b)/10-4 Pc
 (b)/10-4 %ΔA (c) 

0.25 1.7285 (4.2%) 1.7283 (4.1%) 0.227 (148%) 0.227 (148%) -0.01 
0.50 1.743 (6.9%) 1.741 (6.7%) 0.609 (252%) 0.609 (257%) -0.14 
0.75 1.770 (10.3%) 1.764 (9.7%) 1.66 (342%) 1.66 (357%) -0.36 

1 1.815 (13.7%) 1.799 (12.5%) 3.79 (416%) 3.79 (450%) -0.87 
1.5 1.961 (20.7%) 1.901 (17.8%) 11.5 (530%) 11.5 (583%) -3.09 

(a) Ar,nc is the required area with no certification testing, the area required to achieve the 
same probability of failure as certification. 
(b) Pnc and Pc are the probabilities of failure before and after certification testing, 
respectively.  
(c) ΔA = (Acert-Ar,nc)/Ar,nc indicates weight saving due to testing while keeping the same 
level of safety 

 
We notice from Table 4-5 that, for the nominal error (i.e., k=1.0), certification 

testing reduces the weight by 0.87% for the same probability of failure (3.79×10-4). The 

same probability of failure could have been attained by reducing the error bounds by 

18%, that is by reducing k from 1.0 to 0.82. This reduction would be accompanied by an 

( )F builtS  =1.740 (see Table 4-4). Compared to the 1.799 reduction ( )F builtS  , this 

represents a reduction of 4.13% in average weight, so error reduction is much more 

effective than certification testing in reducing weight. 

Effect of Redundancy 

To explore the effect of redundancy, we first compare the failure probability of a 

single structural part to that of a structural system that fails due to failure of two structural 

parts. Certification testing is simulated by modeling the testing of one structural part and 

certifying the structural system based on this test. Table 4-6 shows that while the average 

failure probability is reduced through structural redundancy, the coefficients of variation 

of the failure probabilities are increased. That is, even though the safety is improved, our 

confidence in the failure probability estimation is reduced. This behavior is similar to the 
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effect of certification (Table 4-4). In addition, we also notice that as the error grows, the 

benefit of redundancy also diminishes. This result reflects the fact that high errors result 

in high probabilities of failure, and redundancy is more effective for smaller probabilities 

of failure. This behavior, however, is opposite to that resulting from certification testing. 

We notice that even though one safety measure—certification testing—is more effective 

when errors are high, another safety measure—redundancy—is more effective when 

errors are low. So the level of uncertainty in the problem may decide on the efficient use 

of safety measures. 

Comparing the reduction probabilities of failure before and after certification listed 

in the columns 4 and 7 of Table 4-6, we notice that the effect of redundancy is enhanced 

through certification testing. 

Table 4-6. Effect of redundancy on the probabilities of failure. The numbers inside the 
parentheses represent the coefficient of variation of the relevant quantity. The 
coefficient correlation between failures of structural parts is taken as 0.5. 

 Before certification After certification 
 Part System  Part System  

k Pnc
 (a)/10-4 Pnc

 (a)/10-4 reducti
on Pc

 (a)/10-4 Pc
 (a)/10-4 reduct

ion 
0.25 0.244 (148%) 0.005 (230%) 52.1 0.227 (148%) 0.004 (230%) 53.5 
0.50 0.763 (247%) 0.029 (388%) 26.3 0.609 (257%) 0.022 (408%) 28.0 
0.75 2.70 (324%) 0.195 (503%) 13.8 1.66 (357%) 0.106 (568%) 15.6 
1.0 8.83 (371%) 1.11 (563%) 7.9 3.79 (450%) 0.390 (718%) 9.7 
1.5 60.0 (385%) 17.2 (549%) 3.5 11.5 (583%) 2.21 (945%) 5.2 

(a) Pnc and Pc are the probabilities of failure before and after certification testing, respectively.  
(b) The ratio of probabilities of failure of the structural part and the system of two parts 

 
Next, we investigate the interaction of two safety measures: redundancy and 

certification testing. Comparing the probability ratios in Table 4-7, we see that including 

redundancy improves the effectiveness of certification testing. Mathematically, this can 

be explained with the following example. For a nominal error, k=1.0, the probabilities of 

failure before and after certification of a structural part are 8.83×10-4 and 3.79×10-4, 



76 

 

respectively. The system probabilities of failure before and after certification are 

calculated by using Eq. (4.24) as 1.31×10-4 and 0.39×10-4, respectively. Notice that the 

system failure probability ratio is smaller than the component probability ratio, because 

redundancy is more effective for small probabilities of failure. Physically, the reason for 

the increase in the effectiveness certification is that in the certification test, failure of a 

single part leads to rejection of the design of structural system, while under actual service 

conditions, two failure events are needed for the failure of the structure. Thus, modeling 

redundancy is equivalent to modeling a relatively more severe certification testing. This 

result is similar to the finding of Kale and Haftka (2003), who explored the effect of 

safety measures on aircraft structures designed for fatigue. They found that certification 

testing of an aircraft structure with a large machined crack of B-basis initial size was 

more effective than testing the structure with a random (natural) crack. 

Table 4-7. Effect of redundancy on the effectiveness of certification testing. The 
coefficient correlation between failures of structural parts is taken as 0.5. 

k /c ncP P  (part) /c ncP P  (system) 
0.25 0.930 0.905 
0.50 0.798 0.749 
0.75 0.616 0.543 

1 0.430 0.350 
1.5 0.191 0.129 

ncP and cP  are the mean values of probabilities of failure 
before and after certification testing, respectively. 

 
Effect of the correlation coefficient 

Recall that the correlation coefficient of the probabilities of failure of the two 

structural parts was assumed to be 0.5. Table 4-8 shows that as the correlation coefficient 

decreases, the probability of failure of the system also decreases, but at the same time our 

confidence in the probability estimation also reduces. The last column of Table 4-8 shows 

that as the correlation coefficient decreases, certification testing becomes more effective, 
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which can be explained as follows. As the coefficient of correlation decreases, the 

structural parts behave more independently. Applying certification testing based on the 

failure of a single structural part means using more severe certification testing. This 

reminds us that as with any redundant system it pays to reduce the correlation coefficient 

of duplicate hardware (e.g., to use a back up part made by a different company). It is 

intriguing to speculate on the possible application to structural design. Is it feasible, for 

example, to buy structural materials from different vendors for skin and stiffeners? 

Table 4-8. Effect of correlation coefficient ρ on system failure probabilities and 
effectiveness of certification testing. The numbers inside the parentheses 
represent the coefficient of variation of the relevant quantity. The error 
multiplier k is taken as 1.0. 

ρ Pnc/10-4 Pc/10-4 /c ncP P  
0.3 0.506 (678%) 0.161 (885%) 0.319 
0.4 0.761 (615%) 0.255 (794%) 0.335 
0.5 1.11 (563%) 0.390 (718%) 0.350 
0.6 1.60 (519%) 0.583 (655%) 0.365 
0.7 2.27 (480%) 0.859 (516%) 0.378 

 
Additional Safety Factor Due to Redundancy 

Recall that the results given in Table 4-6 show how redundancy reduces the 

probability of failure. For instance, for k=1.0 the average probability of failure before 

certification, Pnc, is reduced from 8.83×10-4 to 1.11×10-4. This reduction in probability of 

failure leads to an increase in the total safety factor. For each error multiplier k value, we 

calculate the additional safety factor required to reduce the probability of failure of a 

structural part to that of the structural system. The second and third columns of Table 4-9 

show two opposing effects on the additional safety factor. As the error grows, the 

probabilities of failure before and after certification increase, so the effect of redundancy 

decreases because the redundancy is more effective for lower failure probabilities. Hence, 

the additional safety factor due to redundancy decreases with increased error (see also 
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Figure 4-5). However, as indicated in the last column of Table 4-9 the ratio of safety 

factors after and before certification testing increases with increased error because the 

certification is more effective for high errors. 

Table 4-9. Additional safety factor due to redundancy 
k ( )F add ncS −  ( )F add cS −  % increase due 

certification 
0.25 1.120 1.120 0.0 
0.50 1.111 1.112 0.1 
0.75 1.101 1.103 0.2 

1 1.093 1.096 0.3 
1.5 1.078 1.085 0.7 

 

 

Figure 4-5. Total safety factors for MEF model for the structural part and system after 
certification 

Effect of Variability Reduction 

Finally, we investigate the effect of variability reduction on the average safety 

factor, design area and system probability of failure. We observe from Table 4-10 that the 

average safety factor and design area increase with the increase of variability in failure 

stress. In addition, we observe from the Pf ratio given in the last column of Table 4-10 

that certification testing becomes less effective as variability increases. Figure 4-6 also 

shows the reduced efficiency of testing with increased variability. The second column of 

Table 4-10 shows that the certification testing failure rate (CFR) reduces with increased 
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variability. As variability is increased, the built load carrying area is also increased 

(column 5), so CFR is reduced accordingly. 

Table 4-10. Comparison of system failure probabilities corresponding to different 
variability in failure stress σf. 

c.o.v. 
(σf) 

CFR(a) 

(%) 
Average 

Abuilt/A0 (b) 
Average 

Acert/A0 (b) ncP /10-4
cP /10-4 Pf 

Ratio 
0 50.0 1.521 1.676 9.27 0.001 0.001 

4% 32.3 1.629 1.727 2.00 0.008 0.040 
8% 18.0 1.747 1.799 1.11 0.390 0.350 
12% 11.6 1.878 1.910 1.19 0.737 0.619 

(a)CFR: Certification failure rate 
(b) Abuilt/A0 and Acert/A0 are the total safety factors before and after certification testing, 
respectively. 

 

Figure 4-6. Effect of variability on failure probability 

Table 4-10 shows two opposing effects of variability on the two failure 

probabilities (before certification, ncP , and after certification, cP , see columns 7 and 8). 

When the coefficient of variation in the failure stress is increased from 0% to 8%, the 

safety factor before certification (column 3) increases from 1.521 to 1.676, because a 

smaller B-basis value is used for the allowable failure stress. Note that the initial safety 

factor for no variability would be 1.5 if the error distribution (hence the safety factor 

distribution) is symmetric, but since the distributions are skewed (see Figures 4-1 and 4-



80 

 

2) the safety factor is 1.521. The increase in the safety factor with increased error leads to 

a reduction in the probability of failure before certification (column 5). However, for 

higher coefficients of variation, the probability of failure before certification increases 

again, because the increased safety factor is not enough to compensate for the large 

variation in airplanes. However, once certification is included, the picture is different. For 

no variability, even though the safety factor is increased by 10% (from 1.521 to 1.676, 

see columns 3 and 4), the probability of failure reduces four order of magnitudes 

(columns 5 and 6) due to the high effectiveness of certification testing at low variability. 

As variability increases, the effectiveness of certification testing reduces (column 7), so 

the probability of failure after certification is still high. 

Table 4-10 also indicates the advantage of reducing variability. Reducing 

variability from 8% to 4% reduces the weight by 4%, while at the same time reducing the 

probability of failure by a factor of 50. However, the certification failure rate is 

unacceptably increased from 18% to 32%. To compensate for this, however, a company 

may reduce the weight gain back to an additional safety factor of 1.747/1.629=1.072, and 

have a reduced system probability of failure of 3.64×10-6 (compared to 3.90×10-5) and a 

reduced certification failure rate of 14.7% (compared to 18.0%). However, in reality 

companies reduce the chance of certification failure by structural element tests and 

conservative interpretation of the results of these tests. These are not analyzed in this 

chapter. The effects of structural element tests will be discussed in detail in Chapter 7. 

In addition, Table 4-10 reveals that variability reduction is more effective than error 

reduction. For example, reducing all errors by half (i.e., reducing k from 1 to 0.5) leads to 

reducing the built safety factor from 1.747 to 1.730 (Table 4-4), along with reducing the 
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system probability of failure from 3.90×10-5 to 2.20×10-6 (Table 4-6). On the other hand, 

reducing variability by half (that is, reducing c.o.v. of the failure stress from 8% to 4%) 

leads to reducing the built safety factor from 1.747 to 1.629, along with reducing the 

system probability of failure from 3.90×10-5 to 8.0×10-7 (Table 4-10). That is, variability 

reduction leads to more weight saving and probability of failure reduction than error 

reduction. 

Summary 

The relative effectiveness of safety measures taken during aircraft structural design 

is demonstrated in this chapter. The safety factor, conservative material properties, 

certification testing, redundancy, error and variability reduction were included in this 

study and the following was observed. 

• While certification testing is more effective for improving safety rather than 
increased safety factors, it cannot compete with even a small reduction in errors. 

• Variability reduction is even more effective than error reduction, but it needs to be 
accompanied by additional knockdown factors to compensate for the increase in the 
B-basis value. 

• Our probabilities of failure are still high compared with the historical record 
(probability of failure of 10-7). This is probably due to the effect of building block 
tests, which we will address in Chapter 7. 

• One safety measure, certification testing, is more effective when errors are large, 
while another safety measure, redundancy, is more effective when errors are low. 
Certification testing is more effective when the variability is low. At a low 
variability level, redundancy accompanied with certification testing is effective. 

• Adding redundancy is equivalent to using an additional safety factor of about 1.1. 
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CHAPTER 5 
INCREASING ALLOWABLE FLIGHT LOADS BY IMPROVED STRUCTURAL 

MODELING 

In this chapter we analyze the tradeoffs of allowable flight loads and safety of 

aerospace structures via deterministic and probabilistic design methodologies. The design 

methodologies are illustrated by performing allowable flight load calculation of a 

sandwich panel used in aerospace structures. We explore the effect of using a more 

accurate prediction technique for interfacial fracture toughness, which combines 

interfacial fracture toughness with mode-mixity instead of using the traditional model 

that disregards mode-mixity, on increasing the allowable design load of existing 

structures.  

The work presented in this chapter was also published in Acar et al. (2006b). Mr. 

Xueshi Qiu is acknowledged for his contribution to this work. 

Introduction 

Structural design of aerospace structures is still performed with deterministic 

design philosophy. Researchers are constantly improving the accuracy of structural 

analysis and failure prediction. This improvement in accuracy reduces uncertainty in 

aircraft design and can therefore be used to enhance safety. However, since the record of 

structural safety in civilian transport aircraft is very good, it makes sense to ask how to 

translate the reduced uncertainty to increased flight loads or weight reduction if safety is 

to be maintained at a specified level. The term “allowable flight load” here refers to the 

maximum allowable load that can be carried by the structure for a specific failure mode. 
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Currently, there is no accepted way to translate the improvements in accuracy to weight 

savings or increased allowable flight loads. The objective of this chapter is to take the 

first step in this direction by utilizing probabilistic design methodology. Haftka (2005) 

describes how works of Starnes and colleagues (e.g., Li et al. 1997, Arbocz and Starnes 

2002) to model variability in buckling of circular cylinders inspired work in his research 

group on using variability control on reducing the weight of composite liquid hydrogen 

tanks. Qu et al. (2003) showed that for fixed probability of failure, small reductions in 

variability can be translated to substantial weight savings. Here we seek to investigate the 

potential of improved structural modeling. 

Some commercial aircraft which entered service in 1970’s or 1980’s are expected 

to reach their design service life soon. However, since researchers are constantly 

improving the accuracy of structural analysis and failure prediction, the maximum 

allowable flight loads of those aircraft can be recalculated to utilize the full potential of 

their structures. Motivated by this goal, we consider a given aerospace structure that is 

already designed and we aim to re-calculate the allowable flight load of the structure due 

to improved analysis. We expect that for some designs, lower allowable loads will be 

predicted by the improved analysis, whereas for others higher allowable flight loads will 

be predicted. However, because improved models reduce uncertainty, we may expect an 

average increase of the allow-able flight loads over all designs. An important focus of the 

chapter is to show that modeling error can masquerade as observed variability, which can 

be reduced (or even eliminated) by better understanding of the physical phenomenon. 

Here, we chose a sandwich panel as an example because the improved model was 

developed by one of the authors and we had good access to the details of experiments and 



84 

 

computations. Sandwich structures are used in aerospace vehicles due to their low areal 

density and high stiffness. Debonding of core from the face sheet is a common failure 

mode in sandwich construction, and the interfacial fracture is traditionally characterized 

by a single fracture toughness parameter. However, in reality the fracture toughness is a 

function of the relative amount of mode II to mode I (mode-mixity) acting on the 

interface (e.g., Suo 1999). Stiffness of sandwich structures depends very much on the 

integrity of the face sheet/core bonding. Even a small disbond can significantly reduce 

the load carrying capacity, especially when the structure is under compressive loads 

(Avery and Sankar 2000, Sankar and Narayanan 2001). Grau et al. (2005) measured the 

interfacial fracture toughness as a function of mode-mixity to characterize the 

propagation of the disbond between the face sheet and the core. They performed 

asymmetric double cantilever beam fracture tests to determine the interfacial fracture 

toughness of the sandwich composite, and then demonstrated its application in predicting 

the performance of a sandwich structure containing a disbond. The use of mode-mixity 

dependent fracture toughness led to improvement in the accuracy of failure prediction of 

the debonded structure. We perform probabilistic analysis of the debonded sandwich 

structure analyzed by deterministic approach by Grau et al. (2005) to explore a possible 

increase in the allowable flight load of the structure.  

The following section discusses the design of a sandwich structure used as an 

illustration. Next, the analysis of structural uncertainties (error and variability), with the 

main perspective of how to control uncertainty, is presented. Then, discussion on 

calculation of B-basis properties and allowable flight load calculation for sandwich 

structures by deterministic design are given. Next, the assessment of probability of failure 
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of sandwich structures is presented, followed by discussion of the tradeoffs of accuracy 

and allowable flight load via probabilistic design. The chapter is finalized with 

concluding remarks given in Summary section.  

Structural Analysis of a Sandwich Structure 

Sandwich panels are susceptible to debonding of the face sheet from the core. This 

is similar to the phenomenon of delamination in laminated composites. Disbonds can 

develop due to poor manufacturing or during service, for example, due to foreign object 

impact damage. Evaluation of damage and prediction of residual strength and stiffness of 

debonded sandwich panels is critical because the disbonds can grow in an unstable 

manner and can lead to catastrophic failure. Stiffness of sandwich structures depends 

very much on the integrity of the face sheet/core bonding. Even a small disbond can 

significantly reduce the load carrying capacity, when the structure is under compressive 

loads (Avery and Sankar 2000, Sankar and Narayanan 2001), because the debonded face 

sheet can buckle and create conditions at the crack tip that are conducive for unstable 

propagation of the disbond. This problem has become very significant after the historic 

failure of X-33 vehicle fuel tank made of sandwich panels of polymer matrix composite 

face sheets and honeycomb core. 

Fracture at the interface between dissimilar materials is a critical phenomenon in 

many multi-material systems including sandwich construction. Traditionally, in 

engineering practice, the interfacial fracture was characterized by a single fracture 

toughness parameter obtained by averaging the interfacial fracture toughness, hereinafter 

termed as “average Gc” or Gc
A, obtained for some number of KI and KII combinations, 

where KI and KII are the mode I and mode II stress intensity factors, respectively. Later, 

studies have indicated, e.g. Suo (1999), that for these multi-material systems, the 
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interfacial fracture is a strong function of the relative amount of mode II to mode I acting 

on the inter-face, hereinafter termed as “Gc with mode-mixity” or Gc
MM. The criterion for 

initiation of crack advance at the inter-face can be stated as 

 ( ) ( )IIIc KKGG 1tan, −== ψψ  (5.1) 

where G is the strain energy release rate and Gc is the interfacial fracture toughness, 

which depends on the mode-mixity angle ψ. In bimaterial fracture, KI and KII are the real 

and imaginary parts of the complex stress intensity factor K. The toughness of interface 

( )cG ψ  can be thought of as an effective surface energy that depends on the mode of 

loading. 

Grau et al. (2005) analyzed a debonded sandwich panel, and determined the 

maximum internal gas pressure in the core before the disbond could propagate. They used 

interfacial fracture mechanics concepts to analyze this problem. The main premise here is 

that the crack will propagate when the energy release rate equals the fracture toughness 

for the core/face-sheet interface. The load and boundary conditions for the model 

problem are depicted in Figure 5-1. 

 

Figure 5-1. The model of face-sheet/core debonding in a one-dimensional sandwich panel 
with pressure load. Note that due to symmetry only half of the structure is 
modeled. 
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The maximum allowable pressure for a given disbond length is calculated from the 

energy release rate G0 for a unit applied pressure. The energy release rate G is 

proportional to the square of the applied load or 

 2
0G G p=  (5.2) 

where p is the applied pressure. This failure assessment is a good approximation within 

the limits of a linear analysis. We assume that the epistemic uncertainty related to this 

failure function is negligible compared to the uncertainty in fracture toughness. The 

critical pressure pmax can be obtained using 

 max
0

cGp
G

=  (5.3) 

where Gc is the interfacial fracture toughness of the sandwich material system obtained 

from testing.  

Grau (2003) conducted asymmetric Double Cantilever Beam (DCB) tests to 

determine the interfacial fracture toughness of the sandwich composite. The face sheet 

material was A50TF266 S6 Class E, Fiber designation T800HB-12K-40B, matrix 3631 

and the core sheet material was Euro-Composites aramid (ECA) fiber type honeycomb. 

Grau et al. (2005) performed finite element analyses to compute the mode-mixity angle 

corresponding to designs tested in experiments. The average interfacial fracture 

toughness prediction and the fracture toughness in terms of mode-mixity angle based on 

their work are presented in Figure 5-2. 
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Figure 5-2. Critical energy release rate as a function of mode mixity. The continuous line 
denotes average Gc (Gc

A) and the dashed line denotes a linear least square to 
fit to Gc (Gc

MM) as a function of mode-mixity angle. The linear fit has 
R2

adj=0.473, erms=121.6 N/m. 

As shown in Fig.5-2, a simple way of determining the interfacial fracture toughness 

parameter is to perform fracture toughness tests for different core thickness, face sheet 

thickness and crack length combinations, which correspond to different mode-mixity 

values, and to take the average fracture toughness value. However, as seen from Fig. 5-2 

that the critical energy release rate is assessed better as a function of mode-mixity. Grau 

et al. (2005) represent the critical energy release rate as a linear function of the mode-

mixity (which they calculate from finite element analysis), that improves the accuracy of 

estimate of Gc. 

From Fig. 5-2 we note that without the mode-mixity model, Gc would exhibit huge 

scatter (443 N/m to 1047 N/m). The mode-mixity model reduces the scatter, because 

instead of a constant, Gc is now predicted to vary from 513 N/m to 875 N/m. That is, the 

simplicity of the average Gc model causes error in that model to masquerade as 

variability. For instance, the model of constant gravity acceleration (constant g) will lead 

to a scatter when measured in different towns partially due to difference in altitude. A 
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model that takes altitude into account will show less scatter around the computed value of 

g. The uncertainty reduction in turn can be used to increase the safety or the effective-

ness of the structure. 

Analysis of Error and Variability 

As in the previous chapters, we classify the uncertainties into two as errors and 

variability. The uncertainties that affect the entire fleet are called here errors. They reflect 

inaccurate modeling of physical phenomena, errors in structural analysis, errors in load 

calculations, or use of materials and tooling in construction that are different from those 

specified by the designer. The variability (aleatory uncertainty) reflects variability in 

material properties, geometry, or loading between different copies of the same structure. 

For the sake of simplicity, we assume that with mode-mixity there are no remaining 

errors in the predicted value of Gc for given mode-mixity angle calculated from finite 

element analysis. Adding an estimate of the remaining error can be easily accommodated 

by the analysis below. However, we assume that the scatter of Gc around mode-mixity 

dependent Gc represents variability. The experimental values given in Table 5-1 are the 

mean values of the fracture toughness measured through five experiments in Grau et al. 

(2005) for each mode-mixity. We assume that the use of these mean values eliminates 

most of the measurement variability and leaves out only the material variability. On the 

other hand, the scatter around the average Gc represents combined error and variability.  

The deviations of experimentally measured fracture toughness values from the two 

fits dA and dMM (the deviations from the constant fit and from the linear fit, see Fig. 5-2) 

given in Table 5-1 are calculated from 

 dA = Gc
EXP-Gc

A,   dMM = Gc
EXP-Gc

MM (5.4) 
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where Gc
EXP is the experimentally measured fracture toughness, Gc

A and Gc
MM are the 

fracture toughness from the constant fit and linear fit, respectively. 

Table 5-1. Deviations between measured and fitted values of “average Gc” and “Gc with 
mode mixity” for different designs. The superscript ‘A’ denotes the average 
fracture toughness and ‘MM’ indicates mode-mixity dependent fracture 
toughness, and ‘d’ represents the deviation of experimental values from the 
constant fit or from the linear fit. 

Specimen ψ 
(deg) 

Gc
EXP 

(N/m) 
Gc

A 
(N/m) 

Gc
MM 

(N/m) 
dA 

(N/m) 
dMM 

(N/m) 
1 16.52 609.4 746.6 513.2 -137.1 96.2 
2 17.53 443.1 746.6 552.2 -303.5 -109.1 
3 18.05 577.9 746.6 572.3 -168.7 5.6 
4 18.50 628.7 746.6 589.7 -117.9 39.0 
5 22.39 565.7 746.6 739.5 -180.9 -173.8 
6 23.89 711.0 746.6 797.1 -35.6 -86.1 
7 24.50 863.4 746.6 820.6 116.8 42.8 
8 24.89 956.2 746.6 835.9 209.6 120.3 
9 23.48 679.5 746.6 781.4 -67.1 -101.9 

10 24.98 707.5 746.6 839.3 -39.1 -131.7 
11 25.55 767.1 746.6 861.1 20.5 -94.1 
12 25.90 817.8 746.6 874.8 71.3 -56.9 
13 22.65 702.3 746.6 749.3 -44.3 -47.1 
14 23.69 903.7 746.6 789.5 157.1 114.1 
15 24.15 964.9 746.6 807.2 218.4 157.7 
16 24.54 1047.3 746.6 822.3 300.7 224.9 

Standard deviation 162.2 0 115.6 162.2 113.8 
 
Each row of Table 5-1 corresponds to a different specimen. Each specimen has a 

different core thickness, face sheet thickness and crack length, thus having a different 

mode-mixity angle (calculated through finite element analysis). The sixth column of 

Table 5-1 presents the deviations of Gc values obtained through experiments from their 

average values. These deviations combine variability and error. Errors are due to 

neglecting the effect of mode-mixity in Gc. We assume that these are the only errors so 

that dMM represents only variability. 

Approximate cumulative distribution function (CDF) for the variability is obtained 

by using ARENA software (Kelton et al. 1998). The distribution parameters and 



91 

 

goodness-of-fit statistics for the distributions are as follows. For variability, dMM, 

ARENA found the best distribution as the normal distribution with a mean value of zero 

and a standard deviation of 113.8 N/m. For obtaining goodness-of-fit statistics, Chi-

square and Kolmogorov-Smirnov tests are the commonly used. For our case the number 

of data points is low; hence, the Chi-square test does not provide reliable statistics, 

therefore ARENA uses the Kolmogorov-Smirnov test to decide if a sample comes from a 

population with a specific distribution. The p-value of Kolmogorov-Smirnov test is 

greater than 0.15. For total uncertainty, dA, ARENA found the best distribution as the 

normal distribution with a mean value of zero and a standard deviation of 162.2 N/m. The 

p-value for Kolmogorov-Smirnov test is again greater than 0.15. The corresponding p-

value is a measure for goodness of the fit. Larger p-values indicate better fits (Kelton et 

al. 1998), with p-values less than about 0.05 indicating poor fit. 

Figures 5-3 and 5-4 show the comparison of the actual and fitted CDFs of the 

variability (Fig. 5-3) and the total uncertainty (Fig. 5-4) of the average fracture toughness, 

respectively. In the figures, x-axis represents the fitted CDF while y-axis represents the 

actual CDF. If the fits were exact, they would follow the linear lines shown in the figures. 

We see in Figs. 5-3 and 5-4 that the deviations from the linear lines are not high; and 

hence the fitted distributions are acceptable. 
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Figure 5-3. Comparison of actual and fitted cumulative distribution functions of 
variability, dMM, of Gc. 

 

Figure 5-4. Comparison of actual and fitted cumulative distribution functions of total 
uncertainty (error and variability, dA) of Gc.  

In addition to variability in Gc predictions, there is also variability in the pressure p. 

We assume that the maxi-mum lifetime loading p follows lognormal distribution with 

mean value of pallow and coefficient of variation (c.o.v.) of 10%. 
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Deterministic Design and B-basis Value Calculations 

In deterministic design, the only use of probabilistic (or statistical) information is 

via conservative material properties, which are determined by statistical analysis of 

material tests. FAA regulations (FAR-25.613) state that the conservative material 

properties are characterized as A-basis and B-basis material property values. A-basis 

values are used when there is a single failure path in the structure, while the B-basis 

values are used when there are multiple failure paths in the structure. Detailed 

information on these values is provided in Chapter 8 of Volume 1 of Composite Materials 

Handbook (2002). 

Here we use B-basis Gc, which is defined as the value exceeded by 90% of the 

population (of material batches) with 95% confidence. This is given by 

 BB basis X k s− = −  (5.5) 

where X  is the sample average, s is the sample standard deviation and kB is the tolerance 

coefficient needed to achieve the 90% set-off and the 95% confidence. If infinitely many 

material characterization tests were carried out, there would be no issue of confidence, 

and for normal distribution 90% of the population will be exceeded by 

( ) 282.11.01.0 =Φ== zkB  , where Ф is the CDF of the standard normal distribution. With a 

finite sample of N tests, this is adjusted as 
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 (5.6) 

where z0.1 = ( )1.0Φ  is the critical value of normal distribution that is exceeded with a 

probability of 10%. 
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Grau et al. (2005) used the fracture toughness values obtained from experiments to 

calculate the predicted failure load of a debonded sandwich structure shown earlier in 

Fig. 5-2. They used different core thickness, face sheet thickness and crack length 

combinations and compared the predicted failure load of the structures designed via the 

use of average Gc and mode-mixity dependent Gc. In their failure load calculation, Grau 

et al. (2005) used the mean values for the fracture toughness and they did not use a safety 

factor. 

Here, we use B-basis values for fracture toughness and a safety factor of 1.4 for 

loading to assess the allowable flight load of the same sandwich designs used by Grau et 

al. (2005). To calculate B-basis values, we use the standard deviations for fracture 

toughness given in Table 5-1. The mean values and the corresponding B-basis values of 

the fracture toughness for the thirteen designs given in the example in Grau et al. (2005) 

are given in Table 5-2. 

Table 5-2. The mean and B-basis values of the fracture toughness of the designs analyzed 
(total 13 designs). The B-basis values are calculated assuming that the 
improvements in accuracy affect the B-basis values 

Design 
number 

Mode-mixity 
angle 
(deg) 

( )A
meancG  

(N/m) 
( )MM

meancG  
(N/m) 

( )A
BbasiscG  

(N/m) 
( )MM

BbasiscG  
(N/m) 

1 16.24 638.8 498.4 308.8 266.9 
2 17.15 638.8 529.0 308.8 297.5 
3 18.95 638.8 589.6 308.8 358.1 
4 21.08 638.8 661.3 308.8 429.8 
5 22.27 638.8 701.3 308.8 469.8 
6 18.32 638.8 568.4 308.8 336.9 
7 20.18 638.8 630.9 308.8 399.4 
8 22.27 638.8 701.4 308.8 469.9 
9 23.41 638.8 739.7 308.8 508.2 

10 18.28 638.8 567.1 308.8 335.6 
11 19.86 638.8 620.2 308.8 388.7 
12 21.57 638.8 708.6 308.8 477.1 
13 16.24 638.8 498.4 308.8 266.9 



95 

 

Even though the scatter around the average Gc is combination of error and 

variability, for deterministic design following FAA regulations it is treated as variability. 

The reduced standard deviation of the mode-mixity dependent Gc allows then increasing 

the B-basis allowable. Figure 5-5 shows the fitted and B-basis values of the two 

approaches. 

 

Figure 5-5. Fitted least square lines for fracture toughness, and derived B-basis 
allowables 

While calculating the B-basis values for fracture toughness given in Table 5-2, we 

use N=16, which increases kB to 2.035. Recall that the standard deviations (σ) of designs 

are obtained in the previous section. For example, for the first design the mean value is 

638.8. The corresponding B-basis value is calculated as 638.8–2.035×162.2 = 308.8. 

After obtaining the B-basis values in Table 5-2, we compute the allowable flight 

load pallow by deterministic design philosophy. As noted earlier, besides the use of B-basis 

material properties, a safety factor of 1.4 is also used for loads. Hence, Eq. (5.3) is 

modified to calculate the allowable flight loads for thirteen different designs as 

 
( )

0

1
1.4

c Bbasis
allow

G
p

G
=  (5.7) 
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The calculated pallow values corresponding to the use of Gc
A and Gc

MM are given in 

Table 5-3. The last column of Table 5-3 shows the percent change in the allowable flight 

load by using Gc
MM instead of Gc

A. We see that allowable flight load is increased by 

13.1% on average by using the mode-mixity based B-basis properties. This is the 

improvement in allowable flight load using a deterministic approach. As shown in the 

next section, this increase in allowable flight load is accompanied by a reduction in 

probability of failure, so that the additional gains may be realized by using probabilistic 

approach. 

Table 5-3. Allowable flight load of failure of the sandwich panels designed using 
deterministic approach. The superscript ‘A’ denotes the use of average 
fracture toughness of experiments and ‘MM’ indicates the use of mode-mixity 
dependent fracture toughness 

Design 
number 

pallow
A 

(kPa) 
pallow

MM 

(kPa) 
% Δp 

1 51.2 47.6 -7.0 
2 267.0 262.0 -1.9 
3 158.6 170.8 7.7 
4 77.1 90.9 18.0 
5 45.2 55.8 22.3 
6 247.2 258.2 4.4 
7 154.1 175.3 13.7 
8 73.1 90.2 23.4 
9 42.8 54.8 28.3 

10 247.2 257.7 4.2 
11 146.2 164.1 12.2 
12 70.1 84.3 20.2 
13 40.8 50.7 24.3 

Average 13.1 
 

Assessment of Probability of Failure 

The probability of failure of a structural component can be expressed in terms of its 

structural response R and its capacity C corresponding to that response by 

 ( )PrfP C R= ≤  (5.8) 
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For the sandwich structure analyzed here the response R=G is the energy release 

rate (Eq. 5.2), and the capacity C=Gc is the interfacial fracture toughness. G depends on 

structural dimensions through G0 (see Eq. (5.2)). Both response G and the capacity Gc 

have variability that needs to be included in the calculation of the probability of failure. 

We assume that the variability in G is mainly due to the variability in load p rather than 

G0. Besides variability, there exist errors in assessing G and Gc (e.g., errors in load, G0, 

and material property calculations).  

The general equation for probability of failure given in Eq. (5.8) can be expressed 

in this problem as 

 ( )2
0Prf cP G G p= ≤  (5.9) 

Then, the probability of failure can be written in a functional form as 

 ( )0, , , , ,f f c G G allow Pc cP P G e VAR p VAR G=  (5.10) 

where cG  is the mean value of Gc, cGe  is the error in Gc predictions (that we reduce by 

using mode-mixity dependent Gc instead of average Gc), cGVAR  is the variability in Gc, 

allowp  is the allowable flight load (or mean value of the loading p), PVAR  is the 

variability in p and 0G  is the strain energy release rate corresponding to unit pressure that 

we assume to be deterministic. Since the limit-state function for this problem, 

2
0cg G G P= − , is a simple function with only two random variables, we easily calculate 

the probability of failure by analytical means as follows 

The probability distribution function (PDF) of a function Z of two random variables 

X and Y, Z=h(X, Y) can be calculated as (Ang and Tang (1975), p.170) 
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 ( ) dy
z
xyxfzf YXZ ∫

∞

∞−
∂
∂

= ,)( ,  (5.11) 

where fX,Y(x,y) is the joint probability distribution function of X and Y. We can write the 

limit-state function for the sandwich panel problem as 

 2
0 pGGg c −=  (5.12) 

Therefore, to calculate the PDF of g from Eq. (5.11), we replace Z with g, X with 

Gc, Y with p, and also we have 2
0 pGgGc += , so 1=

∂
∂

=
∂
∂

g
G

z
x c . After these substitutions 

and noting that p only takes positive values, we get from Eq. (5.11) that 

 ( ),
0

( ) ,G G p ccf g f G p dp
∞

= ∫  (5.13) 

Here we assume that Gc and p are statistically independent, hence the joint 

distribution in Eq. (5.13) is calculated as 

 ( ) ( ) ( )pfpGgfpGf pcGcpcG
2

0, , +=  (5.14) 

Then, the cumulative distribution function (CDF) of g is calculated as 

 ( ) ( ') '
g

G GF g f g dg
−∞

= ∫  (5.15) 

which allows us to compute the probability of failure simply as Pf = FG(0). 

Table 5-4 shows the probabilities of failure corresponding to deterministic 

allowable flight loads. We observe that in addition to the 13.1% average increase in 

allowable flight load, the average probability of failure was reduced by about a factor of 

five. 
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Table 5-4. Corresponding probabilities of failure of the sandwich panels designed using 
deterministic approach. The superscript ‘A’ denotes the use of average 
fracture toughness of experiments and ‘MM’ indicates the use of mode-mixity 
dependent fracture toughness. The B-basis values are calculated considering 
that the improvements in accuracy affect the B-basis values (adjusted B-basis 
values). 
Design number Pf

A (10-3) Pf
MM (10-3) 

1 1.869 1.064 
2 1.869 0.762 
3 1.869 0.407 
4 1.869 0.211 
5 1.869 0.153 
6 1.869 0.504 
7 1.869 0.275 
8 1.869 0.153 
9 1.869 0.117 

10 1.869 0.511 
11 1.869 0.304 
12 1.869 0.184 
13 1.869 0.145 

Average 1.869 0.369 
 
Notice that the probabilities of failure given in Table 5-4 are high. These 

probabilities of failure correspond to component failure probabilities. The probability of 

the actual structure will be much smaller due to the redundancy in the structure. For 

example, if we define the failure of the structure as simultaneous failures of two 

components having a correlation coefficient (of probability of failure) of 0.5, then 

component probabilities of failure 1.869×10-3 and 0.369×10-3 given in the last row of 

Table 5-4 correspond to system probabilities of failure 1.28×10-4 and 1.39×10-5, 

respectively. 

Analyzing the Effects of Improved Model on Allowable Flight Loads via 
Probabilistic Design 

As seen from Eq. (5.10), there are four distinct ways to increase the allowable flight 

load of a structure: (a) Use a different material to increase cG ; (b) Develop more accurate 

solutions that reduce cGe  (such as the use of mode-mixity dependent Gc instead of 
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average Gc); (c) Improve quality control and manufacturing processes to reduce 

variability cGVAR  or employ measures to reduce PVAR ; (d) Use a heavier design to reduce 

G0. For a structure that is already built, only option (b) is available. 

The previous section showed how reductions in variability can increase allowable 

flight load using deterministic design. For probabilistic design, the mode-mixity approach 

is treated as accuracy improvement and we calculate its effect on the safe allowable flight 

load. 

For a target probability of failure, ( )
targetfP , the allowable flight load can be 

calculated from 

 ( ) ( )0 target
, , , , ,

c cf f c G G allow P fP P G e VAR p VAR G P= =  (5.16) 

Thus, given the target probability of failure, the allowable flight loads 

corresponding to different error factors on fracture toughness, cGe , can be calculated 

from Eq. (5.17).  

 ( ) ( ) ( )1 21 2 target
, ,

c cf G allow f G allow fP e p P e p P= =  (5.17) 

For the present calculation, the target probability of failure is taken 1.869×10-3, 

which is the probability of failure with the deterministic allowable flight load using the 

average Gc (see Table 5-4). Table 5-5 shows the comparison of allowable flight load for 

the average Gc and mode-mixity dependent Gc approaches in case of probabilistic design. 

We see in Table 5-5 that by fixing the probability of failure rather than adjusting the B-

basis properties, the average allowable flight load can be increased by 26.5%. It must be 

noted, however, that for some structures the improved analysis may indicate a small 

reduction in allowable flight loads. With the deterministic approach, this applied to 
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Designs 1 and 2 (Table 5-3), while with the probabilistic approach, only Design 1 suffers 

(a small) load reduction. 

Table 5-5. Allowable flight loads of the sandwich panels calculated via probabilistic 
approach. The superscript ‘A’ denotes the use of average fracture toughness of 
experiments and ‘MM’ indicates the use of mode-mixity dependent fracture 
toughness. The probabilities of failure of the all designs are 1.869×10-3. 

Design number pallow
A 

(kPa) 
pallow

MM 

(kPa) 
% Δp 

1 51.2 50.5 -1.3 
2 266.9 283.9 6.4 
3 158.6 190.1 19.9 
4 77.1 102.6 33.1 
5 45.2 63.2 39.8 
6 247.3 285.2 15.3 
7 154.2 196.9 27.7 
8 73.1 102.3 39.9 
9 42.8 62.4 45.8 

10 247.3 284.4 15.0 
11 146.2 184.0 25.8 
12 70.1 95.4 36.1 
13 40.8 57.6 41.1 

Average 26.5 
 

Summary 

The effect of improved model for fracture toughness on allowable flight load was 

investigated using both deterministic and probabilistic design methodologies. For 

deterministic allowable flight load calculation, the improved model reduces scatter and 

allows increase in the fracture toughness allowable calculated by B-basis properties, 

while for probabilistic allowable flight load calculation, the reduced error is incorporated 

into the calculation of probability of failure. We find that the deterministic approach leads 

to 13.1% increase on average in the allowable flight load and reduction of the probability 

of failure by a factor of five. The use of B-basis properties in the deterministic de-sign 

does not permit translating the full potential of improved modeling to increase allowable 
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flight loads. In contrast, the probabilistic approach allows 26.5% increase on average in 

the allowable flight load, while still maintaining the original probability of failure. 
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CHAPTER 6 
TRADEOFF OF UNCERTAINTY REDUCTION MECHANISMS FOR REDUCING 

STRUCTURAL WEIGHT 

Inspired by work on allocating risk between the different components of a system 

for a minimal cost, we explore the optimal allocation of uncertainty in a single 

component. The tradeoffs of uncertainty reduction measures on the weight of structures 

designed for reliability are explored. The uncertainties in the problem are broadly 

classified as error and variability. Probabilistic design is carried out to analyze the effect 

of reducing error and variability on the weight. As a demonstration problem, the design 

of composite laminates at cryogenic temperatures is chosen because the design is 

sensitive to uncertainties. For illustration, variability reduction takes the form of quality 

control, while error is reduced by including the effect of chemical shrinkage in the 

analysis. Tradeoff plots of uncertainty reduction measures, probability of failure and 

weight are generated that could allow choice of optimal uncertainty reduction measure 

combination to reach a target probability of failure with minimum cost. In addition, we 

also compare response surface approximations to direct approximation of a probability 

distribution for efficient estimation of reliability. 

The research presented in this chapter will also be published in Acar et al. (2006c). 

Dr. Theodore F. Johnson of NASA Langley Research Center is acknowledged for his 

contribution to this work. 
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Introduction 

For systems composed of multiple components, system failure probability depends 

on the failure probabilities of the components, and the cost of changing the failure 

probability may vary from one component to another. The risk or reliability allocation 

problem can be defined (Mohamed et al. 1991, Knoll 1983, Hurd 1980) as determining 

the optimal component reliabilities such that the system objective function (e.g., cost) is 

optimized and all design constraints (e.g., system reliability level) are met. Several 

researchers applied risk and reliability allocation methods to optimize the total cost of 

nuclear power plants by allocating the risk and reliability of individual subsystems such 

that a specified reliability goal is met (Gokcek et al. 1978, Cho et al. 1986, Yang et al. 

1989 and Yang et al. 1999). Ivanovic (2000) applied reliability allocation to design of a 

motor vehicle. The vehicle reliability is allocated to its elements for minimum vehicle 

cost while keeping the reliability of the vehicle at a specified level. Acar and Haftka 

(2005) investigated reliability allocation between the wing and tail of a transport aircraft. 

The concept of risk allocation is also used in finance applications, where risk allocation is 

defined as the process of apportioning individual risks relating to projects and service 

delivery to the party best placed to manage each risk. Risks are allocated across the 

supply chain – that is, between the department, its customers, its suppliers and their 

subcontractors. Vogler (1997), Bing et al. (2005) and Niehaus (2003) are some examples 

of numerous publications on risk allocation in finance applications. 

Instead of considering a system of multiple components, we may also consider 

multiple sources of uncertainty for a single component. Again, the probability of failure 

can be reduced by reducing the uncertainty from each source, with different cost 

associated with each. That is, the probability constraints can be satisfied by reducing 
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different types of uncertainties. The objective of this chapter is to demonstrate this 

approach for reliability based design optimization (RBDO) of structures. 

As in earlier chapters, uncertainty is divided into error and variability, to 

distinguish between uncertainties that apply equally to an entire fleet of a structural 

model (error) and the uncertainties that vary for an individual structure (variability).  

In aircraft structural design there are different players engaged in uncertainty 

reduction. Researchers reduce errors by developing better models of failure prediction 

and this leads to safer structures (see Chapter 5). Aircraft companies constantly improve 

finite element models, thus reducing errors in structural response. The Federal Aviation 

Administration (FAA) leads to further reduction in error through the process of 

certification testing. Aircraft makers also constantly improve manufacturing techniques 

and quality control procedure to reduce variability between airplanes. Airlines reduce 

variability in structural failure due to operating conditions by conducting inspections, and 

the FAA contributes to reduced variability by licensing pilots, thereby reducing the risk 

that incompetent pilots may subject airplanes to excessively high loads. 

These uncertainty reduction mechanisms are costly, and their cost can be traded 

against the cost of making the structure safer by increasing its weight. Kale et al. 2005 

investigated the tradeoff of inspection cost against the cost of structural weight, and 

found that inspections are quite cost effective. Qu et al. (2003) analyzed the effect of 

variability reduction on the weight savings from composite laminates under cryogenic 

conditions. They found that employing quality control to -2sigma for the transverse 

failure strain may reduce the weight of composite laminates operating at cryogenic 
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temperatures by 25% marking such laminates as a structure where weight is sensitive to 

the magnitude of uncertainties. 

Here, we use the example of this composite laminate to explore tradeoffs between 

the variability reduction, considered by Qu et al. (2003), and error reduction in the form 

of improved accuracy of structural analysis.  

The chapter is organized as follows. The design of composite laminates for 

cryogenic temperatures is discussed in the next section. Then, probability of failure 

estimation of the laminates is described, followed by the formulation of the probabilistic 

design optimization for our problem. Next, weight savings using error and variability 

reduction mechanisms are given. Finally, the optimum use of uncertainty reduction 

mechanisms is discussed, followed by the summary of the chapter. 

Design of Composite Laminates for Cryogenic Temperatures 

We consider the design of a composite panel at cryogenic temperatures as 

demonstration for trading off uncertainty reduction mechanisms. The definition of the 

problem is taken directly from Qu et al. (2003). The laminate (Fig. 6-1) is subject to 

mechanical loading (Nx is 4,800 lb/inch and Ny is 2,400 lb/inch) and thermal loading due 

to the operating temperature -423°F, where the stress-free temperature is 300°F. 

The objective is to optimize the weight of laminates with two ply angles 

[ ]1 2/ sθ θ± ±  . The design variables are the ply angles θ1, θ2 and ply thicknesses t1, t2. The 

material used in the laminates is IM600/133 graphite-epoxy of ply thickness 0.005 inch. 

The minimum thickness necessary to prevent hydrogen leakage is assumed to be 0.04 

inch. The geometry and loading conditions are shown in Fig. 6-1. Temperature-dependent 

material properties are given in Appendix G. 
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The deterministic design optimization of the problem was solved by Qu et al. 

(2003). They used continuous design variables and rounded the thicknesses to integer 

multiples of the basic ply thickness 0.005 inches. In the deterministic optimization, they 

multiplied the strains by a safety factor of SF=1.4.  

The deterministic optimization problem is formulated as 

 

( )
1 2 1 2

1 2, , ,

1 1 1 2 2 2 12 12

1 2

min 4

such that , ,
, 0.005

t t

L U L U U
F F F

h t t

S S S
t t in

θ θ

ε ε ε ε ε ε γ γ

= +

≤ ≤ ≤ ≤ ≤

≥

 (6.1) 

where the allowable strains are given in Table 6-1. 

Table 6-1. Allowable strains for IM600/133 

1
Lε  1

Uε  2
Lε  2

Uε  12
Uγ  

-0.0109 0.0103 -0.013 0.0154 0.0138 
 

 

Figure 6-1. Geometry and loading of the laminate with two ply angles. Note that x-is the 
hoop direction and y is the axial direction. 

Since designs must be feasible for the entire range of temperatures, strain 

constraints were applied at twenty-one different temperatures, which were uniformly 

distributed from 77°F to –423°F. Qu et al. (2003) found the optimum design given in 

Table 6-2.  
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Table 6-2. Deterministic optimum design*. The number in parentheses denotes the 
unrounded design thicknesses. 

1θ  (deg) 2θ  (deg) t1 (in) t2 (in) h (in) 

27.04 27.04 0.010 0.015 0.100 (0.095) 
* taken from Qu et al. (2003) 

Calculation of Probability of Failure 

The failure of the laminates is assessed based on the first ply failure according to 

the maximum strain failure criterion. The strain allowables listed in Table 6-1 are the 

mean values of the failure strains according to Qu et al. (2003).  

The first step in the calculation of the probability of failure is to quantify 

uncertainties included in the problem. As in earlier chapters, we use a simple 

classification for uncertainty to distinguish between the uncertainties that apply equally to 

the entire fleet of a structural model (errors) and the uncertainties that vary for an 

individual structure (variability).  

Since errors are epistemic, they are often modeled using fuzzy numbers or 

possibility analysis (Antonsson and Otto 1995, Nikolaidis et al. 2004 and Vanegas and 

Labib 2005). We model the errors probabilistically by using uniform distributions to 

maximize the entropy. Variability refers to the departure of a quantity in individual 

laminates that have the same design. Here, the elastic properties (E1, E2, G12, and ν12), 

coefficients of thermal expansion (α1 and α2), failure strains (ε1
L, ε1

U, ε2
L, ε2

U, and γ12
U) 

and the stress-free temperature (Tzero) have variability. These random variables are all 

assumed to follow uncorrelated normal distributions, with coefficients of variations listed 

in Table 6-3. 

Table 6-3. Coefficients of variation of the random variables (assumed uncorrelated 
normal distributions) 

E1, E2, G12, and ν12 α 1 and α2 Tzero ε1
L and ε1

U ε2
L, ε2

U, and γ12
U 

0.035 0.035 0.03 0.06 0.09 
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We also use a simple error model, assuming that calculated values of failure strains 

differ from actual values due to experimental or measurement errors. Using standard 

classical lamination theory (CLT) for ply strain calculation leads to errors in part, because 

standard CLT does not take chemical shrinkage into account. We relate the actual values 

of the strains to their calculated values via Eq. (6.2) 

 ( ) truecalc e εε += 1  (6.2) 

where e is the representative error factor that includes the effect of all error sources on the 

values of strains and failure strains. For example, if the estimated failure strain is 10% too 

high, this is approximately equivalent to the strain being calculated 10% too low. For the 

error factor e, we use a uniform distribution with bounds of ±be. This error bound can be 

reduced by using more accurate failure models. For example, the cure reference method 

(Ifju et al. 2000) may be used to account for the shrinkage due to a chemical process. In 

Sections 6-4 and 6-5, we will investigate the effect of reducing be on the probability of 

failure and the weight. 

To calculate the probability of failure, we use Monte Carlo Simulation (MCS). For 

acceptable accuracy, sufficient strain analyses (simulations) must be obtained through 

standard CLT analysis. However, this is computationally expensive and needs to be 

repeated many times during the optimization. In order to reduce the computational cost, 

Qu et al. [19] used response surface approximations for strains (ε1 in θ1, ε1 in θ2, ε2 in θ1, 

ε2 in θ2, γ12 in θ1, and γ12 in θ2). They fitted quadratic response surface approximations to 

strains in terms of four design variables (t1, t2, θ1, and θ2), material parameters (E1, E2, 

G12, ν12, α1, and α2) and service temperature Tserv. These response surfaces were called the 

analysis response surfaces (ARS), because they replace the CLT analysis. A quadratic 
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response surface approximation in terms of 12 variables includes 91 coefficients, so they 

used 182 realizations from Latin hypercube sampling (LHS) design. As seen from Table 

6-4 the root mean square error predictions are less than 2% of the mean responses, so the 

accuracies of the ARS is good. 

Table 6-4. Evaluation of the accuracy of the analysis response surface(a). Note that the 
strains are in millistrains. 

 ε1 in θ1 ε1 in θ2 ε2 in θ1 ε2 in θ2 γ12 in θ1 γ12 in θ2 
R2

adj
(b) 0.9977 0.9978 0.9956 0.9961 0.9991 0.9990 

RMSE 
Predictor(c) 0.017 0.017 0.060 0.055 0.055 0.060 

Mean of 
response 1.114 1.108 8.322 8.328 -3.13 -3.14 

(a) taken from Qu et al. (2003) 
(b) adjusted coefficient of multiple determination 
(c) root mean square error predictor 

 
We found, however, that even small errors in strain values may lead to large errors 

in probability of failure calculations, so we considered approximate cumulative 

distribution functions (CDF) of strains instead of ARS. We assume normal distributions 

for strains and estimate the mean and the standard deviation of strains conservatively by 

MCS. That is, the mean and standard deviation of the assumed distribution are found so 

that the CDF of the approximated distribution is smaller than or equal to (i.e., more 

conservative) the CDF calculated via MCS, except for strain values very near the tail of 

the distribution. Detailed information on conservative CDF fitting is given in Appendix 

H. We use 1,000 MCS simulations, which are accurate to a few percent of the standard 

deviation for estimating the mean and standard deviation. Cumulative distribution 

function obtained through 1,000 MCS, the approximate normal distribution and the 

conservative approximate normal distributions for ε2 corresponding to one of the 

deterministic optimum are compared in Figs. 6-2(a) and 6-2(b).  
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Next, we compare the accuracy of the analysis response surface and approximate 

CDF approaches by using 1,000,000 MCS in Table 6-5. We can see that the use of 

approximate CDFs for strains leads to more accurate probability of failure estimations 

than the use of ARS. Furthermore, the case of conservative fit to CDF leads to 

overestimation of the probability of failure. However, the approximate CDFs were 

obtained by performing 1,000 MCS, while the ARS were constrained by using only 182 

MCS. In addition, the approximate CDF needs to be repeatedly calculated for each 

design. It is possible that some combination of ARS with approximate CDF may be more 

efficient and accurate than either using ARS or approximate CDF alone, and this might 

be explored in future work. 

 

Figure 6-2. Comparison of CDF obtained via 1,000 MCS, the approximate normal 
distribution and conservative approximate normal distributions for ε2 on θ1 
corresponding to the deterministic optimum. 

Table 6-5. Comparison of probability of failure estimations for the deterministic 
optimum(a). Samples size of MCS is 1,000,000. 

Approach followed Probability of Failure, 
Pf  (×10-4) 

Standard error in Pf due to 
limited sampling (×10-4) 

MCS with CLT (exact analysis) 10.21 0.320 
MCS with ARS* of strains 16.83 0.410 
MCS with approximation to CDF 
of strains 11.55 0.340 

(a) Taken from Qu et al. (2003) 
(b) ARS: Analysis response surface approximation 
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Probabilistic Design Optimization 

The laminates are designed for a target failure probability of 10-4. The optimization 

problem can be formulated as given in Eq. (6.3). The design variables are the ply 

thicknesses and angles.  

 

( )

( )
1 2 1 2

1 2, , ,

1 2

min 4

such that

, 0.005

t t

f f target

h t t

P P

t t in

θ θ
= +

≤

≥

 (6.3) 

For this optimization, we need to fit a design response surface (DRS) to the 

probability of failure in terms of the design variables. The accuracy of the DRS may be 

improved by using an inverse safety measure. We use the probabilistic sufficiency factor 

(PSF) developed by Qu and Haftka (2004). 

Probabilistic Sufficiency Factor (PSF) 

The safety factor S is defined as the ratio of the capacity GC of the structure to the 

structural response GR. The PSF is the probabilistic interpretation of the safety factor S 

with its CDF defined as 

 ( ) Prob C
S

R

GF s s
G

⎛ ⎞
= ≤⎜ ⎟

⎝ ⎠
 (6.4) 

Given a target probability of failure, ( )f target
P , PSF is defined as the solution to 

 ( ) ( ) ( ) arg
Prob ProbC

S f t etR

GF s PSF S PSF P
G

⎛ ⎞
= ≤ = ≤ =⎜ ⎟

⎝ ⎠
 (6.5) 

That is, the PSF is the safety factor obtained by equating the CDF of the safety 

factor to the target failure probability. The PSF takes values such that 
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When MCS are used, the PSF can be estimated as the nth smallest safety factor 

over all MCS, where n = N× ( )f target
P . Using the PSF, the optimization problem can be 

formulated as 
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min 4
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θ θ
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≤
≥

 (6.7) 

The optimization problem given in Eq. (6.7) is solved by using Sequential 

Quadratic Programming (SQP) in MATLAB. 

Design Response Surface (DRS) 

We have three components of strain for each angle: ε1, ε2 and γ12. The strain ε2 and 

γ12 are more critical than ε1. The mean and standard deviation of four strains (ε2 in θ1, ε2 

in θ2, γ12 in θ1 and γ12 in θ2) are computed by using MCS of sample size 1,000 and fitted 

with conservative normal distributions as shown in Fig. 6-2. These distributions are used 

in MCS using 1,000,000 simulations at each design point to compute PSF. In order to 

perform the optimization, we need to approximate the PSF in terms of the design 

variables by a design response surface (DRS). We fit three DRS of the PSF as function of 

the four design variables (t1, t2, θ1, and θ2) for three different error bound (be) values of 0, 

10%, and 20%. As shown in Appendix I, the use of the PSF leads to much more accurate 

estimate of the safety margin than fitting a DRS to the probability of failure. 
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Weight Savings by Reducing Error and Employing Manufacturing Quality Control 

As noted earlier, the probabilistic design optimizations of the composite laminates 

were performed for three different values of the error bound, be, namely 0, 10%, and 

20%. Schultz et al. (2005) have shown that neglecting chemical shrinkage leads to 

substantial errors in strain calculations. Based on Schultz et al. (2005), we assume that 

using the standard CLT without chemical shrinkage leads to 20% errors in strain 

calculations, while using the modified CLT (i.e., CLT that takes chemical shrinkage into 

account) leads to the reduction of error bounds from 20% to 10%. As noted earlier, the 

errors are assumed to have uniform distribution, which corresponds to maximum entropy. 

For the error bounds discussed, we solve the optimization problem given in Eq. 

(6.7). The results of the optimization are presented in Table 6-6 and the weight 

(proportional to thickness) savings due to error reduction are shown in Fig. 6-3. We see 

that reducing the error bounds from 20% to 10% leads to 12.4% weight saving. In 

addition, reducing error from 20% to 0 (clearly only a hypothetical case) leads to weight 

saving of 23.1%. 

Table 6-6. Probabilistic optimum designs for different error bounds when only error 
reduction is applied. The PSF and Pf given in the last two columns are 
calculated via Monte Carlo simulations (sample size of 10,000,000) where the 
strains are directly computed via standard CLT analysis. The numbers in 
parentheses under PSF and Pf show the standard errors due to limited Monte 
Carlo sampling. 

Error 
bound 

θ1 
θ2 

(deg) 

t1 
t2 

(in) 

h (in) 
[Δh* (%)] PSF Pf

 

(1×10-4) 

0 25.47 
26.06 

0.0156 
0.0137 

0.1169 
[23.1] 

0.9986 
(0.0030) 

1.017 
(0.032) 

10% 25.59 
25.53 

0.0167 
0.0167 

0.1332 
[12.4] 

1.018 
(0.0035) 

0.598 
(0.024) 

20% 23.71 
23.36 

0.0189 
0.0191 

0.1520 
[0.0] 

0.9962 
(0.0035) 

1.111 
(0.105) 

* The optimum laminate thickness for 20% error bound is taken as the basis for Δh computations 
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Figure 6-3. Reducing laminate thickness (hence weight) by error reduction (no variability 
reduction) 

We have shown that it is possible to reduce the laminate thickness by 12.4% 

through reducing the error from 20% to 10%. Now, we combine error reduction with 

variability reduction and analyze the overall benefit of both uncertainty reduction 

mechanisms. An example of variability reduction is testing a set of composite laminates 

and rejecting the laminates having lower failure strains as a form of quality control. The 

test can involve a destructive evaluation of a small coupon cut out from laminate used to 

build the structure. Alternatively, it can involve a non-destructive scan of laminates to 

detect flaws known to be associated with lowered strength. We study the case where 

specimens that have transverse failure strains lower than two standard deviations below 

the mean are rejected (2.3% rejection rate). We construct three new DRS for PSF 

corresponding to error bounds of 0, 10% and 20%.  

The probabilistic design optimizations of composite laminates for three different 

values of error bound (be) are performed and the results are presented in Table 6-7 and in 

Fig. 6-4. We note that when this form of variability reduction is applied, the laminate 
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thickness can be reduced by 19.5%. If the error bound is reduced from 20% to 10% 

together with the variability reduction, the laminate thickness can be reduced by 36.2%. 

Table 6-7. Probabilistic optimum designs for different error bounds when both error and 
variability reduction are applied. PSF and Pf given in the last two columns are 
calculated via MCS (sample size of 10,000,000) where the strains are directly 
computed via the standard CLT analysis. The numbers in parentheses under PSF and 
Pf show the standard errors due to limited sample size of MCS. 

Error 
bound 

θ1 
θ2 

(deg) 

t1 
t2 

(in) 

h (in) 
[Δh* (%)] PSF Pf

 

(×10-4) 

0 28.52 
28.71 

0.0089 
0.0114 

0.0813 
[-46.6] 

0.9965 
(0.0014) 

1.255 
(0.035) 

10% 27.34 
27.37 

0.0129 
0.0114 

0.0970 
[-36.2] 

1.0016 
(0.0015) 

0.906 
(0.030) 

20% 25.57 
25.66 

0.0168 
0.0138 

0.1224 
[-19.5] 

0.9968 
(0.0015) 

1.190 
(0.109) 

* The optimum laminate thickness for the 20% error bound given in Table 6-6 (i.e. 
h=0.1520 in) is taken as the basis for Δh computations 

 

 

Figure 6-4. Reducing laminate thickness by error reduction (ER) and quality control 
(QC). 

The numbers in the last two columns of Table 6-7 show the PSF and Pf calculated 

by using the 10,000,000 MCS where strains are directly calculated through the standard 

CLT analysis. The design values for PSF and Pf of the optimum designs are expected to 

be 1.0 and 10-4. Discrepancies can be the result of the following. 
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• Error due to the use of normal distributions for strains which may not exactly 
follow normal distributions.  

• Error due to limited sample size of MCS while calculating the mean and standard 
distribution of strains.  

• Error due to limited sample size of MCS while computing the probabilistic 
sufficiency factor PSF.  

• Error associated with the use of response surface approximations for PSF. 

Next, a plot for the probability of failure (calculated via 1,000,000 MCS), weight 

and error reduction measures is shown in Fig. 6-5. The optimum ply angles for the case 

with 20% error bound and no variability reduction are 25.59º and 25.53º. Here we take 

both ply angles at 25º. We note from Fig. 6-5 that for our problem, the error reduction is a 

more effective way of reducing weight compared to the specified variability reduction 

when the target probability of failure of the laminates is higher than 2×10-4 and quality 

control is more effective for lower probabilities. 

 

Figure 6-5. Trade-off plot for the probability of failure, design thickness and uncertainty 
reduction measures. ER: error reduction (reducing from 20% to 10%), QC: 
quality control to -2 sigma. 
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Choosing Optimal Uncertainty Reduction Combination 

Obviously, when it comes to a decision of what uncertainty reduction mechanisms 

to use, the choice depends on the cost of the uncertainty reduction measures. For a 

company, the costs of small error reduction may be moderate, since they may involve 

only a search of the literature for the best models available. Substantial error reduction 

may entail the high cost of doing additional research. Similarly, small improvements in 

variability, such as improved quality control may entail using readily available non-

destructive testing methods, while large improvements may entail developing new 

methods, or acquiring expensive new equipment. To illustrate this, we assume a 

hypothetical cost function in quadratic form  

 ( ) ( )2 23Cost A ER B QC= + +  (6.8) 

where A and B are cost parameters, ER represents the error reduction and QC stands for 

the number of standard deviations that are the threshold achieved by quality control. We 

generated hypothetical cost contours by using Eq. (6.8) as shown in Fig. 6-6. The 

nominal value of error is taken as 20% and we assume that the quality control to -3 sigma 

is associated with no cost. For example, if error is reduced from 20% to 15%, ER=0.20-

0.15=0.05. Similarly, if quality control to -2.5sigma is employed, then QC+3 takes the 

value of 0.5. As an example we take A=$20 million and B=$100,000. 

Next, we generated trade-off plot for probability of failure and uncertainty 

reduction measures for laminates of thickness t1=0.010 in and t2=0.015 in as shown in 

Fig. 6-6. The optimum ply angles are calculated such that they minimize the probability 

of failure. The probabilities of failure are calculated via MCS (sample size of 106). The 

hypothetical cost contours for the uncertainty reduction measures given in Fig. 6-6 enable 
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a designer to identify the optimal uncertainty reduction selection. We see in Fig. 6-6 that 

for high probabilities quality control is not cost effective, while for low failure 

probabilities quality control becomes more effective and a proper combination of error 

reduction and quality control leads to a minimum cost. 

 

Figure 6-6. Tradeoff of probability of failure and uncertainty reduction. Probabilities of 
failure are calculated via MCS (sample size of 1,000,000). The crosses in the 
figure indicate the optimal uncertainty reduction combination that minimizes 
the cost of uncertainty reduction for a specified probability of failure. 

Summary 

The tradeoffs of uncertainty reduction measures for minimizing structural weight 

were investigated. Inspired by the allocation of the risk between the components of a 

system for minimal cost, the optimal allocation of uncertainty as error and variability was 

analyzed. As a demonstration problem, the design of composite laminates at cryogenic 

temperatures is chosen because the design is very sensitive to uncertainties. Quality 

control was used as a way to reduce variability, and its effect was compared to the effect 
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of reducing error in the analysis. Tradeoff plots of uncertainty reduction measures, 

probability of failure and weight were generated that would enable a designer to choose 

the optimal uncertainty reduction measure combination to reach a target probability of 

failure with minimum cost.  

For this specific example problem we observed the following 

• Reducing errors from 20% to 10% led to 12% weight reduction 

• Quality control to -2 sigma led to 20% weight reduction 

• The use combined of error reduction and quality control mechanisms reduced the 
weight by 36%. 

• Quality control was more effective at low required failure probabilities, while the 
opposite applied for higher required probabilities of failure. 

 

In addition, a computational procedure for estimating the probability of failure 

based on approximating the cumulative distribution functions for strains in a conservative 

manner was developed. We found that this approach led to more accurate probability of 

failure estimates than response surface approximations of the response. 
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CHAPTER 7 
OPTIMAL CHOICE OF KNOCKDOWN FACTORS THROUGH PROBABILISTIC 

DESIGN 

Structural design of aircraft components still relies on deterministic (or code-based) 

approach governed by the Federal Aviation Administration (FAA) regulations. The use of 

a load safety factor of 1.5 and conservative material properties in design accompanied 

with certification testing of aircraft are required to follow the FAA requirements. On top 

of the FAA requirements aircraft companies add their own knockdown factors, for 

example while updating the allowable stresses based on the results of structural element 

tests. These knockdown factors are mostly based on worst-case scenarios, so they are 

implicit rather than explicit and because of material variability they depend on chance. 

This paper aims to show, however, that these knockdown factors can be selected 

explicitly by taking advantage of probabilistic analysis based on structural element test 

results. The knockdown factors can be chosen so as to minimize the chance of failure in 

certification or proof tests. We find that selection to minimize certification or proof test 

failure rate provides a choice that is also close to the optimum choice that minimizes 

structural failure in flight. We show that explicit knockdown factors can reduce weight 

for the same level of safety and they are also less variable than worst-case knockdown 

factors. In addition, the effects of coupon tests, structural element tests and uncertainty 

reduction mechanisms (such as error reduction by improved structural modeling or 

improved failure prediction, variability reduction by tighter quality control) on structural 

weight are investigated. In particular, since structural tests are expensive, the effect of 
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number of tests on the structural weight is translated to life-time cost by considering 

manufacturing cost and fuel cost. 

Prof. Peter J. Ifju of University of Florida and Dr. Theodore F. Johnson of NASA 

Langley Research Center are acknowledged for their contributions for the research 

presented in this chapter. 

Introduction 

In Chapters 3 and 4, we analyzed the effects of measures that improve aircraft 

structural safety and compared the relative effectiveness of safety measures taken during 

aircraft structural design. The safety measures that we included were the load safety 

factors of 1.5, conservative material properties, redundancy, certification test, and error 

and variability reduction. The most common form of error reduction is conducting 

structural element tests, which is the focus of the present work. Similarly, one possible 

form of variability reduction is employing tighter quality control. Structural element tests 

are usually used conservatively, by taking the worst result of a batch of nominally 

identical tests. This constitutes an implicit knockdown factor because of material and 

test-condition variability. Here we aim to show, however, that it is better to use average 

test results and add explicit safety factors selected by using probabilistic optimization to 

reduce certification or proof test failure rates. 

This chapter is organized as follows. The next section briefly discusses the building 

block approach followed in testing of aircraft structures. Then, the quantification and 

simulation of uncertainties, the allowable stress updating using the results of structural 

element tests through explicit knockdown factors and formulation of total safety factor is 

discussed. Next, a brief discussion on simulation of certification testing and probability of 

failure calculation are given. Then, the results of the optimal choice of knockdown 



123 

 

factors based on minimum certification failure rate and minimum probability of failure 

along with the analysis of effects of safety measures on the optimal choice of knockdown 

factors are presented. Finally, the chapter culminates with the concluding remarks are 

given in the Summary section. 

Testing of Aircraft Structures 

Testing of aircraft structures is performed following a building-block approach 

similar to that of composite structures as shown in Fig. 7-1. First, generic specimens are 

tested where coupon tests are followed by element tests. Then, non-generic specimens are 

tested where details, subcomponents and components are tested. The last level of testing 

is the full scale certification testing of the structural system. 

 

Figure 7-1. Building-block approach for aircraft structural testing (Reprinted, with 
permission, from MIL 17- The Composite Materials Handbook, Vol. 1, 
Chapter 2, copyright ASTM International, 100 Barr Harbor Drive, West 
Conshohocken, PA 19428) 

Here we simplify the pyramid of tests depicted in Fig. 7-1 to three levels as shown 

in Fig. 7-2. The first level is the coupon testing level, where coupons (i.e., material 

samples) are tested. The FAA regulation FAR 25-651 requires aircraft companies to 

perform “enough” tests to establish design values of material strength properties (A-basis 
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or B-basis value). As the number of coupon tests increases, the errors in the assessment 

the material properties are reduced. However, since testing is costly, the number of 

coupon tests is limited to about 100 to 300 for A-basis calculation and 30+ (i.e., more 

than 30) for B-basis value calculation. In our analysis, the nominal value of the number 

of coupon tests is taken 40, and in the Results section of the chapter we analyze the effect 

of number of coupon tests on the optimal choice of the explicit knockdown factors. 

 

Figure 7-2. Simplified three level of tests 

At the second level of testing, structural elements and details are tested. In this 

chapter, we refer to tests at this at this level as structural element tests. The main target of 

structural element tests is to reduce errors related to failure theories (e.g., Tresca, von 

Mises) used in assessing the failure load of the structural details/elements. In this chapter, 

the nominal value of the number of structural element tests is taken as 3. 

At the uppermost level, certification testing of the overall structure is conducted. 

This final certification testing is intended to reduce errors in the structural analysis of the 

overall structure (e.g., errors in finite element analysis, errors in failure mode prediction). 
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Quantification of Errors and Variability 

This section first discusses the errors in estimating the material strength properties 

due to limited number of coupon tests. Then, errors due to inaccuracies of the failure 

theories used to predict the failure load in the structural element tests are introduced. 

Next, the explicit knockdown factors employed on the allowable stresses using the results 

of structural element tests are discussed. Then, the errors in certification tests are 

presented. All the errors are combined to form a total error factor, and a total safety factor 

is defined. Finally, the variabilities in loading, geometry parameters and failure stress are 

discussed. 

Errors in Estimating Material Strength Properties from Coupon Tests 

As noted earlier, the first level in testing sequence is coupon testing to assess the 

statistical characterization of material strength properties, such as failure stress, and their 

corresponding design values (A-basis or B-basis). Since a finite number of coupon tests 

are performed, statistical characterization of the material properties involves errors. For 

example, the error fce  in assessing the mean value of the failure stress at the coupon 

level, fcσ , relates the average value of the failure stress calculated from nc coupon tests, 

( )fc calc
σ , to the true mean value of the failure stress (mean of the infinite size 

population), ( )fc true
σ  

 ( ) ( ) ( )1fc fc fccalc true
eσ σ= −  (7.1) 

where the subscript ‘c’ stands for coupon level tests. The population average ( )fc calc
σ  is 

estimated as the sample average ( )ave
fcσ  obtained from nc coupon tests 
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 ( ) ( )
1

1 c

i

nave
fc fc fccalc c in

σ σ σ
=

≅ = ∑  (7.2) 

where 
ifcσ  is the failure stress calculated from each coupon test. The error fce  is due to 

variability of the failure stress, hence the standard deviation of ( )fc calc
σ  (and of efc) is 

cn  times smaller than the standard deviation of fcσ . Details of assessment of the error 

fce  is given in Appendix J. Notice that in Eq. (7.1) the sign in front of the error fce  is 

negative, because we consistently formulate the expressions such that a positive error 

implies a conservative decision.  

The error fce  may have several components since the failure of many materials is 

characterized by several parameters and related tests, such as tensile limit, compressive 

limit, shear limit, etc. However, we make here a simplifying assumption that all 

components of fcσ  have the same coefficients of variation (c.o.v.) and are based on the 

same number of coupon tests, so they have the same error fce , since fce  depends only on 

the c.o.v. and number of coupon tests (see Appendix J).  

The allowable stress at the coupon level, acσ , can be computed from the failure 

stress calculated at the coupon level, ( )fc calc
σ , by using a knockdown factor, dck , as 

 ( )ac dc fc calc
kσ σ=  (7.3) 

The knockdown factor dck  is specified by the FAA regulations (FAR). For 

instance, for a redundant structure, FAR-25.613 states that the allowable stress must be 

the B-basis value of the failure stress, that is, 90% of the failure stresses (measured in 

coupon tests) must exceed the allowable stress with 95% confidence. The requirement of 
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90% probability and 95% confidence is responsible for the knockdown factor dck  in Eq. 

(7.3). For normal distribution, the knockdown factor depends on the number coupon tests 

and the c.o.v. of the failure stress as 

 ( )1dc B fc calc
k k c= −  (7.4)  

where ( )fc calc
c  is the c.o.v. of failure stress calculated from coupon tests. For lognormal 

distribution the formulation is more complicated, but can be derived utilizing a 

logarithmic transformation. The tolerance coefficient kB is a function of the number of 

coupon tests nc as given in the Composite Material Handbook (2000, Volume 1, Chapter 

8, page 84) as  

 3.191.282 exp 0.958 0.520ln( )B c
c

k n
n

⎛ ⎞
≈ + − +⎜ ⎟

⎝ ⎠
 (7.5)  

Similar to the error fce , the knockdown factor kdc also has several components 

since fcσ  has several components. With the assumption of the same c.o.v. and same 

number of coupon tests for different components of fcσ , a single kdc can be used. 

Errors in Structural Element Tests 

The second level in the testing sequence is the structural element testing  level, 

where structural elements/details are tested to validate the accuracy of the failure criterion 

used (e.g., von Mises, Tsai-Wu). Here, we assume that structural element tests are 

conducted for a specified combination of loads corresponding to critical loading. For this 

load combination, the failure surface can be boiled down to a single failure stress feσ  

(see Fig. 7-3), where the subscript ‘e’ stands for structural element tests.  
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If the failure theory used to predict the failure was perfect, and we performed 

thousands of coupon tests (that essentially reduces the error fce  to zero), then we could 

obtain the true element failure stress at the structural element test from 

 ( ) ( )fe fe fctrue true
σ σ σ⎡ ⎤=

⎣ ⎦
 (7.6)  

where [ ]feσ ⋅ refers to the failure criterion functional used (e.g., von Mises, Tsai-Wu). 

So, the calculated value of failure stress, ( )fe calc
σ , is 

 ( ) ( )fe fe fccalc calc
σ σ σ⎡ ⎤=

⎣ ⎦
 (7.7)  

To relate ( )fe calc
σ  to ( )fe true

σ  we make a simplifying assumption that the failure 

criterion [ ]feσ ⋅  is a homogenous functional of order one, such as von Mises or Tsai-

Hill. Then, 

 ( ) ( ) ( )1fe fc fc fe fccalc true
eσ σ σ σ⎡ ⎤ ⎡ ⎤= −

⎣ ⎦ ⎣ ⎦
 (7.8)  

Since there are errors in failure prediction in structural element testing level due to 

limitations of the failure theory used, we write 

 ( ) ( )( )1fe fc fe fetrue true
eσ σ σ⎡ ⎤ = −

⎣ ⎦
 (7.9)  

Combining Eqs. (7.7), (7.8) and (7.9), the calculated failure stress at the structural 

element level can be related to its true value as 

 ( ) ( )( )( )1 1fe fc fe fecalc true
e eσ σ= − −  (7.10)  

The structural element test is repeated en  times yielding a sample average failure 

stress ( )ave
fe test

σ , which is used to estimate the population average ( )fe test
σ . The 
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population average is now used to update the allowable stresses for the element design. 

We assume that similarly to the knockdown factor dck  mandated by the FAA, the 

designer may add additional knockdown factor fek  to compensate for the uncertainty in 

the element test. The value of fek  is likely depend on whether the failure stress at the 

element test exceeds or falls below the predicted failure stress ( )fe calc
σ . That is, the 

allowable stress based on the element test is calculated from 

 ( )ae fe fe test
kσ σ=  (7.11)  

Allowable stress updating and the use of explicit knockdown factors 

This section describes updating of the allowable stress based on the results of 

structural element tests. First, we discuss updating using worst-case approach, which 

amounts to implicit knockdown factors. Next, allowable stress updating through using 

explicit knockdown factors is explained. Then, updating of error in failure prediction in 

structural element tests is discussed 

Current industrial practice on updating allowable stresses using worst-case 
conditions (implicit knockdown factors) 

Current practice followed in industry is using the smallest of the failure stresses 

measured in structural element tests, ( )worst
fe test

σ , is used to update the allowable stresses. 

We define the ratio of failure stress measured in the tests and calculated (or predicted) 

failure stress, ( )fe calc
σ , as 

 ( )
( )
( )

worst
feworst test

et
fe calc

r
σ

σ
=  (7.12) 
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Then, according to this practice the allowable stress is updated as 

 ( ) ( )worst worst
ae c ae etupd k rσ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

 (7.13)  

where kc is an additional knockdown factor corresponding to worst-case operational 

conditions (e.g., high temperature, humidity). Note here that kc does not depend on the 

results of element tests, that is, ( )c c etk k r≠ . Figure 7-3 shows three aircraft companies A, 

B and C performing three structural element tests. Since we are interested in the implicit 

knockdown factor associated with worst-case conditions, we assume that all three 

companies use the same failure theory. That is, the difference in test results is entirely 

due to material variability. Under these conditions, ( )worst
etr  constitutes an implicit 

knockdown factor. For the examples in this paper, we assume 8% variability in failure 

stress (lognormal distribution). This translates to an average knockdown factor of 0.932 

with a standard deviation of 0.0598. The red knockdown factors in Fig. 7-3 corresponds 

to ( )worst
etr  in Eq. (7.13), blue knockdown factor represents additional knockdown factor 

kc (notice in Figure 7-3 that kc does not depend on element test results). 

Proposal for a better way to update allowable stresses: Using the average failure 
stress measured in the tests and using optimal explicit knockdown factors 

Instead of using the smallest failure stresses measured in tests, we propose to use 

average value of the failure stresses measured in the tests accompanied by an explicit 

knockdown factor selected based on probabilistic analysis. Now, we define the failure 

stress ratio in the structural elements, ( )ave
etr , as the ratio of the average failure stress 

measured in the element test and the calculated failure stress, ( )fe calc
σ , as 
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Figure 7-3. Current use of knockdown factors based on worst-case scenarios. The red 
knockdown factors are due to updating the allowable stress using the worst 
failure stress measured in the test, and the blue knockdown factors are test 
independent and due to testing structural elements at worst-case conditions 
(e.g., high temperature, high humidity). For a lognormal distribution and 8% 
coefficient of variation, the implicit knockdown factor is 0.932 with a 
standard deviation of 0.0598. 

 

 ( )
( )
( )

feave test
et

fe calc

r
σ

σ
=  (7.14) 

The use of an explicit knockdown factor is required because a limited number of 

structural element tests are performed, so the value of failure stress ratio ret can have 

substantial variability. In addition, these knockdown factors may be used to reduce the 

likelihood of failing certification or proof test. The updated failure surfaces with and 

without additional knockdown factors are depicted Fig. 7-4. 
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Figure 7-4. Shrinkage of the failure surface. Original failure surface, updated failure 
surface without explicit knockdown factor and the failure surface updated 
with an explicit knock factor kcl. Asterisk shows the failure at the structural 
element test. 

In general, we may expect that an optimal explicit knockdown factor will be a 

function of ret. Since we assume that the failure prediction error efe has zero mean, when 

( )ave
etr  is smaller or larger than one, it is likely that this is caused by variability. Since 

we increase the allowable stress when ( )ave
etr > 1, we run a chance that this increase is 

dangerous. So as we will see later, the optimal kc is smaller for ( )ave
etr >1 than for 

( )ave
etr <1. 

We require that the explicit knockdown factor does not increase so fast that the 

allowable stress may decrease with increasing ret. So for the allowable stress to be 

monotonic with respect to failure stress ratio ret we require 

 
( )

( ) 0
ae upd

c ae et
et et

d d k r
dr dr

σ
σ= >  (7.15)  

which leads to  

 0c c

et et

k dk
r dr

+ >  (7.16)  
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Here we assume that kc(ret) has the simple form of two constants connected by a 

ramp, with the angle θ selected to satisfy Eq. (7.16) as depicted in Fig. 7-5. That is,  

 ( )

1.0
1 1.0
1

cl et

et
c cl ch cl et h

h

ch et h

k if r
rk k k k if r r
r

k if r r

⎧ ≤
⎪

−⎪= + − ≤ ≤⎨ −⎪
⎪ ≥⎩

 (7.17)  

The parameter defining the transition interval, rh, is also taken constant in our 

analysis for the sake of simplicity. Our numerical studies showed that the use of rh = 1.10 

is an acceptable value. 

 

Figure 7-5. The variation of the explicit knockdown factors with ratio of the failure stress 
measured in the test and calculated failure stress with and without transition 
interval 

Figure 7-6 illustrates this approach for the three aircraft companies A, B and C 

performing three structural element tests shown earlier in Fig. 7-3. The red knockdown 

factors in Fig. 7-6 correspond to updating the allowable stress using the average failure 

stress measured in tests (Eq. (7.14)), while blue knockdown factor represents an explicit 

knockdown factor kc (notice in Fig. 7-6 that kc depends on element test results as depicted 

in Fig. 7-5). 
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Figure 7-6. Proposed use of explicit knockdown factors dependent on test results. The red 
knockdown factors are due to updating the allowable stress using the average 
failure stress measured in the test, and the blue knockdown factors are test 
dependent explicit safety factor. 

Error updating via element tests 

The main effect of structural element tests is to reduce the error in failure prediction 

at the element level, efe. The error efe after element tests are updated as follows. 

After the element tests, the calculated failure stress is updated using tests results as 

 ( ) ( )upd
fe et fecalc calc

rσ σ=  (7.18) 

Hence, the updated error efe can be calculated from 

 
( )
( )

( )
( )

( )1 1 1 1

upd
fe et feupd inicalc calc

fe et fe
fe fetrue true

r
e r e

σ σ

σ σ
= − = − = + −  (7.19) 

and the updated allowable stress can be written as 

 ( ) ( )updupd
ae fe fe calc

kσ σ=  (7.20) 

where the total knockdown factor used in setting the allowable stress, fek , is defined as 

 fe c dck k k=  (7.21) 
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Errors in Design 

For structural design, first the loads acting on the structure are calculated. For an 

aircraft structure, the design load Pd is computed by following the FAA design 

specifications (e.g., gust-strength specifications). However, the calculated design load 

value, Pcalc, differs from the true design loading Pd. Since each aircraft company has 

different design practices, the error in load calculation, ep, is different from one company 

to another. The calculated design load Pcalc is expressed in terms of true value Pd as 

 (1 )calc P dP e P= +  (7.22)  

Here, we examine a small part of the overall structure, which can be characterized 

by its width, w, and thickness, t. If stress calculations are performed without errors, the 

true value of the stress in the structure is 

 calc
true

P
wt

σ =  (7.23)  

However, an aircraft company may also commit errors in stress calculation. The 

calculated value of stress, σcalc, can be expressed by introducing the error in the stress 

analysis, eσ, as 

 (1 ) calc
calc

Pe
wtσσ = +  (7.24)  

If there were no errors in failure prediction of the overall structure, failure 

prediction at the structural element testing level, and failure stresses calculated at the 

coupon level, then the true failure stress at the structural design level, ( )fs true
σ , could be 

related to true failure stress at element testing level, ( )fe true
σ  via Eq. (7.25) (as in the 
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case of relating the true failure stress at the element testing level to the failure stress at the 

coupon level, Eq. (7.6)). 

 ( ) ( )fs fs fetrue true
σ σ σ⎡ ⎤=

⎣ ⎦
 (7.25) 

where [ ]fsσ ⋅  is the failure functional used to predict the overall structural failure in 

terms of the failure stress results of structural element test. Since the above mentioned 

errors do all exist, the failure stress calculated at structural design level, ( )fs calc
σ , differs 

from its true value, ( )fs true
σ . So, we have 

( ) ( ) ( )( )( )( ) ( )( )1 1 1 1upd
fs fs fe fc fe fs fs fT fscalc calc true true

e e e eσ σ σ σ σ⎡ ⎤= = − − − = −
⎣ ⎦

           (7.26) 

where fse  includes the errors in predicting the structural failure of the overall structure 

(e.g., errors in predicting the failure mode). As before, Eq. (7.26) assumes that the overall 

structural failure is a homogenous functional of order one in terms of the element failure 

stress. 

The allowable stress at the structural design level, asσ , can be computed from the 

failure stress calculated at the element level, ( )fs calc
σ , by using the knockdown factor kfe 

as  

 ( )as fe fs calc
kσ σ=  (7.27)  

Combining Eqs. (7.26) and (7.27), the allowable stress at the structural design 

level, asσ , can be related to the true mean failure stress at the structural design level as 

 ( )( )1as fe fT fs true
k eσ σ= −  (7.28)  
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A structural designer uses Eq. (7.29) to calculate the design thickness tdesign 

required to carry the calculated design load, Pcalc, times the safety factor, SFL. That is,  

 ( ) ( )( )
( ) ( )

1 1
1

1
PFL calc FL d

design
design as fT design fe fs true

e eS P S Pt e
w e w k

σ
σ σ σ

+ +
= + =

−
 (7.29) 

where wdesign is the design width of the part. Then, the design value of the load carrying 

area can be expressed as 

 
( )( )

( ) ( )
1 1

1
P FL d

design design design
fT fe fs true

e e S PA t w
e k

σ

σ

+ +
= =

−
 (7.30) 

Errors in Construction 

In addition to the above errors, there will also be construction errors in the 

geometric parameters. These construction errors represent the difference between the 

values of these parameters in an average airplane (fleet-average) built by an aircraft 

company and the design values of these parameters. For the structural part, errors in 

width, ew, represent the deviation of the values of structural part width designed by an 

individual aircraft company, wdesign, from the average value of the width built by the 

company, wbuilt. Thus, we have 

 ( )1built w designw e w= +  (7.31) 

Similarly, the built thickness value will differ from its design value such that 

 ( )1built t designt e t= +  (7.32) 

Then, the built load carrying area builtA  can be expressed as 

 ( )( )1 1built t w designA e e A= + +  (7.33)  
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Table 7-1 presents nominal values for the error factors. In the Results section of the 

chapter we will vary these error bounds and investigate the effects of reducing these 

errors on the built area, probability of failure, etc.  

Table 7-1. Distribution of error factors and their bounds 
Error factors Distribution Type Mean Scatter 

Error at the coupon level, fce  Normal 0 Std ≅ f

c

c

n
 

Error in failure prediction in structural 
element test, fee  Uniform 0 ± 10% 

Error in failure prediction of the 
overall structure, fse  Uniform 0 ± 10% 

Error in stress calculation, eσ Uniform 0 ± 5% 
Error in load calculation, eP Uniform 0 ± 10% 
Error in width, ew Uniform 0 ± 1% 
Error in thickness, et Uniform 0 ± 2% 

 
Total Error Factor 

The expression for the built area, builtA , of a structural part can be reformulated to 

Eq. (7.34) by combining Eqs. (7.30) and (7.33) as 

 ( ) ( )
1 FL d

built total
fe fs true

S PA e
k σ

= +  (7.34)  

where 

 
( )( )( )( )

( )
1 1 1 1

1
1

P t w
total

fT

e e e e
e

e
σ+ + + +

= −
−

 (7.35)  

Here etotal represents the cumulative effect of the individual errors (eσ, eP, …) on the 

load carrying area of the built structural part. 

Total Safety Factor 

The total safety factor, SF, of a structural part represents the effects of all errors and 

the safety measures on the built structural part. Without errors and safety measures, we 

would calculate the load carrying area by simply dividing the design load by the mean 
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value of the true failure stress at the structural design level, ( )fs true
σ . That is, the load 

carrying area without safety measures, A0, is calculated from  

 
( )0

d

fs true

PA
σ

=  (7.36) 

Then, the total safety factor can be defined as the ratio of Abuilt/A0. Using Eqs. 

(7.34) and (7.36), we can write the total safety factor as 

 ( )
0

1built FL
F total

fe

A SS e
A k

= = +  (7.37)  

Variability 

In the previous sections we analyzed the different types of errors committed during 

design and construction stages, representing the differences between the true and 

calculated values of the fleet average of the material properties, the geometry parameters 

and the loading. These parameters (the material properties, the geometry parameters and 

the loading), however, vary from one aircraft to another in the fleet due to variabilities in 

tooling, construction, flying environment, etc. For instance, the actual value of the 

thickness of a structural part, tact, is defined in terms of its fleet average value, tbuilt, by 

 ( ),
actact built tt U t b=  (7.38) 

Here ‘U’ indicates that the distribution is uniform, ‘tbuilt’ is the average value of 

thickness (fleet average) and ‘
acttb ’ defines the bounds for the variability in thickness. 

Table 7-2 shows that the scatter in tact is taken here to be 3%, that is tact
b =0.03. Hence, the 

lower bound for thickness value is the average value minus 3% of the average and the 

upper bound for thickness value is the average value plus 3% of the average. Then, the 

actual thickness can be calculated from Eq. (7.39) 
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 ( )1act t builtt v t= +  (7.39)  

where ( )2 1
actt tv b r= −  represents effect of the variability on built thickness and r is a 

uniformly distributed random number between 0 and 1. 

Then, the actual load carrying area, Aact, can be defined as 

     ( )( ) ( )( )( ) ( )
1 1 1 1 1 dFL

act act act t w built t w total
fe fs true

PSA t w v v A v v e
k σ

= = + + = + + +    (7.40) 

where vw represents effect of the variability on built width, 
actwb = 0.01, and the second 

equality is obtained by using Eq. (7.34). 

Note that the thickness error in Table 7-1 is uniformly distributed with bounds of 

±2%. Thus the difference between all thicknesses over the fleets of all companies is up to 

±5%. However, the combination of error and variability which is the sum of two 

uniformly distributed components is not uniformly distributed. Table 7-2 presents the 

assumed distributions for variabilities. The actual service loading Pact is assumed to 

follow extreme value distribution type I, since we consider the maximum (over a 

lifetime) loading. The failure stress is assumed to follow lognormal distribution. 

Table 7-2. Distribution of random variables having variability 
Variables Distribution type Mean Scatter 
Actual service load, Pact Extreme type I Pd = 100 10% c.o.v. 
Actual width, wact Uniform wbuilt ±1% bounds 
Actual thickness, tact Uniform tbuilt ±3% bounds 
Variability in built width, vw Uniform 0 ±1% bounds 
Variability in built thickness, vt Uniform 0 ±3% bounds 

Actual failure stress, σfs Lognormal fsσ =150 0.08fc =  
(i.e., 8% c.o.v.) 
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Simulation of Certification Test and Probability of Failure Calculation 

Simulation of Certification Test 

After a structural part is built with all the errors, variabilities and safety factors, we 

simulate certification testing for the structural part. That is, the structural part with cross-

sectional area of Aact, Eq. (7.40), is loaded with the design axial force of SF times Pcalc, 

and if the stress exceeds the failure stress fsσ , then the structure fails and the design is 

rejected; otherwise it is certified for use. That is, the structural part is certified if the 

following inequality is satisfied  

 0FL calc
fs fs

act

S P
A

σ σ σ− = − ≤  (7.41) 

Figure 7-7(a) shows the distributions of the built and certified total safety factors. 

Notice that the structural parts designed with low total safety factors are likely to be 

rejected in the certification testing. The mean and standard deviations of built and 

certified total safety factor are listed in Table 7-3, which shows that the mean is increased 

and the standard deviation is reduced due to certification testing. Notice that the effect of 

certification test is very small. If there were no structural element tests, on the other hand, 

the effect would be more significant (Fig. 7-7(b)). 
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(a) with structural element tests (b) without structural elements tests 

Figure 7-7. Initial and updated distribution of the total safety factor SF. (a) with structural 
element tests, (b) without structural element test. The distributions are 
obtained via Monte Carlo Simulations with 1,000,000 structural part models. 
Note that in (a) three structural element tests, forty coupon tests, and company 
safety factors kcl=0.9, kch=0.83 and rh=1.1 are used. See Tables 7-1 and 7-2 for 
error and variability data. 

Table 7-3. Mean and standard deviations of the built and certified distribution of the total 
safety factor SF. The calculations are performed with 1,000,000 MCS. 

 Mean Std. dev. 
Built safety factor 1.861 0.193 

Certified safety factor 1.871 0.188 
 
Calculation of Probability of Failure 

To calculate the probability of failure, first we incorporate the statistical 

distributions of errors and variability in a Monte Carlo simulation. Errors are uncertain at 

the time of design, but do not change for individual realizations (in actual service) of a 

particular design. On the other hand, all individual realizations of a particular design are 

different from each other due to variability.  

Errors and variability could be simulated through a double-loop Monte Carlo 

simulation (as in Chapter 3), in the upper loop we could simulate different aircraft 

companies assigning random errors to each, and in the lower loop we could simulate 

variability in dimensions, material properties, loads related to manufacturing variability 
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and variability in service conditions. However, this process would require trillions of 

simulations for good accuracy. In order to address the computational burden we turned to 

the separable Monte Carlo procedure (e.g., Smarslok et al. 2006), which consists of a 

single loop that comprises two stages. The first stage is for simulation of variabilities 

only, and the second stage is for simulating errors and tests (coupon, structural element 

and certification). The discussion on separable MCS is given in Appendix K. To achieve 

separable form, the failure condition is written as 

 Failure without certification tests:     ( ) ( ) 0F Freq builtS S− >  (7.42) 

 Failure with certification tests:     ( ) ( ) 0F Freq certS S− >  (7.43) 

where ( )F builtS  and ( )F certS  are the built and certified total safety factors, and ( )F reqS  

is the required safety factor necessary to account for the variabilities. For a given 

( )F builtS  we can calculate the probability of failure, Eq. (7.42), by simulating all the 

variabilities with an MCS.  

Figure 7-8 shows the dependence of the probability of failure on the total safety 

factor using MCS with 1,000,000 variability samples. Note that the probability of failure, 

Pf, presented here is the probability of failure of a structural part built by a single aircraft 

company with a total safety factor of ( )F builtS . This probability of failure is different 

from the average probability of failure over all companies. We see from Fig. 7-8 that the 

nominal load safety factor of 1.5 is associated with a probability of failure of about 10-3, 

while the probabilities of failure observed in practice (about 10-7) correspond to a total 

safety factor of about 2.4. The average probability of failure over all companies, PF, is 



144 

 

calculated by performing Monte Carlo simulations with first stage sample size of 

M=1,000,000 and second stage sample size of N=1,000,000. 

 

Figure 7-8. The variation of probability of failure of a structural part built by a single 
aircraft company. Note that Pf is one minus the cumulative distribution 
function of ( )F reqS . See Tables 7-1 and 7-2 for error and variability data used 

for this case. 

Results 

In this section we first analyze the optimal choice of explicit knockdown factors for 

minimum weight, minimum likelihood of failure in certification (or proof) test, and 

minimum probability of failure under actual flight loads. Next, the effects of coupon tests 

and element tests on reducing the errors in failure prediction are explored. Then, the 

effect of using different approaches and different formulation for knockdown factors are 

analyzed. Finally, the effects of uncertainty reduction mechanisms (error and variability 

reduction), number of coupon tests and number of structural element tests on the optimal 

choice of knockdown factors and on the probability of failure are investigated. 
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Optimal Choice of Explicit Knockdown Factors for Minimum Weight and 
Minimum Certification Failure Rate 

Even though using smaller knockdown factors reduces the likelihood of failure of 

the structure in the certification test (certification failure rate, CFR), the weight of the 

structure increases accordingly. The cost of weight increase of aircraft structure is 

discussed in Appendix L. Since a company aims to have both minimal CFR and 

minimum weight, the optimal choice of kcl and kch is formulated here as a multi-objective 

optimization problem with two objective functions: the first being the built area Abuilt (or 

the built safety factor ( )F builtS ) and the second is the certification failure rate CFR. We 

seek to find the Pareto front, the curve of optimal trade-off between the two objectives.  

There are two popular ways to obtain the Pareto front. One is to optimize a 

weighted sum of the objectives for different combinations of weights. Another approach 

is to add one of the objective functions as the constraint and change the constraint margin 

to generate the front. Here we follow the second approach. We minimize the built safety 

factor, ( )F builtS , for a series of specified certification failure rates. So the optimization 

problem can be stated as 

 

( )0,
min

such that

, 1

cl ch
F builtk k

spec

cl ch

A A S

CFR CFR

k k

=

≤

≤
 (7.44)  

Solving Eq. (7.44) requires calculation of CFR many times, which is 

computationally very expensive. To alleviate the computational cost, we estimate CFR 

and ( )F builtS  by using response surface approximations (RSA) for the reliability index of 

CFR, CFRβ , which is defined as 
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 ( )CFR CFRβ = −Φ  (7.45)  

where Φ is the cumulative distribution function of the standard normal distribution. We 

use fifth-order polynomial RSAs for the built safety factor, ( )F builtS , and reliability 

index of CFR, CFRβ . The average (over all aircraft companies) probability of failure of a 

structural part PF is also approximated with RSA for its reliability index 
FPβ   

 ( )FP FPβ = −Φ  (7.46)  

The accuracy of RSAs is discussed in Appendix M. Figure 7-8 depicts the tradeoff 

of safety (CFR and corresponding PF) against weight (built safety factor) when 40 

coupons tests and 3 structural element tests are employed. Each point in the trade-off plot 

is associated with a different kcl and kch combination as given in Table 7-4. We see from 

Fig. 7-9 that as lower CFR are specified, larger built safety factors are needed. We also 

see that as expected larger safety factors leads to lower failure probabilities. 

 

Figure 7-9. Optimal choice of explicit knockdown factors kcl and kch for minimum built 
safety factor for specified certification failure rate. The number of coupons 
tests is 40, and the number of structural element tests is 3. See Tables 7-1 and 
7-2 for error and variability data. 
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The optimal values of kcl and kch for minimum built safety factor for specified CFR 

are given in Table 7-4. When CFR is reduced, smaller knockdown factors kcl and kch are 

used. We also notice that as expected kch is smaller than kcl. This may appeal to a designer 

when the tests allow weight reduction trading some of the weight for some extra margin 

as insurance against variability in the results of structural element tests. The monotonicity 

constraint, Eq. (7.16), is active for CFR=10-3 and 10-4, indicating that the parameter 

defining the transition interval, rh, is important. Investigation of the effect of this 

parameter is left for a future work. 

The comparison of the certification failure rates and probabilities of failure 

obtained from RSAs and calculated using MCS of 1,000,000 sample size is also given in 

Table 7-4. We see that the values obtained from RSAs are very close to MCS values and 

the differences are within the limits of MCS error due to finite sample size. For example, 

while predicting a probability of failure 8.14×10-5, two-stage separable MCS with 106 

samples (for each stages) is equivalent to about 108 crude MCS, so the error for 

predicting PF of 8.14×10-5 within two standard deviation is about 2.2%, which larger than 

the actual error 1.6% that we see in the first row of Table 7-4. We also see in Table 7-4 

that as CFR (or PF) reduce the error grows. There are two contributions to the error: (i) 

error due to limited MCS sample size (which grows as CFR reduces), (ii) error in RSA 

(that can be high if RSA is performed near design boundaries). However, even for 

CFR=10-4, the error in CFR is only 6%.  
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Table 7-4. Comparing explicit knockdown factors for minimum built safety factor for a 
specified certification failure rate. Note that CFR and PF are calculated using 
MCS of 1,000,000 sample size, while CFR-RS and PF-RS are obtained from 
the RSAs. 

CFR-RS CFR A/A0
* kcl kch PF-RS PF 

10-1 9.95×10-2 1.750 1.000 0.963 8.01×10-5 8.14×10-5 
10-2 1.04×10-2 1.987 0.892 0.820 4.09×10-6 4.25×10-6 
10-3 1.03×10-3 2.193 0.809 0.742 3.46×10-7 3.58×10-7 
10-4 9.40×10-4 2.372 0.747 0.687 3.99×10-8 4.29×10-8 

* A/A0 is the ratio of the built cross sectional area, A, and the area without safety measures, A0. Note 
that the area ratio is equal to the total safety factor (SF)built 

 
Optimal Choice of Explicit Knockdown Factors for Minimum Weight and 

Minimum Probability of Failure 

Instead of designing the structure for minimum certification failure rate, the 

structure can be designed for minimum probability of failure (i.e., performing 

probabilistic optimization). In that case the optimization problem can be stated as 

 

( )

( )

0,
min

such that

, 1

cl ch
F builtk k

F F spec

cl ch

A A S

P P

k k

=

≤

≤
 (7.47)  

where ( )F specP  is the specified probability of failure. The Pareto front can be obtained by 

varying the specified probability of failure, ( )F specP . Surprisingly Fig. 7-10(a) shows 

that the CFR of the structures designed for minimum CFR and CFR of the structures 

designed for minimum PF are very close to each other. The same observation is also true 

for the PF of the structures designed either for minimum CFR or for minimum PF (Fig. 7-

10(b)). So choosing the explicit knockdown factors to minimize the failure in 

certification test offers a rational way of choosing the explicit knockdown factor.  
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(a) CFR comparison 

 

(b) PF comparison 

Figure 7-10. Comparing CFR and PF of the structures designed for minimum CFR and 
minimum PF (a) Comparison of CFR of the structures designed for minimum 
CFR and minimum PF, (b) Comparison of PF of the structures designed for 
minimum CFR and minimum PF 

The optimal values of kcl and kch for minimum built safety factor for specified PF 

are given in Table 7-5. We see the trend in the explicit knockdown factor is similar to that 

given in Table 7-4 in that kcl is larger than kch. We see that CFRs and PFs obtained from 

RSAs and MCS of 1,000,000 sample size are very close to each other. So from this point 

on we only present the CFR and PF values obtained from RSAs. 
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Table 7-5. Comparing explicit knockdown factors for minimum built safety factor for a 
specified probability of failure 

PF-RS PF A/A0
* kcl kch CFR-RS CFR 

10-4 1.00×10-5 1.739 1.000 0.984 1.12×10-1 1.11×10-1 
10-5 1.04×10-5 1.914 0.926 0.853 2.13×10-2 2.21×10-2 
10-6 1.03×10-6 2.105 0.843 0.773 2.80×10-3 2.89×10-3 
10-7 1.06×10-7 2.295 0.773 0.709 2.75×10-4 2.73×10-4 

* A/A0 is the ratio of the built cross sectional area, A, and the area without safety measures, A0. Note 
that the area ratio is equal to the total safety factor (SF)built 

 
Effect of Coupon Tests and Structural Element Tests on Error in Failure Prediction 

As noted earlier, coupon tests and structural element tests contribute to structural 

safety mainly by reducing the error in failure prediction. Here we analyze the effect of 

number of these tests on reducing the error in failure prediction. First, we analyze the 

effect of number of coupon tests alone for a fixed number of element tests (here we take 

the fixed number of element tests as three). Then, the effect of structural element tests are 

explored for a fixed number of coupon tests (here we take fixed number of coupon tests 

as forty).  

Effect of number of coupon tests alone (for a fixed number of element tests, ne=3) 

The effect of number of coupon tests, nc, on error in failure prediction at the coupon 

level, efc, and total error in failure prediction, efT, is depicted in Fig. 7-11(a) and 7-11(b), 

respectively. Here we consider increasing nc from 10 to 40 and from 40 to 100. Note that 

nc=10 is not realistic, but included here for the sake of illustration. We see in Fig. 7-11(a) 

that as nc is increased from 10 to 40, and then from 40 to 100, standard deviation of efc is 

reduced significantly. The effect of nc on efT, on the other hand, shows a different trend 

(Fig. 7-11(b)). Even though we see a significant reduction of standard deviation of efT 

when nc is increased from 10 to 40, the change of standard deviation of efT is barely 

noticeable when nc is further increased to 100. 
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(a) error in failure prediction at the coupon 
level, efc 

(b) total error in failure prediction, efT 

Figure 7-11. Effect of number of coupon tests on the error in failure prediction for a fixed 
number of element tests (3 element tests). The probability densities are 
obtained through MCS of 10,000 sample size. 

Effect of number of element tests alone (for a fixed number of coupon tests, nc=40) 

The effect of number of element tests, ne, on error in failure prediction at the 

element level, efe, and total error in failure prediction, efT, is depicted in Fig. 7-12(a) and 

7-12(b), respectively. Here we consider no element tests, a single element test, three 

element tests and five element tests. Note that the scatter in error efe is smaller when no 

element test is performed compared to performing a single element tests. That is, 

performing only a single element test is not effective due to variability in the failure 

stress. We see that as ne is increased from 1 to 3, and then from 3 to 5, standard deviation 

of efe is reduced significantly (Fig. 7-12(a)) and the mean error is increased. The increase 

of the mean error makes sense since it indicates the tendency towards conservative error. 

The effect of nc on efT, on the other hand, shows a different trend (Fig. 7-12(b)) in view of 

standard deviation. Even though we see a significant reduction of standard deviation of 

efT when ne is increased from one to three, the reduction of standard deviation of efT 

diminishes when ne is further increased from three to five. 
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(a) error in failure prediction at the element 
level, efe 

(b) total error in failure prediction, efT 

Figure 7-12. Effect of number of element tests on the error in failure prediction for a 
fixed number of coupon tests (40 coupon tests). The probability densities are 
obtained through MCS of 10,000 sample size. 

Figure 7-12 showed us that performing a single structural element test is not 

enough to reduce the error in failure prediction due to variability in failure stress. One 

way to solve this deficiency is to use Bayesian updating that can be successfully used to 

update the error distribution. Figure 7-13(a) shows the evolution of mean failure stress 

using the test results. Initial mean stress distribution is taken uniform with ±10% bounds 

around mean value, which is 150. When a single test is performed, due to the variability 

in failure stress, the updated distribution has a wider range compared to the initial one. 

The evolution of the mean stress requires more element tests to be performed as seen in 

Fig. 7-13(a). On the other hand, Bayesian updating allows a more effective updating 

process. We see in Fig. 7-13(b) that even a single test is effective now. Discussion of 

Bayesian updating is not analyzed in this chapter, but more information on error updating 

using Bayesian updating can be found in Chapter 3. 
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(a) without Bayesian updating (b) with Bayesian updating 

Figure 7-13. Evolution of the mean failure stress distribution with and without Bayesian 
updating 

Advantage of Variable Explicit Knockdown Factors 

To see the advantage of using a variable explicit knockdown factor that depends on 

the test results, we compare its Pareto front with that of a constant explicit knockdown 

factor. Figure 7-14 shows comparison of Pareto fronts for certification failure rate and 

normalized area (Fig. 7-14(a)) and Pareto fronts for probability of failure (Fig. 7-14(b)). 

Table 7-6 presents the knockdown factors and the normalized areas. We see that for a 

specified CFR or PF, lower weight (area) is required if a variable explicit knockdown 

factor is used. For instance, for CFR of 10-3, using variable explicit knockdown factor 

leads to 0.77% lighter structure, which corresponds to about $520,000 life-time cost 

saving for a typical large transport aircraft such as Boeing 777 (see Appendix L for the 

cost model used). 
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(a) CFR comparison (b) PF comparison 

Figure 7-14. Comparison of variable and constant explicit knockdown factor 

Table 7-6. Comparison of constant and variable explicit knockdown factors case and 
corresponding area ratios, A/A0. 

 Constant—average Variable (Eq. (7.17)) 
CFR A/A0

* kcl=kch A/A0
* kcl kch 

10-1 1.752 0.988 1.750 1.000 0.963 
10-2 2.008 0.862 1.987 0.892 0.820 
10-3 2.211 0.783 2.193 0.809 0.742 
10-4 2.413 0.717 2.372 0.747 0.687 

* A/A0 is the ratio of the built cross sectional area, A, and the area without safety measures, A0. 
Note that the area ratio is equal to the total safety factor (SF)built 

 
We next examine the effect of using the implicit knockdown factor associated with 

worst (i.e., smallest) failure stress measured in structural element tests instead of using 

the average. The comparison of Pareto fronts of certification failure rate and total safety 

factor is shown in Fig. 7-15. The knockdown factors and total failure stress 

corresponding to these two approaches are shown in Table 7-7. We find that the use of 

the implicit safety factor carries a weight penalty. For example, for a certification failure 

rate of one in a thousand, the use of the smallest of the failure stress measured in element 

tests leads to 0.95% heavier structure compared to the use of the average failure stress 

measured in element test. The cost function in Appendix L indicates that the cost of 

structure is increased by about $640,000. The ratio of the knockdown factors 
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corresponding to use of average and worst case failure stress results are also listed in 

Table 7-7 (the last column). We see that instead of using a worst-case failure stresses, a 

company might use average failure stresses measured in element tests and by adding a 

knockdown factor on top of it more efficient design decisions can be made.  

The combined effect of using a variable explicit knockdown factor, Eq. (7.17), 

along is seen by comparing results given in Tables 7-6 and 7-7. For CFR=10-3 for 

instance, we see that 1.75% of structural weight can be corresponding to lifetime cost 

reduction of about $ 1.2 million. 

  

(a) comparing constant explicit and 
constant implicit knockdown factors 

(b) comparing variable explicit, constant 
explicit and constant implicit 
knockdown factors 

Figure 7-15. Comparison of Pareto fronts of certification failure rate and built safety 
factor for two different approaches while updating the allowable stress based 
on failure stresses measured in element tests. One approach uses the smallest 
of the failure stresses measured in tests while the other used the average 
failure stress while updating the allowable stresses. 
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Table 7-7. Comparison of constant (i.e., test independent) implicit and explicit 
knockdown factors and corresponding area ratios A/A0. One approach uses 
the smallest of the failure stresses measured in the tests while the other used 
the average failure stress while updating the allowable stresses. 

 Constant explicit 
knockdown factor 

Constant implicit 
knockdown factor 

Ratio of 
knockdown 

factors 
CFR A/A0

* kc=kcl=kch A/A0
* kc=kcl=kch (kc)exp/(kc)imp 

10-1 1.752 0.988 1.856 1.000** 0.989** 
10-2 2.008 0.862 2.017 0.921 0.939 
10-3 2.211 0.783 2.232 0.832 0.942 
10-4 2.413 0.717 2.460 0.755 0.951 

* A/A0 is the ratio of the built cross sectional area, A, and the area without safety measures, A0. 
Note that the area ratio is equal to the total safety factor (SF)built 

** Note that using kc=1.0 leads to CFR=0.049 so the ratio is different compared to other CFR. 

 
The main reason that the variable explicit safety factor is more efficient is that it 

reduces the element of chance introduced by material variability on the total knockdown 

factor. For lognormal failure stress with 8% coefficient of variation used here, the 

average implicit knockdown factor has a mean value of 0.932, and a coefficient of 

variation of 0.0642. The average failure stress, on the other hand, is 1.0 (as expected) and 

its coefficient of variation is 0.0467. That is, the average is 27% less variable than the 

worst value. In addition, the variable knockdown factor reduces the scatter further since it 

is higher for high test results than for low test results. This is demonstrated by calculating 

the mean and coefficient of variation of the actual knockdown factor obtained from a 

Monte Carlo simulation of one million companies. Table 7-8 shows that using test 

dependent (i.e., variable, Eq. (7.17)) knockdown factor further indeed reduces the 

coefficient of variation of the knockdown factor. For CFR=10-3, for instance, the total 

reduction in the coefficient variation is 36%. 
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Table 7-8. Comparison of mean and coefficient of variation of total knockdown reduction 
at the element test level for the cases of implicit constant knockdown factor 
and explicit variable knockdown factors 

 

A) Total knockdown 
factor for use of 

worst failure stress 
and constant 

additional 
knockdown 

B) Total knockdown 
factor for use of 

average failure stress 
and variable (i.e., test 

dependent, Eq. 
(7.17)) additional 

knockdown 

Ratios 
(A / B) 

Ratios 
(A / B) 

CFR mean c.o.v. mean c.o.v. mean c.o.v. 
10-2 0.859 0.0639 0.871 0.0409 1.02 0.64 
10-3 0.776 0.0642 0.790 0.0409 1.02 0.64 
10-4 0.704 0.0642 0.730 0.0394 1.04 0.61 

 
Effect of Other Uncertainty Reduction Mechanisms 

This section provides the effects of other uncertainty reduction mechanisms on and 

the optimum values of the explicit knockdown factors kcl and kch, the probabilities of 

failure and the certification failure rates. 

Effect of variability reduction 

Recall in Chapter 4, we found that the reduction variability in the failure stresses is 

a very efficient way of reducing probability of failure, but it leads to increased 

certification failure rates. In that chapter, we argued that when companies reduce the 

variability in failure stresses, they also must employ additional knockdown factors to 

reduce the increased certification failure rates. In a view to analyze that argument, we 

explore the effect of reduced variability on the optimal choice of kcl and kch. We reduce 

the coefficient of variation of the failure stress by half of its nominal value, that is, we 

reduce it from 8% to 4%. We kept the number coupon tests and the number of structural 

element tests at their nominal values 40 and 3, respectively. 

Figure 7-14 shows that as the coefficient of variation is reduced to 4%, the Pareto 

fronts move to the left, allowing the use of smaller built safety factor for specified CFR 
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and PF, or alternatively allowing smaller CFR and PF for a given built safety factor. We 

see that the variability reduction is most effective at low probability of failure (and 

certification failure rate). Figure 7-16 also shows that CFR is more sensitive to variability 

reduction than PF. The optimal values of the explicit knockdown factors for minimum 

CFR are given in Table 7-9. We see that the reduced variability allows using larger (i.e., 

less conservative) knockdown factors kcl and kch for the same CFR. In Chapter 4, we 

found the opposite trend when element tests were not performed. That is, without the 

element tests variability reduction needed to be accompanied by using more conservative 

knockdown factors for acceptable certification failure rates. Thus the reduced uncertainty 

due to structural element tests allows us to take fuller advantage of variability reduction. 

Table 7-9 shows that, for a certification failure rate of one in a thousand, the 

variability reduction allows 11.9% lower total built safety factor. That is, the same 

certification failure rate can be attained with 11.9% lighter structure if the variability in 

failure stress can be reduced by half. The cost model in Appendix L indicates us that 

variability reduction leads to saving about 8 million dollars. Hence, the company might 

compare the cost of variability reduction (reducing the coefficient of variation of the 

failure stress by half) with the cost saving due to reduced structural weight and decide 

whether paying more for more uniform material is worth it. 
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(a) minimum CFR (b) minimum PF 

Figure 7-16. Reducing (a) certification failure rate and (b) probability of failure using 
variability reduction. The number of coupons tests is 40, and the number of 
structural element tests is 3. 

Table 7-9. Optimal explicit knockdown factors for minimum CFR when variability in 
failure stress is reduced by half 

  c.o.v.=8%*   c.o.v.=4%  
CFR A/A0

** kcl kch A/A0
** kcl kch 

10-1 1.750 1.000 0.963 1.657 0.964 1.000 
10-2 1.987 0.892 0.820 1.811 0.905 0.850 
10-3 2.193 0.809 0.742 1.932 0.845 0.805 
10-4 2.372 0.747 0.687 2.028 0.809 0.757 

* From Table 7-4 
** A/A0 is the ratio of the built cross sectional area, A, and the area without safety measures, 

A0. Note that the area ratio is equal to the total safety factor (SF)built 
 

Effect of error reduction 

Similar to variability reduction, error reduction is another powerful way of 

reducing certification failure rate and probability of failure. We consider a hypothetical 

error control mechanism that would reduce all the errors by half. So we scale all error 

components with a single multiplier, k, replacing Eq. (7.35) by  
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  (7.48) 
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and explore the effect of reducing it from its nominal value 1.0 to 0.5. Figure 7-17 shows 

that indeed error reduction is also effective in reducing CFR and PF. We also see that 

variability reduction is more effective than error reduction, especially when CFR (and PF) 

are low. Note also that CFR is more sensitive to error reduction than PF. The company 

safety factors for error reduction are listed in Table 7-10, which shows that as error is 

reduced a specified certification failure rate can be attained by using lower built safety 

factors. For instance, for certification failure rate of one in a thousand, we see that the 

error reduction leads to 4.9% lower total safety factor. That is, the same certification 

failure rate can be attained with 4.9% lighter weight if the errors are reduced by half. The 

cost model in Appendix L indicates us that error reduction leads to about 3.3 million 

dollars cost saving. Hence, the company might compare the cost of error reduction with 

the cost saving due to reduced structural weight and decide whether investing resources 

on error reduction mechanisms is profitable. The superior effect of variability reduction 

over error reduction is all the more remarkable, since only one component of the 

variqabilities was reduced, compared to all errors. 

 

Figure 7-17. Reducing certification failure rate using error reduction, variability reduction 
and combination of error and variability reduction. The number of coupons 
tests is 40, and the number of structural element tests is 3. 
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Table 7-10. Optimal explicit knockdown factors for minimum CFR when all errors 
reduced by half. 

  k=1.0   k=0.5  
CFR A/A0

* kcl kch A/A0
* kcl kch 

10-1 1.750 1.000 0.963 1.728 1.000 1.000 
10-2 1.987 0.892 0.820 1.906 0.923 0.846 
10-3 2.193 0.809 0.742 2.084 0.844 0.774 
10-4 2.372 0.747 0.687 2.241 0.785 0.720 

* A/A0 is the ratio of the built cross sectional area, A, and the area without safety measures, 
A0. Note that the area ratio is equal to the total safety factor (SF)built 

 
Effect of Number of Coupon Tests 

Next, we analyze the effect of number of coupon tests on the optimal choice of 

knockdown factors. Figure 7-18 shows the Pareto fronts corresponds to three different 

numbers of coupon tests: 10 tests, 40 tests and 100 tests. Note here that performing only 

10 coupon tests is not realistic, but it is included here for illustrative purposes. We see 

that increasing number of tests from 10 to 40 leads Pareto front to shift to left 

substantially, whereas the Pareto fronts for 40 coupon tests and 100 coupon tests are quite 

close. Table 7-11 shows that the company safety factors (and hence the total safety 

factor) corresponding to 40 coupon tests and 100 coupon tests are very close. The optimal 

kcl and kh values are more conservative (that is, smaller) when 100 coupon tests are used 

for small CFRs. This is because as the number of coupon tests increases the B-basis value 

grows, so the total safety factor reduces. Then the company needs to compensate for that 

by introducing explicit knockdown factors to reach a desired level of certification failure 

rate. When CFR is large (e.g., CFR=0.1), on the other hand, the error reduction due to 

large number of coupon tests overcomes the change in B-basis.  

Table 7-11 shows that, for certification failure rate of 10-3, the total built safety 

factor can be reduced by 1.3% if 100 coupon tests are performed rather than 40. The cost 

model given in Appendix L indicates that these additional coupon tests leads to about 
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$890,000 cost saving. Hence, the company might compare the cost of extra coupon tests 

with the cost saving due to reduced structural weight and decide whether performing 

these additional coupon tests is profitable. 

  
(a) minimum CFR (b) minimum PF 

Figure 7-18. Optimal explicit knockdown factors for different number of coupon tests for 
minimum CFR and PF. The number of structural element tests is 3. Number of 
coupon tests is indicated as ‘nc’ in the figure. 

Table 7-11. Optimal explicit knockdown factors for minimum CFR different number of 
coupon tests, nc. 

  nc=40   nc=100  
CFR A/A0

* kcl kch A/A0
* kcl kch 

10-1 1.750 1.000 0.963 1.748 0.996 0.934 
10-2 1.987 0.892 0.820 1.978 0.885 0.814 
10-3 2.193 0.809 0.742 2.165 0.809 0.742 
10-4 2.372 0.747 0.687 2.328 0.752 0.691 

* A/A0 is the ratio of the built cross sectional area, A, and the area without safety measures, 
A0. Note that the area ratio is equal to the total safety factor (SF)built 

 
Effect of Number of Structural Element Tests 

Finally, we explore the effect of structural element tests. Figure 7-19 shows that as 

the number of tests increases from one to three, the probability of failure and certification 

failure rates are reduced by about one order of magnitude. However, as the number of 

tests further increased to five, for instance, the effectiveness of tests reduces. Table 7-12 

shows that as the number of element tests increases, the knockdown factors kcl and kch 
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increase and hence the total safety factor reduce. That is, the additional element tests 

possess a hidden safety factor by reducing the error in failure prediction. For example, for 

certification failure rate of 10-3, the total built safety factor must be increased by 3.0% if 

only one structural element test is performed rather than three structural element tests. 

According to the cost model given in Appendix L, performing three structural tests leads 

to about 2 million dollars cost saving. Hence, the company might compare the cost of two 

extra structural elements with the cost saving due to reduced structural weight and decide 

whether these additional element tests are preferable. 

  
(a) minimum CFR (b) minimum PF 

Figure 7-19. Effect of number of structural element tests, ne 

Table 7-12. Optimal explicit knockdown factors for different number of structural 
element tests, ne. 

  ne = 1   nb = 3  
CFR A/A0

* kcl kch A/A0
* kcl kch 

10-1 1.774 1.000 0.936 1.750 1.000 0.963 
10-2 2.038 0.876 0.803 1.987 0.892 0.820 
10-3 2.259 0.790 0.724 2.193 0.809 0.742 
10-4 2.586 0.675 0.667 2.372 0.747 0.687 

* A/A0 is the ratio of the built cross sectional area, A, and the area without safety measures, 
A0. Note that the area ratio is equal to the total safety factor (SF)built 
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Summary 

The effects of optimal choice of explicit knockdown factors, structural tests, and 
uncertainty reduction mechanisms were analyzed. From the results obtained in this study, 
we drew the following conclusions 

• Companies can minimize the probabilities of the failure of the aircraft structures by 
rationally choosing explicit knockdown factors that are based on test results. 
Currently these knockdown factors are implicit and based on worst-case scenarios 
(e.g., testing the structural elements at worst-case operational conditions, using the 
smallest measured failure stress in design). We found that optimally chosen explicit 
knockdown factors may lead to 1 or 2% weight savings, which can be translated 
into cost savings in the order of a million dollars over the lifetime of a typical 
airliner. 

• Surprisingly, we found that a lower (i.e., more conservative) knockdown factor 
should be used if the failure stresses measured in tests exceeds predicted failure 
stresses, because good test results can simply be due to luck. The use of variable 
explicit safety factor based on average test results was found to reduce the 
variability in knockdown factor generated by variability in material properties by 
about 36%. It is this reduction in variability that is responsible for the weight 
savings. 

• Selecting explicit knockdown factor to minimize certification failure rate, CFR, 
leads to designs very near to probabilistic optimum (minimum probability of 
failure, PF). 

• Uncertainty reduction mechanisms are powerful ways of increasing aircraft 
structural safety. They reduce CFR and PF by one or more orders of magnitudes for 
a given safety factor. When the effectiveness of error reduction and variability 
reduction is compared, we found that reducing variability in failure stress to half of 
its nominal value is more effective than reducing all errors by half.  

• We found that the efficiency of tests depends on the number of tests conducted. As 
the number of tests increases, the cost effectiveness of tests diminishes. 

• Given a cost function for coupon tests, structural element tests, error and variability 
reduction mechanisms, the optimum choice of explicit knockdown factors can be 
carried out in a rational way to minimize the lifetime cost of aircraft without 
changing the aircraft structure’s probability of failure in the certification tests and 
under the actual flight loads. 
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CHAPTER 8 
RELIABILITY BASED AIRCRAFT STRUCTURAL DESIGN PAYS EVEN WITH 

LIMITED STATISTICAL DATA 

Probabilistic structural design tends to apply higher safety factors to inexpensive or 

light-weight components, because it is a more efficient way to achieve a desired level of 

safety. In this chapter we show that even with limited knowledge about stress probability 

distributions we can increase the safety of an airplane by following this paradigm. The 

structural optimization for safety of a representative system composed of a wing, a 

horizontal tail and a vertical tail is used to demonstrate the paradigm. In addition, to 

alleviate the problem of computational expense we propose an approximate probabilistic 

design optimization method, where the probability of failure calculation was confined 

only to failure stresses to dispense with most of the expensive structural response 

calculations (typically done via finite element analysis). The proposed optimization 

methodology is illustrated with the design of the wing and tail system.  

The work presented in this chapter is also submitted for publication (Acar et al. 

2006e). Prof. Efstratios Nikolaidis is acknowledged for his valuable suggestions for this 

work. 

Introduction 

The FAA design code is based on uniform safety factors (that is, the same safety 

factor is used for all components). Probabilistic design derives an important part of its 

advantage over deterministic design by allowing the use of substantially non-uniform 

safety factors and hence there is growing interest in replacing safety factors by 
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probabilistic design (e.g., Lincoln 1980, Wirsching 1992, Aerospace Information Report 

of SAE 1997, Long and Narciso 1999). However, with only partial information on 

statistical distributions of variabilities, and guesswork on reasonable distributions for 

errors, engineers are reluctant to pursue probabilistic design. Also, it has been shown that 

insufficient information may lead to large errors in probability calculations (e.g., Ben-

Haim and Elishakoff 1990, Neal, et al. 1992). The main objective of this chapter is to 

show that we can increase the safety of an airplane without increasing its weight even 

with the limited data available today following the design paradigm mentioned (higher 

safety factors for light-weight components). Our approach utilizes two statistical data that 

are well understood. The first is the statistical distribution of failure stress, which is 

required by the FAA for choosing A-basis or B-basis allowables. The second is a special 

property of the normal distribution: when large number of uncertainties contributes to a 

distribution, it tends to become similar to a normal distribution. This applies to the stress 

estimation because it is influenced by large number of error and variability sources. 

Finally, we show that even though the limited statistical data may substantially affect the 

probabilities of failure of both the probabilistic design and the code-based deterministic 

design, the ratio of probabilities of failure of the probabilistic design and the deterministic 

design is insensitive to even large errors due to limited data. 

The chapter is structured as follows. First, reliability-based design optimization of a 

representative wing and tail system with perfect and limited statistical data is given. Next, 

we discuss the effects of errors in statistical information for the deterministic design. 

Then, we propose an approximate method that allows probabilistic design based only on 
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probability distribution of failure stresses, followed by the application of the method to 

the wing and tail system. Finally, the concluding remarks are listed in Summary section. 

Demonstration of Gains from Reliability-Based Structural Design Optimization of a 
Representative Wing and Tail System 

Problem Formulation and Simplifying Assumptions 

Calculating the probability of stress failure in a structure can be done by generating 

the probability distribution functions (PDF) σ( )s of the stress σ , and the PDF σ( )ff  of 

the failure stress σ f (see solid lines in Fig. 8-1). Once these distributions are available, 

calculating the probability of failure can be accomplished by simple integration, as 

discussed later. The distribution of failure stress is typically available from experiments, 

and so it does not require much computation. For materials used in aircraft design, the 

FAA regulations mean that statistical information on failure stresses is often available 

quite accurately. On the other hand, the PDF for the stress requires data such as analysis 

error distributions that are difficult to estimate, and it also requires expensive finite 

element computations. Fortunately, though, the PDF of the stress contains contributions 

from large number of parameters such as variabilities and errors in material properties, 

geometry and loading, and so it is likely to be well represented by a normal distribution. 

However, estimating well the mean and standard deviation of that normal distribution is 

difficult due to limited data. First, we momentarily disregard this difficulty in order to 

demonstrate the advantage of probabilistic design deriving from the use of higher safety 

factors for lighter structural components. Then, the effects of limited statistical data will 

be addressed. 

We consider a representative wing and tail system. In general, in order to perform 

reliability-based design, we need to re-calculate the stress PDF as we change the design. 
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For the sake of simplicity, we assume that structural redesign changes the entire stress 

distribution as shown in Fig. 8-1 by a simple scaling of σ to σ(1+Δ). This assumption will 

be accurate when the uncertainties are in the loading, and the relative errors in stress 

calculation are not sensitive to the redesign. 

 

Figure 8-1. Stress distribution s(σ) before and after redesign in relation to failure-stress 
distribution f(σf). We assume that re-designs scales the entire stress 
distribution. 

We denote the failure probabilities of wing and tail obtained from deterministic 

design by (PfW)d and (PfT)d, respectively. If failure of the two components is uncorrelated, 

the probability that at least one of them will fail is 

 Pf0 =1-[1-(PfW)d][1-(PfT)d] (8.1) 

If the two failure probabilities are correlated, the calculation is still simple for a 

given correlation coefficient. For the purpose of demonstration, we make simplifying 

assumptions that the structure is approximately fully stressed, and that the stresses are 

inversely proportional to weight. This allows us to treat the wing and the tail as a system 

with a single stress level and perform the demonstration without resorting to finite 

element modeling and analysis of these two components. That is, denoting the stresses in 

the wing and the tail by σW and σT, respectively, we use  
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where WW and WT are the wing and the tail structural weights, respectively, and the 

subscript ‘d’ denotes the values of stresses and structural weights for the deterministic 

design. Using Eq. (8.2) we can now formulate the following probabilistic design problem 

to minimize the probability of failure for constant weight 
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In the following subsection, we first perform probabilistic optimization for safety 

of the wing and tail system. Next, the effect of adding a vertical tail to the wing and 

horizontal tail system on the overall safety enhancement will be explored.  

Probabilistic Optimization with Correct Statistical Data 

For a typical transport aircraft, the structural weight of the horizontal tail is about 

20% of that of the wing. So the weights of the wing and the tail before probabilistic 

optimization are taken as 100 and 20 units, respectively. We assume that wing and the 

tail are built from the same material and the failure stress of the material follows 

lognormal distribution with a mean value , fμ , of 100 and coefficient of variation (c.o.v), 

fc , of 10%. The c.o.v. of the stresses in the wing and the tail, cσ , is assumed to be 20%. 

This may appear large in that stress calculation is quite accurate. However, there is 

substantial uncertainty in loading and geometry changes due to damage. For illustrative 

purpose, we assume that the historical record showed that the wing had lifetime 

probability of failure of 1×10-7. Since the deterministic design uses uniform safety factors 

(that is, the same safety factor is used for all components), and we assume that the wing 
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and tail are made from the same material and have the same failure mode (point stress 

failure here), it is reasonable to assume that the probability of failure for the deterministic 

design of the tail is also 1×10-7. As indicated earlier, we assume that the stresses follow 

normal distribution, which is characterized by only two parameters, mean and standard 

deviation. Therefore, given full information on the failure-stress distribution (lognormal 

with fμ =100 and fc =10%), the probability of failure (Pf=10-7) and the c.o.v. of the stress 

( cσ =20%), the mean stresses in the wing and the tail are calculated as 39.77. The reader 

is referred to Appendix N for details of calculation of the unknown mean stresses in the 

wing and the tail for given probability of failure and c.o.v. of the stresses. 

With the simple relation of stress to weight, Eq. (8.2), and the assumptions on the 

distributions of stresses and failure stresses, the probability of failure can be easily 

calculated by a variety of methods. One of these methods will be discussed later. Then 

the probabilistic design optimization is solved assuming a zero correlation coefficient 

between the probabilities of failure of wing and tail. We see from Table 8-1 that the 

probabilistic design and deterministic design are very close in that probabilistic design is 

achieved by a small perturbation of deterministic design (moving 0.75% of wing weight 

to tail, see columns 2 and 3). Table 8-1 shows that by moving 0.75% of the wing material 

to the tail, the probability of failure of the wing is increased by 31% of its original value. 

On the other hand, the weight of the tail is increased by 3.77% and thereby its probability 

of failure is reduced by 74%. The overall probability of failure of the wing and tail 

system is reduced by 22%.  
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Table 8-1. Probabilistic structural design optimization for safety of a representative wing 
and tail system. In the optimization only the mean stresses are changed, the 
c.o.v. of the stresses are fixed at c.o.v.=0.20. Probability of failure of the wing 
and the tail for deterministic design are both 1×10-7. 
 W0 W Pf ratio (a) Mean stress 

before optim. 
Mean stress 
after optim. 

Wing 100 99.25 1.309 39.77 40.07 
Hor. Tail 20 20.75 0.257 39.77 38.32 
System 120 120 0.783   

(a) Pf ratio is the ratio of the probabilities of failure of the probabilistic design and 
deterministic design 

 
The mean stresses and the c.o.v. of the stresses in the wing and the tail before and 

after probabilistic optimization are also listed in Table 8-1. We note that the mean stress 

in the wing is increased (by 0.76%) while the mean stress in the tail is reduced (by 3.6%). 

That is, a higher safety factor is used for the tail than the wing, but the difference is not 

large. For example, if the safety factor for the both structures was 1.5 for the 

deterministic design, it would be 1.49 for the wing and 1.55 for the tail. Since aircraft 

companies often use additional knockdown factors on top of those required by the FAA 

code, they can slightly increase the knockdown factor for the wing to achieve the 

probabilistic design that satisfies all the FAA requirements for a deterministic design! 

A striking result in Table 8-1 is that the ratio of probabilities of failure of the tail 

and the wing is about 1/5. Recall that the ratio of the tail weight and the wing weight is 

also 1/5. That is, at optimum the ratio of the probabilities of failure of the components is 

almost equal to the ratio of their weights. This optimum probability ratio depends on the 

following parameters: the target probability of failure, mean and c.o.v. of the stress and 

c.o.v. of the failure stress. We checked and found that the ratio of probabilities falls 

between 4.5 and 6.5 for a wide range of these parameters. Appendix O provides 

analytical proof that the ratios of the weights and probabilities are indeed approximately 

the same. 
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Recall that for deterministic design we assumed that the probabilities of failure of 

the wing and tail are the same because the components are designed with the same safety 

factor. So, it is worthwhile checking the historical record. Cowan et al. (2006) reports 

that according to the historical result, 18 out of 717 aircraft accidents between 1973 and 

2003 were due to wing structural failure, while 9 of the accidents were due to tail 

structural failure (see also Appendix P). Even though wing and tail are designed with the 

same nominal safety factors, the large weight differential may lead to different actual 

safety factors. Designers may intuitively attempt to reduce the structural weight of the 

heavier wing by squeezing out the weight down to the limit, while they may be laxer with 

the tail. This, for example, may happen if more approximate methods, with higher safety 

margins of safety are used for the tail. The probabilistic design supports this incentive 

and indicates that the design paradigm of using higher safety factors for inexpensive 

components can further be exploited to increase the structural safety of aircraft. 

Adding a Vertical Tail to the System 

Next, we added a vertical tail to the wing and horizontal tail system. For a typical 

transport aircraft, the structural weight of the vertical tail is about 10% of that of wing. 

The weights of the wing, the horizontal tail and the vertical tail of our representative 

system before probabilistic optimization are taken as 100, 20 and 10 units, respectively. 

The probability of failure of the deterministic designs of the wing, and the tails are taken 

1×10-7 each. The results of structural optimization for safety are listed in Table 8-2. By 

moving material from the wing to the tails the probability of failure of the wing is 

increased by 53%, but the probabilities of failure of the horizontal tail and the vertical tail 

are reduced by 70% and 85%, respectively. Table 8-2 demonstrates that by including the 
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vertical tail in the system, the system probability of failure is reduced by 34% compared 

to 22% with two-component (Table 8-1). An increase in number of components may thus 

increase the safety improvement of the system. 

Table 8-2 shows a similar finding of Table 8-1, in that at optimum the ratio of the 

probabilities of failure of the components are nearly 10:2:1, which is the same ratio of the 

weights of the components. This optimum probability ratio is obtained by using different 

safety factors for the different components. The mean stresses and the c.o.v. of the 

stresses in the wing, the horizontal tail and the vertical tail before and after probabilistic 

optimization are also listed in Table 8-2. The mean stress in the wing is increased by 

1.2%, while the mean stress in the horizontal tail and the mean stress in the vertical tail 

are reduced by 3.2% and 5.0%, respectively. Again, the substantial reduction in 

probability of failure is accomplished with a small perturbation of the safety factor. So a 

company that employs an additional knockdown factor of just a few percent would be 

able to reduce it for the wing, and fully comply with the FAA regulations while achieving 

superior safety. 

Table 8-2. Probabilistic structural optimization of wing, horizontal tail and vertical tail 
system. In optimization only the mean stresses are changed, the c.o.v. of the 
stresses are fixed at c.o.v.=0.20. Probability of failure of the wing and the tails 
for deterministic design are all 1×10-7. 

 W0 W Pf 
Ratio (a) 

Mean stress 
before optim. 

Mean stress 
after optim. 

Wing 100 98.80 1.531 39.77 40.25 
Hor. Tail 20 20.67 0.300 39.77 38.48 
Ver. Tail 10 10.53 0.149 39.77 37.78 
System 130 130 0.660   

(a) Pf ratio is the ratio of the probabilities of failure of the probabilistic design and 
deterministic design 
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Effect of Errors in Information about Deterministic Design 

The demonstration of the pay-off from probability-based design in the previous 

section was based on assumptions on the stress distribution and probability of failure. It is 

known that the calculation of probability of failure can be very sensitive to errors in 

distribution (Ben-Haim and Elishakoff 1990, Neal et al. 1992). So here we seek to 

demonstrate that because we merely seek to obtain a design with the same weight as the 

deterministic design, and because the probabilistic design is close to the deterministic 

design, the effect of errors on the ratio of the probabilities of failure of the probabilistic 

design and the deterministic design is minimal. In measuring the effects of error in the 

statistical data, we distinguish between loss of accuracy and loss of opportunity. That is, 

we report on the accuracy of our estimate of the improvement in the probability of failure 

compared to the deterministic design. We also report on the missed opportunity to make 

the design even safer if we had the correct statistical data. 

Errors in Coefficient of Variation of Stresses 

We first assume that we under-estimated the c.o.v. of stresses in the wing and the 

tail by 50% and performed the optimization using the wrong c.o.v. of stresses. That is, 

even though the true values of c.o.v. of stresses for the wing and the tail are both 40%, we 

performed the optimization based on 20% c.o.v. and obtained the design shown in Table 

8-1. With the overall probability of failure of the deterministic design being fixed, an 

under-estimate of the c.o.v must go with an over-estimate of the mean. Following the 

procedure in Appendix N, we find that the mean is over estimated by about 45% (actual 

mean is 31% lower than value used in Table 8-1). Table 8-3 shows both the error in the 

estimation of the probability gain and the loss of opportunity to make the design safer. 

For the wing, we over-estimate the Pf ratio (ratio of PfW of the probabilistic and the 
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deterministic designs) by 4.2% and under-estimate the Pf ratio for the tail by 19%. 

However, that the system probability of failure is under-estimated by only -0.5%, because 

the two errors canceled each other out (see Fig. 8-2). We also see from the table that the 

probability of failure of the true optimum is very close to our estimate of the probability 

of failure for the optimum obtained based on the erroneous data. This is a well known 

result for the effect of a parameter on the optimum of an unconstrained problem (e.g., 

Haftka and Gürdal 1992, Section 5.4). That is the loss of accuracy is approximately equal 

to the opportunity loss for small changes in the design. 

Table 8-3. Errors in the ratios of failure probabilities of the wing and tail system when the 
c.o.v. of the stresses under-estimated by 50%. The estimated values of c.o.v. 
of stresses for wing and tail are both 20%, while their actual values are both 
40%. Note that the under-estimate of the c.o.v corresponds to an overestimate 
of the mean stress, so that its actual value is 31% percent lower than the value 
given in Table 8-1. 

 Optimization based on erroneous data True optimum 

 

Optimi
zed 

weight 
(a) 

Estimat
ed (a) 

Pf  
ratio 

Actual 
(b) 

Pf  ratio 

% 
Error 
in Pf 

estim. 

Mean 
stress 
before 
optim. 

Mean 
stress 
after 

optim. 
(assumed) 

True 
optimal 
weight 

True 
optimal 
Pf ratio 

Mean 
stress 
after 

optim. 
(true) 

Wing 99.25 1.309 1.256 4.2 27.42 27.62 99.11 1.309 27.66 
H. Tail 20.75 0.257 0.317 -19.0 27.42 26.42 20.89 0.257 26.24 
System 120 0.783 0.786 -0.5    0.783  

(a) From Table 8-1. 
(b) Note that the Pf given here is the actual Pf of the assumed optimum (obtained via 
erroneous c.o.v. of the stress), which is different than the true optimum corresponding to the 
use of true c.o.v. of the stress 

 
The variation of the component and system probability-of-failure ratios with the 

error in c.o.v. of stresses in the wing and the tail are shown in Fig. 8-2. We see that for 

negative errors (under-estimated c.o.v. of stress) the Pf ratio of the wing is over-estimated 

while the Pf ratio of the tail is under-estimated. The two errors mostly cancel each other 

out and error in the system Pf ratio (and hence the opportunity loss) is very small. 

Similarly, for positive errors (over-estimated c.o.v. of stress) even though the Pf ratio of 



176 

 

the wing is under-estimated and the Pf ratio of the tail is over-estimated, the estimate of 

system Pf ratio is quite accurate over a wide range of error magnitude. As important is 

that we lose very little in terms of the potential improvement in the probability of failure 

due to the error. The smallness of the opportunity loss is a manifestation of the fact that 

the optimum ratio of the probabilities of failure is insensitive to the coefficient of 

variation of the stress. 

 

Figure 8-2. The change of the ratios of probabilities of failure of the probabilistic design 
of Table 8-1 versus the error in c.o.v.(σ). Negative errors indicate under-
estimate, while positive errors indicate over-estimate. 

We have this remarkable insensitivity of ratio of probabilities of failure to errors 

because the probabilistic design is close to the deterministic design. For a given 

probability of failure of the deterministic design, errors in the mean lead to compensating 

errors in the standard deviation as shown in Fig. 8-3, which shows two different possible 

distributions of the stresses in the wing (one with c.o.v.=0.20% and the other with 

c.o.v.=0.40%) leading to the same probability of failure, 1×10-7. We observe in Fig. 8-3 

that when c.o.v. is 20%, the mean stress is 39.77, while the mean stress is lower, 27.42, 

for a higher c.o.v.=40% so that they both lead to the same probability of failure. Of 
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course, these errors can greatly affect the probability of failure. Had we performed a 

probabilistic design for a given probability of failure, these errors could have caused us to 

get a design which was much less safe than the deterministic design. To complete the 

investigation, we also discuss the effect of erroneous estimates of probability of failure of 

deterministic design. 

 

Figure 8-3. Two different stress distributions at the wing leading to the same probability 
of failure of 1×10-7. 

Erroneous Mean Stresses 

Instead of erroneous estimates for c.o.v. of stresses, we now check the effect of 

errors in estimates of the mean stresses in the wing and the tail. We first assume that we 

under-estimated the mean stresses in the wing and the tail by 20% for the wing and the 

tail system of Table 8-1. That is, even though the true values of mean stresses in the wing 

and the tail are both 49.71, we under-estimated them as 39.77 to obtain the design of 

Table 8-1. Since the overall probability of failure of the deterministic design is fixed, an 

under-estimate of the mean stress must go with an over-estimate of the coefficient of 

variation. Following the procedure in Appendix N, we find that the c.o.v is over 
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estimated by about 193% (actual c.o.v. is 48% lower than value used in Table 8-1). Table 

8-4 shows that under-estimation of mean stresses leads to under-estimating the wing Pf 

ratio by 4.9%, and over-estimating the tail Pf ratio by 27.6%. On the other hand, the 

system probability of failure ratio is estimated with a very small error, because the two 

errors mostly cancel each other out. Comparing Table 8-1 and Table 8-4 we see that 

under-estimate of the mean stresses led to an over-estimate of c.o.v. of the stresses and 

thus compensated for the errors in probability of failure estimations.  

Table 8-4. Errors in the ratios of failure probabilities of the wing and tail system when the 
mean stresses are under-estimated by 20%. The estimated values of mean and 
c.o.v. of stresses for wing and tail are both (39.77, 20%). Note that the under-
estimate of the mean stress corresponds to an overestimate of the coefficient 
of variation, so that its actual value is 48% percent lower than the value given 
in Table 8-1 (c.o.v.=0.1038). 

 Optimization based on erroneous data True optimum 

 

Optimi
zed 

weight 
(a) 

Estimat
ed (a) 

Pf  
ratio 

Actual 
(b) 

Pf  ratio 

% Error 
in Pf 

estim. 

Mean 
stress 
before 
optim. 

Mean 
stress 
after 

optim. 
(assumed) 

True 
optimal 
weight 

True 
optimal 
Pf ratio 

Mean 
stress 
after 

optim. 
(true) 

Wing 99.25 1.309 1.377 -4.9 49.71 50.09 99.36 1.309 50.03 
H. Tail 20.75 0.257 0.198 29.4 49.71 47.91 20.64 0.257 48.18 
System 120 0.783 0.788 -0.6    0.783  

(a) From Table 8-1 
(b) Note that the Pf given here is the actual Pf of the assumed optimum (obtained via 
erroneous c.o.v. of the stress), which is different than the true optimum corresponding to the 
use of true c.o.v. of the stress 

 
Figure 8-4 shows that negative errors (under-estimated mean stress) lead to over-

estimated probability of failure ratio of the wing, under-estimated probability of failure 

ratio of the tail. However, the two errors are mostly cancelled and the error in the system 

failure probability ratio estimation is very small. Positive errors have the opposite effect. 
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Figure 8-4. The change of the ratios of probabilities of failure with respect to the error in 
mean stress. The negative errors indicate under-estimate, while the positive 
errors indicate over-estimate. 

Errors in Probability of Failure Estimates of Deterministic Design 

Mansour (1989) showed that there can be a significant variation in the failure 

probabilities of designs constructed using the same deterministic code. Supposedly, this 

reflects the effect of errors in predicting structural failure that may be different between 

designers, companies, or materials. This means that the probability of failure estimate of 

the deterministic design which we used in previous calculations may be inaccurate. To 

address this issue, we explore the sensitivity of the ratio of the probabilities of failure of 

the probabilistic design and the deterministic design to erroneous estimates of probability 

of failure of the deterministic design. Note, however, that we still assume that the several 

structural components are made from the same material and are designed for the same 

failure mode, so that they have approximately the same probability of failure in the 

deterministic design. 

We consider an under-estimate of the probability of failure of deterministic design 

by two orders of magnitudes. That is, we assume that we performed probabilistic design 
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by taking the probability of failure of deterministic design as 10-7 instead of using true 

value 10-5. Table 8-5 shows that under-estimated Pf of deterministic design leads to 

transferring lower amount of material (0.75% column 6) than optimum (0.95%; column 

5) from the wing to the tail. However, even though the wing is designed to be 5.4% safer 

than the true optimum and the tail is designed to be 32.9% less safe, the actual system 

probability of failure ratio is only 0.8% larger than its estimated value (columns 2-4). 

 
Table 8-5. Errors in the ratios of failure probabilities of the wing and tail system when the 

probability of failure of the deterministic design is under-predicted. The actual 
Pf is 10-5, while it is predicted as 10-7. Note that the c.o.v. of the stress is 20%. 

 Optimum 
weight 

Estimated=
Actual (a) 

Pf ratio 

Mean 
stress 
before 
optim. 

Mean 
stress 
after 

optim. 
(assumed) 

True 
optimal 
weight 

True 
optimal 
Pf ratio 

% 
safety 
loss 

Mean 
stress 
after 

optim. 
(true) 

Wing 99.25 1.240 45.91 46.26 99.05 1.310 -5.4 46.35 
H. Tail 20.75 0.336 45.91 44.24 20.95 0.253 32.9 43.83 
System 120 0.788    0.782 0.8  

(a) Estimated an actual probabilities of failure of the assumed optimum are the same, since 
the mean and c.o.v. of the stress do not involve any error  

 
Similarly, we checked what happens when we over-estimate the probability of 

failure of the deterministic design by two orders of magnitudes. Table 8-6 shows similar 

results as Table 8-5, but this time a larger amount of material is transferred from the wing 

to the tail compared to the true optimum (columns 5 and 6). This time, the wing is 

designed to be 5.1% less safe and the tail is designed to be 22% safer than their optimum 

values, the probability of failure ratio is only 0.6% greater than its estimated value 

(columns 2-4). 
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Table 8-6. Errors in the ratios of failure probabilities of wing and tail system when the 
probability of failure of the deterministic design is over-predicted. The actual 
Pf is 10-9, while it is predicted as 10-7. 

 Optimum 
weight 

Estimated
=Actual 
(a) 
Pf ratio 

Mean 
stress 
before 
optim. 

Mean 
stress 
after 
optim. 
(assumed) 

True 
optimal 
weight
s 

True 
optimal 
Pf ratio 

% 
safety 
loss 

Mean 
stress 
after 
optim. 
(true) 

Wing 99.25 1.374 35.33 35.60 99.36 1.306 5.1 35.56 
Hor. Tail 20.75 0.202 35.33 34.05 20.64 0.261 -22.4 34.24 
System 120 0.788    0.783 0.6  

(a) Estimated an actual probabilities of failure of the assumed optimum are the same, since 
the mean and c.o.v. of the stress do not involve any error  

 
Effect of Using Wrong Probability Distribution Type for the Stress 

Apart from the parameters we investigated (c.o.v. of the stresses, the mean stresses, 

and the probability of failure deterministic design), the distribution type of the stress also 

affects the results of probabilistic design. Here we explore the sensitivity of the 

probabilistic design to using wrong distribution type for the stress. We assume that even 

though the stress follows the lognormal distribution, the optimization is performed using 

a normal probability distribution to obtain the results in Table 8-1. 

Table 8-7 shows that if the true stress probability distribution is lognormal, the Pf 

ratio of the wing is over-estimated and the Pf ratio of the tail is under-estimated, so 

smaller amount of material is moved from the wing to the tail compared to the true 

optimum design. The error in the total system Pf ratio estimate is only 2.3%. Also, as in 

Tables 8-3 to 8-6 the loss of accuracy is approximately equal to the opportunity loss since 

the changes in the design are small. The loss of optimality reflects the fact that with 

lognormal distribution of the stress it is advantageous to transfer more material from the 

wing to the tail than with the normal distribution. Of course, the true distribution may be 

different from lognormal, however, the insensitivity is still encouraging. It is also 

interesting to note that even with the lognormal distribution the optimal probabilities of 
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failure are still proportional to the weight of the two components. Analytically, we have 

obtained a proof of this phenomenon only for the normal distribution (see Appendix O). 

Table 8-7. Errors in the ratios of failure probabilities of the wing and tail system if the 
optimization is performed using wrong probability distribution type for the 
stress. The probability of failure of the deterministic design is 10-7. The c.o.v. 
of the stress is 20%. 

 Optimization assuming stress is normal 
Optimization using the 

correct distribution type: 
lognormal 

 

Opti
mize
d 
weig
ht (a) 

Estimat
ed (a) 
Pf  
ratio 

Actual 
(b) 
Pf  ratio 

% 
Error 
in Pf 
estim. 

Mean 
stress 
before 
optim. 

Mean 
stress 
after 
optim. 
(assumed) 

True 
optimal 
weight 

True 
optimal 
Pf ratio 

Mean 
stress 
after 
optim. 
(true) 

Wing 99.25 1.309 1.201 9.0 32.04 32.28 98.90 1.307 32.39 
H. Tail 20.75 0.257 0.402 -36.1 32.04 30.87 21.10 0.265 30.36 
System 120 0.783 0.801 -2.3    0.786  

(a) From Table 8-1. 
(b) The actual Pf of the optimum obtained via erroneous stress distribution type 

 
Approximate Probabilistic Design Based on Failure Stress Distributions 

One of the main barriers to the application of probabilistic structural optimization is 

computational expense. Probabilistic structural optimization is expensive because 

repeated stress calculations (typically FEA) are required for updating probability 

calculation as the structure is being changed. That is, the simplified approach that we 

used in Eq. (8.2) is replaced by costly FEAs.  

Traditionally, reliability based design optimization (RBDO) is performed based on 

a double-loop optimization scheme, where the outer loop is used for design optimization 

while the inner loop performs a sub-optimization for reliability analysis using methods 

such as First Order Reliability Method (FORM). Since this traditional approach is 

computationally expensive, even prohibitive for problems that require complex finite 

element analysis (FEA), alternative methods have been proposed by many researchers 

(e.g., Lee and Kwak 1987, Kiureghian et al. 1994, Tu et al. 1999, Lee et al. 2002, Qu and 
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Haftka 2004 and Du and Chen 2004). These methods replace the probabilistic 

optimization with sequential deterministic optimization using inverse reliability measures 

to reduce the computational expense. The down side of these approaches is that they do 

not necessarily converge to the optimum design. We note, however, that most of the 

computational expense is associated with repeated stress calculation and we have just 

demonstrated insensitivity to the details of the stress distribution. This allows us to 

propose an approximate probabilistic design approach that might lead to a design nearer 

the optimum (depending, of course, on the accuracy of the approximation). 

Structural failure, using most failure criteria, occurs when a stress σ at a point 

exceeds a failure stress σf. For a given deterministic stress σ, the probability of failure is 

 ( ) ( )Probf fP Fσ σ σ= ≥ =  (8.4) 

where F is the cumulative distribution function of the failure stress σf. For random stress, 

the probability of failure is calculated by integrating Eq. (8.4) for all possible values of 

the stress σ 

 ( ) ( )fP F s dσ σ σ= ∫  (8.5) 

where s is the probability density function of the stress. For the calculations of the 

probability of failure in the preceding section, numerical integration of Eq. (8.5) was 

performed. It is clear from Eq. (8.5) that accurate estimation of probability of failure 

requires accurate assessments of the probability distributions of the stress σ and the 

failure stress σf. For the failure stress σf, the FAA requires aircraft builders to perform 

characterization tests, use them to construct a statistical model, and then select failure 

allowables (A-basis or B-basis values) based on this model. Hence, the statistical 

characterization of the failure stress is solid. On the other hand, the probability density 
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function of the stress, s(σ), is poorly known, because it depends on the accuracy of 

structural and aerodynamic calculations, the knowledge of the state of the structure, 

damage progression and pilot actions. As we discussed earlier, it is reasonable to assume 

that stress is normally distributed, because a large number of sources contribute to the 

uncertainty in stress, such as errors in load and stress calculations, variabilities in 

geometry, loads and material properties. Recall that more detailed discussion on the 

sources of uncertainty in stress is discussed in Chapter 4. 

By using the mean value theorem, Eq. (8.5) can be re-written as 

 ( ) ( ) ( )* *
fP F s d Fσ σ σ σ= =∫  (8.6) 

where the second equality is obtained by using the fact that the integral of s(σ) is one. 

Equation (8.6) basically states that the effect of the poorly characterized probability of the 

stress can be boiled down to a single characteristic stress value σ*. This value can be 

obtained by estimating s(σ) and integrating as specified in Eq. (8.6). However, it is 

equally possible to use historical data on probabilities of failure of aircraft structural 

components to do the reverse. That is, given an estimate of the probability of failure, we 

can obtain the characteristic stress σ* that corresponds to this historical aircraft accident 

data when airplanes are designed using the deterministic FAA process (see Fig. 8.5). 
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Figure 8-5. Calculation of characteristic stress σ* from probability of failure 

Recall that in probabilistic design of the wing and tail system we deviate from the 

deterministic process by reducing the structural margin on the wing and increase the 

margin on the tail, assuming that the structural redesign changes the stress distribution by 

simple scaling of σ to σ(1+Δ). Under this simple stress scaling, the characteristic stress 

will change from σ* to σ*(1+Δ*) to allow probabilistic design with a minimum number of 

stress analyses. We assume here that the relative change in the characteristic stress, Δ*, is 

proportional to the relative change in the stress, Δ. That is, 

 Δ* = k Δ (8.7)  

The value of k depends on the mean and c.o.v. of the stress and the failure stress. 

For lognormally distributed failure stress with mean = 100 and c.o.v.=10%, and normally 

distributed stress with mean = 39.77 and c.o.v.=20% (the values from our representative 

example), Figure 8-6(a) shows the relation of Δ and Δ*. Notice that the variation is almost 

linear. Figure 8-6(b) shows the effect of the Δ* approximation on the probability of 

failure. We see that the linearity assumption is quite accurate over the range -10%≤ Δ 

≤10%. 
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Figure 8-6. (a) Comparison of approximate and exact Δ and Δ* and (b) the resulting 

probabilities of failure for lognormal failure stress (with mean=100 and 
c.o.v.=10%) and normal stress (with mean=39.77 and c.o.v.=20%) 

Application of Characteristic Stress Method to Wing and Tail Problem 

In this section, we apply the probability of failure estimation to the wing and tail 

problem. The weights of the wing and the tail before probabilistic optimization are taken 

as 100 and 20 units, respectively. The probability of failure of the wing and the tail are 

both taken as 1×10-7. The failure stress of the wing and tail materials is assumed to follow 

lognormal distribution with a mean value of 100 and 10% c.o.v. The coefficients of 
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variations of the stresses in the wing and the tail are assumed 20%. The correlation 

coefficient for probabilities of failure of wing and tail is assumed zero. 

As we discussed earlier, some material is taken from the wing and added to the tail 

so that stresses in the wing and the tail are scaled by (1+ΔW) and (1+ΔT), respectively. 

Similarly, the characteristic stresses in the wing and the tail, σW
* and σT

*, are scaled by 

(1+ΔW
*) and (1+ΔT

*), respectively. Then, the probabilistic design optimization problem 

stated earlier in Eq. (8.3) can now be re-formulated as 

 
( ) ( ) ( )* * *

,
min , 1 1

such that
W T

f W T fW W fT TW W

W T dW dT

P W W P W P W

W W W W

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

+ = +
 (8.8) 

The weights of the components and characteristic stresses are related via  

 ( )* *1W W W dWkσ σ= + Δ ,   ( )* *1T T T dTkσ σ= + Δ  (8.9) 

where the relative changes in the stresses are calculated from 

 1dW
W

W

W
W

Δ = − ,   1dT
T

T

W
W

Δ = −  (8.10) 

The probabilistic optimization problem stated in Eq. (8.8) is solved, and the 

probabilities of failure are computed. Table 8-8 shows that the Pf ratios of the wing and 

the tail are estimated as 1.307 and 0.263, instead of their actual values 1.305 and 0.261. 

So, the characteristic-stress method estimates the system Pf ratio as 0.785, while the 

actual Pf ratio corresponding to the redesign is 0.783, which is the same system Pf ratio in 

Table 8-1. 
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Table 8-8. Probabilistic design optimization for safety of the representative wing and tail 
system using the characteristic-stress method. The c.o.v. of the stresses in the 
wing and tail are both 20%. 

 Table 8-1 Proposed method 

 ΔW Pf  ratio ΔW (a) Pf * ratio 
Actual 

Pf  ratio 
Wing -0.75 1.309 -0.75 1.307 1.305 

Hor. Tail 3.77 0.257 3.73 0.263 0.261 
System 0.0 0.783 0.0 0.785 0.783 

(a) %ΔW is percent changes in weight 
 
Table 8-8 shows that the error associated with the approximation of the 

characteristic stress in Eq. (8.7) is small. This is expected based on Fig. 8-6 that shows 

that the approximation of Δ* is very good. However, the main issue here is to show what 

happens if we commit errors in evaluating the k value in Eq. (8.7) due errors in the 

distribution parameters in the stresses and the failure stress. We investigated the effects of 

over-estimating and under-estimating k with 20% error. Table 8-9 shows that 20% under-

estimate of k leads to designing the wing for a higher Pf ratio (1.392 instead of 1.306) and 

designing the tail for a lower Pf ratio (0.187 instead of 0.269). The overall system Pf ratio, 

however, is increased by only 0.4%. The variation of Pf ratio of the wing, the tail and the 

system with the error in k is depicted in Fig. 8-7. It is seen that the effect is small for a 

wide range of errors. 

Table 8-9. Effect of 20% under-estimate of k on the ratios of probability of failure 
estimate 

 k Table 8-1 Characteristic-stress method 
with erroneous k 

 correct 
With 20% 

under-
estimate 

ΔW Pf 
Ratio ΔW (a) Pf * 

ratio 
Actual 
Pf ratio 

Wing 0.664 0.532 -0.75 1.309 -0.93 1.306 1.392 
Hor. Tail 0.664 0.532 3.77 0.257 4.64 0.269 0.187 
System   0.0 0.783 0.0 0.787 0.790 

(a) %ΔW is percent changes in weight 
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Figure 8-7. The variation of the ratios of probabilities of failure with respect to the error 
in k. The negative errors indicate under-estimate, while the positive errors 
indicate over-estimate. 

For a more complicated problem, when the stresses are calculated via FEA, the 

application the proposed method is as follows. After calculating the stresses from FEA, 

the relative changes in the stresses (that is, the Δ values) are calculated. Then, the 

characteristic stresses are updated by using Eqs. (8.7) and (8.9). Finally, the probabilities 

of failure of the components are updated using Eq. (8.6). The computational expense 

regarding with probability calculations are reduced greatly, and the probabilistic 

optimization problem is reduced to a semi-deterministic optimization problem. 

Summary 

Probabilistic structural design achieves better performance than deterministic 

design by applying higher safety factors to lower -weight components. This was 

demonstrated on a design problem of distributing structural material between the wing, 

horizontal tail and vertical tail of a typical airliner. While deterministic design leads to 

similar probabilities of failure for the three components, the probabilistic design led to 

probabilities of failure that were approximately proportional to structural weight. This 
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result has shown to be a property of the normal distribution. Remarkably, even though the 

ratios of weights and probability of failure ratios of the three components were 10:2:1, 

this was accomplished by reducing the safety factor on the wing by only about one 

percent and using the material to increase the safety factor on the horizontal and vertical 

tails by 3 and 5 percent, respectively. This led to a reduction of 34% in the probability of 

failure for the same total weight. The small perturbation of the safety factor can be 

accommodated by the additional knockdown factors that aircraft companies often use on 

top of those required by the FAA code. So the aircraft companies can slightly increase 

these additional knockdown factors for the wing to achieve the probabilistic design that 

satisfies all the FAA requirements for a deterministic design! 

We used estimates of the probability of failure of the deterministic design (obtained 

from historical record) as starting point of the probabilistic optimization. Because the 

exact values of the probability of failure of the deterministic design and the parameters of 

the probability distribution of structural response are rarely known, we checked the 

sensitivity of the ratio of probabilities of the probabilistic design and the deterministic 

design to large inaccuracies in the parameters of the stress distribution, the type of 

distribution, and probability of failure estimate of the deterministic design. In particular, 

50% errors in the standard deviation of the stress, or 20% error in the mean stress led to 

less than 1% difference in the probability of failure ratios (i.e., ratio of Pfs of the 

probabilistic and the deterministic designs). We also found that two orders of magnitude 

of errors in the probability of failure estimate of the deterministic design led to less than 

1% difference in the system probability of failure ratio. 
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Finally, these results inspired us to offer an approximate characteristic-stress 

method that dispenses with most of the expensive structural response calculations 

(typically done via finite element analysis). We showed that this approximation still leads 

to similar re-distribution of material between structural components and similar system 

probability of failure. 
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CHAPTER 9 
CONCLUDING REMARKS 

The two primary objectives of this dissertation were the following: (i) Analyze and 

compare the effectiveness of safety measures that improve structural safety such as safety 

factors (can be explicit or implicit), structural tests, redundancy and uncertainty reduction 

mechanisms (e.g., improved structural analysis and failure prediction, manufacturing 

quality control). (ii) Explore the advantage of uncertainty reduction mechanisms (e.g., 

improved structural analysis and failure prediction, tighter manufacturing quality control) 

versus safety factors. That is, we considered the possibility of allocating the resources for 

reducing uncertainties, instead of living with the uncertainties and allocating the 

resources for heavier aircraft structures designed for the given uncertainties. 

We started with a point stress design analysis of an aircraft structure by 

incorporating the uncertainties and safety measures that protect against these 

uncertainties. The uncertainties are classified as error and variability. Errors reflect 

inaccurate modeling of physical phenomena, errors in structural analysis, errors in load 

calculations, or deliberate use of materials and tooling in construction that are different 

from those specified by the designer. Variability, on the other hand, reflects the departure 

of material properties, geometry parameters or loading of an individual component from 

the fleet-average values. The safety measures included in this dissertation were the load 

safety factor of 1.5, conservative material properties, structural redundancy, coupon tests, 

structural element tests, certification tests and error and variability reduction mechanisms 

(e.g., improving the accuracy of structural analysis and failure prediction to reduce error, 
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employing tighter manufacturing quality controls to reduce variability in material 

properties).  

First a simple analysis was performed in Chapter 3 to understand the basics. A 

simple error model was used, and coupon tests and element tests are excluded at first. We 

found that 

   (1) The load safety factor of 1.5 accompanied with conservative material properties, 

redundancy, and certification testing raised the actual safety factor to about 2. 

Next, the analysis was refined in Chapter 4 by using a more detailed error model 

and modeling the structural redundancy. We found in this analysis that 

   (2) While certification testing was more effective than increased safety factors for 

improving safety, it cannot compete with even a small reduction in errors. 

   (3) Variability reduction was even more effective than error reduction, but it needed to 

be accompanied by increased knockdown factors to compensate for the increase in 

the B-basis value. 

Discovering the power of error and variability reduction in increasing the structural 

safety, we were motivated to analyze the tradeoffs of uncertainty reduction mechanisms, 

structural weight and structural safety. The effect of error reduction (due to improved 

failure prediction model) on increasing the allowable flight loads of existing aircraft 

structures was investigated in Chapter 5. We found that 

   (4) The allowable flight load of existing aircraft structures can be substantially 

increased on average by improved failure prediction modeling. 

Next, the improved structural analysis through taking the chemical shrinkage of 

composite laminates was considered in Chapter 6 as the error reduction mechanism to 
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investigate the tradeoffs of error and variability reduction mechanisms for reducing the 

weight of the composite laminates at cryogenic temperatures. Tradeoff plots of 

uncertainty reduction mechanisms, probability of failure and weight were generated that 

enable a designer to choose the optimal uncertainty control mechanism combination to 

reach a target probability of failure with minimum cost.  

Investigation of the interaction and effectiveness of safety factors was culminated 

with our final analysis in Chapter 7, which included coupon tests and element tests that 

we disregarded in our first analysis. In particular, emphasis was placed on analyzing the 

optimal choice of additional knockdown factors. These knockdown factors refer to 

conservative decisions of aircraft companies while updating the allowable stresses based 

on the results of structural element tests. Currently these knockdown factors are implicit 

and based on worst-case scenarios (e.g., testing the structural elements at worst-case 

operational conditions, using the smallest measured failure stress in design). Here, we 

proposed use of explicit knockdown factors, which depend on structural element test 

results. The effects of coupon tests, structural element tests and uncertainty control 

mechanisms on the choice of company safety factors were investigated. The Pareto fronts 

of structural weight and likelihood of structure’s failure in certification testing are 

generated. The following observations were drawn.  

   (5) Instead of using implicit knockdown factors based on worst-case scenarios, the use 

of test-dependent explicit knockdown factors may lead to 1 or 2% weight savings. 

Surprisingly, we found that a lower (i.e., more conservative) knockdown factor 

should be used if the failure stresses measured in tests exceeds predicted failure 

stresses in order to reduce the variability in knockdown factor generated by 
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variability in material properties. A thirty-six percent reduction in variability was 

observed, and it is likely to be responsible for the weight savings. 

   (6) Selecting additional knockdown factors to minimize certification failure rate 

provides a choice that is also very close to the optimum choice that minimizes 

structural failure in flight. 

   (7) Using a simple cost function in terms of structural weight, we have shown that 

decisions can be made whether to invest resources on coupon tests, structural 

element tests, uncertainty reduction mechanisms or extra structural weight. 

The analyses mentioned earlier showed how probabilistic design could be exploited 

to improve aircraft structural safety. A first step was taken towards the two main barriers 

in front of the probabilistic design in Chapter 8. These barriers are the sensitivity of the 

probabilistic design to limited statistical data and the computational expense associated to 

the probabilistic design. Probabilistic design optimization of a representative wing and 

tail system was performed with limited statistical data. We showed that  

   (8) Errors in statistical data affect the probability of failure of both probabilistic and 

deterministic designs, but the ratio of these probabilities is quite insensitive to even 

very large errors.  

   (9) The probabilistic design was found to be a small perturbation of deterministic 

design. This small perturbation could be achieved by a small redistribution of 

additional knockdown factors. 

To alleviate the problem of computational expense an approximate probabilistic 

design optimization method was proposed, where the probability of failure calculation 

was confined only to failure stresses to dispense with most of the expensive structural 
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response calculations (typically done via finite element analysis). The proposed 

optimization methodology is illustrated with the design of the wing and tail system. We 

showed that this approximation still leads to similar re-distribution of material between 

structural components and similar system probability of failure. 

More detailed conclusions corresponding to each stage of the dissertation can be 

found in the Summary sections of individual chapters. 
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APPENDIX A 
A-BASIS AND B-BASIS VALUE CALCULATION 

A-basis value is the value exceeded by 99% of the population with 95% 

confidence. Similarly, B-basis value is the value exceeded by 90% of the population with 

95% confidence. The basis values are calculated by  

 Basis X k s= −   (A1) 

where X  is the sample mean, s is the sample standard deviation and k is the tolerance 

coefficient for normal distribution given by Eq.(A2) 

  
2 2 2

1 1 1 12
1, 1 ,

2( 1)
p p

p
z z ab z z

k a b z
a N N

γ γ− − − −
−

+ −
= = − = −

−
 (A2) 

where N is the sample size and z1-p is the critical value of normal distribution that is 

exceeded with a probability of 1-p (for A-basis value p=0.99 while for B-basis value 

p=0.90). Similarly, 1z γ−  is the critical value of normal distribution that is exceeded with a 

probability of 1-γ (γ=0.95 for both A-basis and B-basis values). The tolerance coefficient 

k for a lognormal distribution is obtained by first transforming the lognormally 

distributed variable to a normally distributed variable. Equations (A1) and (A2) can be 

used to obtain an intermediate value. This value is then converted back to the 

lognormally distributed variable using inverse transformation. 

In order to obtain the A-basis or B-basis values, we assume that 40 panels are 

randomly selected from a batch. Here the uncertainty in material property is due to 

allowable stress. The mean and standard deviation of 40 random values of allowable 
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stress is calculated and used in determining the A-basis value of allowable stress. For 

instance, when the failure stress is lognormal with 8% coefficient of variation and 40 

tests are performed, the coefficient of variation of A-basis value is about 3 percent. 
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APPENDIX B 
PROBABILITY CALCULATIONS FOR CHAPTER 3 

Calculation of Pr(CT|e), the Probability of Passing Certification Test 

The probability that the structure will pass the certification testing is calculated 

from 

 ( )Pr( | ) Pr( ) Pr Pr

Pr( )

F d
f f f F d

S PCT e wt S P
wt

C R

σ σ σ σ
⎛ ⎞

= ≥ = ≥ = ≥⎜ ⎟
⎝ ⎠

= ≥

 (B.1) 

where fC t wσ=  is the load carrying capacity of structure and F dR S P=  is the applied 

load in the certification testing. 

Since the coefficients of variations of the geometry parameters t and w are small 

compared to the coefficient of variation of fσ , we assume t and w can be assumed 

lognormal, so the capacity C can be treated as lognormal with distribution parameters Cλ  

and Cζ  given as 

 ( ) ( )C t wfe eσλ λ λ λ= + +   and   2 2 2 2
C t wfσζ ζ ζ ζ= + +  (B.2) 

where 

 2( ) ln( ( )) 0.5t design te t eλ ζ= −  (B.3) 

Recall that the design thickness designt  is defined earlier in Eq. (3-4, Chapter 3) as  

 (1 ) F d
design

design a

S Pt e
w σ

= +  (B.4) 
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Since the response Rc is a deterministic value, the probability Pr(CT|e) can be 

calculated as 

 [ ]
2

( )Pr( | ) Pr( ) ( )C F d

C

e S PCT e C R eλ β
ζ

⎛ ⎞−⎜ ⎟= ≥ = Φ = Φ
⎜ ⎟
⎝ ⎠

 (B.5) 

where Φ  is the cumulative distribution function of the standard normal distribution. 

Calculations of Mean and Standard Deviation of Probability of Failure 

Failure is predicted to occur when the load carrying capacity of the structure C is 

less than the applied load P. So the probability of failure is given as 

 ( )PrfP C P= ≤  (B.6) 

The load P is lognormally distributed, and as explained in above in this appendix, 

the distribution of capacity C can also be approximated by a lognormal distribution, 

which allows us to immediately obtain the probability of failure of a single aircraft 

model.  

To calculate the probability of failure over all aircraft models, we take into account 

the fact that that designt  is a random variable. Then, the expected value of probability of 

failure is given as 

 ( ) ( )f f design design designP P t f t dt= ∫  (B.7) 

where designt  is the non-deterministic distribution parameter, and ( )designf t  is the 

probability density function (PDF)of designt . 

The standard deviation of failure probability can be calculated from 

 ( )
1/ 22

( )P f f f ff P P f P dPσ ⎡ ⎤= −⎢ ⎥⎣ ⎦∫  (B.8) 
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where 

 ( )f f designP P t=  

 ( ) ( ) design
f design

f

dt
f P f t

dP
=  (B.9) 

 1
f design

design f
dP dt

dt dP
=  

Hence, Eq. (B.8) can be re-written as 

 { }1/ 22
( ) ( )P f design f design designf P t P f t dtσ ⎡ ⎤= −⎣ ⎦∫  (B.10) 

As seen from Eqs. (B.8) and (B.10), the mean and standard deviation of the 

probability of failure can be expressed in terms of the ( )designf t . Therefore, we can 

perform the failure probability estimations to after calculating the ( )designf t . The random 

variables contributing to designt  are e, w and aσ  (see Eq. (B.4)). Since the variations of w 

and aσ  are small compared to error e, we neglect the contribution of w and and aσ , and 

calculate the ( )designf t  from 

 ( )( )design e
design

def t f e
dt

=  (B.11) 

where ( )ef e  is the PDF of e. 
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APPENDIX C 
CONFLICTING EFFECTS OF ERROR AND VARIABILITY ON PROBABILITY OF 

FAILURE IN CHAPTER 3 

As explained in the discussion of Table 3-5 and Figure 3-3, large errors coupled 

with certification tests can improve the average (over all companies) safety of an aircraft 

model. This was most apparent when mean material properties are used for design (Table 

3-5) because for this case airplanes would be tested at their average failure load, so that 

fifty percent will fail certification. A large error bound means a wide variation in design 

thicknesses. Certification testing fails most of the airplane models with unconservative 

designs and passes a group of airplane models with high average thickness (that is, over-

designed planes).  

When the additional safety factor of conservative material properties is used, as in 

Table 3-6, the picture is more complex. Certification is still done at the same loads, but 

the test airplane is designed for higher loads because of the conservative material 

properties. For high errors, many airplanes will still fail certification, but small errors will 

be masked by the conservative properties. Thus in Table 3-6, the certification failure rate 

varies from 29.4% for the largest errors to 1.3% for the smallest errors. At the highest 

error bound (50%), the certification process increases the average thickness from 0.847 to 

0.969, and this drops to 0.866 for 30% error bound. This substantial drop in average 

certified model thicknesses increases the probability of failure. Below an error bound of 

30%, the change in thickness is small, and then reducing errors reduces the probability of 
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failure. This is because small negative errors are not caught by certification, but they still 

reduce the effective safety factor. 

A similar phenomenon is observed when the variability is changed in Tables 3-8 to 

3-10. When the coefficient of variation in failure stress is increased from 0% to 16%, the 

average design thickness before certification increases by about 60% and so the 

probability of failure without certification is reduced by factors of 16-70. Note, however, 

that for the smallest error bound (Table 3-10), the drop occurs from zero to 8% 

coefficient of variation. At the higher coefficients of variation the probability of failure 

before certification increases again as the increased design thickness does not suffice to 

compensate for the large variation between airplanes .Once certification is included in the 

process, variability is mostly detrimental. Certification does not amount to much for large 

variability, because the certified airplane can be very different from the production 

aircraft. For large error bounds (Table 3-8) there are large errors that can be masked 

during certification by the high material safety factor. Thus in Table 3-8, while the 

probability of failure without certification is reduced by a factor of 16, the probability of 

failure with certification is increased by a factor of 1320 as the coefficient of variation in 

the failure stressed is increased from 0 to 16%. For small errors (Table 3-10) the picture 

is more mixed as the non-monotonic behavior without certification is mirrored with 

certification.  
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APPENDIX D 
COMPARISON OF RESULTS OF SINGLE ERROR FACTOR AND MULTIPLE 

ERROR FACTOR CASES 

In Chapter 3, we used a single error factor model (SEF model), where the overall 

error is represented with a single error factor e, and uniform distribution is used for the 

initial distribution of this error. On the other hand, Chapter 4 utilizes a multiple error 

factor model (MEF model), which uses a more complex representation of error with 

individual error factors and where initial distributions of each individual error factor are 

represented with uniform distribution. In this case, the distribution of the total error is no 

longer uniform. We find that the SEF model exaggerates the effectiveness of certification 

testing (see Figure 4-1). This is due to the fact that the SEF model does not consider the 

fact that errors in load calculation affect the load used in certification testing. In the SEF 

model (Chapter 3), the certification testing is assumed to be performed with the average 

value of the actual load (Pd), while in the MEF model certification testing is performed 

with the calculated load (Pcalc). Therefore, one component of the error cannot lead to 

failure in certification testing and this reduces the effectiveness of certification testing. 

Note that the single error of the SEF model is symmetric. On the other hand, even 

though the individual errors of MEF model are symmetric, the total error has a bell-

shaped distribution with a positive, hence conservative, mean. One of the interesting 

differences between the SEF and MEF models is that we have a built-in safety factor due 

to asymmetric error distribution. This asymmetry is due mostly to the term ( )1 1 fe−  in 



205 

 

Eq. (4.12). While ef is symmetrically distributed (-0.2, 0.2), ( )1 1 fe−  varies in (0.833, 

1.25). The conservative tilt of the total error may be serendipitous because it will partially 

account for designer bias response to the building block tests used to reduce ef. Tests that 

show that the failure model is slightly conservative typically do not lead to updating of 

the model. In contrast, tests showing even small unconservative bias typically lead to 

correction of the failure model. 

In order to compare the effect of the two models on the probability of failure 

calculations, we match the mean and standard deviation values of the total error 

distribution (MEF model) and those of a uniform distribution (SEF model). Then, the 

upper and lower bounds (lb and ub) for the uniformly distributed error factor can be 

calculated via Eq. (D.1), where μe and σe are the mean and standard deviation of the total 

error, respectively.  

 3e elb μ σ= − ,   3e eub μ σ= +  (D.1) 

Using the equivalent error bounds of the SEF model given in the right-hand side of 

Table D-1 we calculate the probabilities of failure before and after certification testing for 

the SEF model and we compare them in Table D-2 with corresponding failure 

probabilities of the MEF model from Table 4-8.  

Table D-1. Equivalent error bounds for the SEF model corresponding to the same 
standard deviation in the MEF model. The average and standard deviation is 
calculated via 1,000,000 MCS. 

k 
Average 

ini
totale  

Standard 
deviation of 

ini
totale  

Lower bound for 
ini
totale  

Upper bound 
for ini

totale  

0.25 0.0009 0.033 -0.057 0.059 
0.50 0.0034 0.067 -0.113 0.119 
0.75 0.0076 0.101 -0.168 0.183 
1.0 0.0137 0.137 -0.223 0.250 
1.5 0.0317 0.212 

From 
MEF model 
→ 
to 
SEF model 

-0.336 0.400 
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The comparison of the probability of failures after certification for the two models 

is presented in Fig. D-1. 

 

Figure D-1. System failure probabilities for the SEF and MEF models after certification 

The total safety factor for the SEF model is defined as 

 ( ) ( )
0

1design f
F FLdesign

a

A
S e S

A
σ
σ

= = +  (D.2)  

Similarly, the design area for the SEF model is expressed as 

 ( )1 FL d
design

a

S PA e
σ

= +  (D.3)  

Using the SEF model, we repeat the calculation of the probabilities of failures. The 

comparison of the SEF and MEF models probability of failure calculations are given in 

Table D-2. 

Table D-2. Comparison of system failure probabilities for the SEF and MEF models. The 
coefficient correlation between failures of structural parts is taken 0.5. 

k MEF
ncP /10-4 MEF

cP /10-4 Pf 
Ratio* 

SEF
ncP /10-4 SEF

cP /10-4 Pf 
Ratio(a) 

0.25 0.0 0.0 0. 0. 0. 0. 
0.50 0.029 0.022 0.749 0.026 0.018 0.689 
0.75 0.195 0.106 0.543 0.165 0.069 0.419 

1 1.11 0.390 0.350 1.03 0.186 0.181 
1.5 17.2 2.21 0.129 27.7 0.311 0.112 

(a) Pf is the ratio of the average failure probabilities before and after certification testing; /c ncP P  
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When we compare the probability of failure before certification, the mean values of 

the failure probabilities are higher for the SEF model than those for the MEF model at 

high errors (see columns 2 and 5, Table D-2) due to the use of uniform distribution for 

the total error factor. Comparing the failure probabilities after certification, we notice that 

the MEF model leads to higher probability of failure values, and higher /c ncP P  ratios 

(less effective certification testing). Recall that this is due to the fact that in the MEF 

model error in load calculation is also included in the certification testing. This effect is 

also apparent when we compare the total safety factor values for these two models in 

Table D-3 and in Fig. D-2.  

The single error factor after certification of failure probabilities in Table D-2 also 

indicates that the effect of the error bound on the probability of failure after certification 

is not monotonic. One possible explanation for this behavior are the competing effects of 

error and the total safety factor. For the highest error bound, the total safety factor is 

increased to 2.108 (see Table D-3), which overcomes the effect of high error on the 

probability of failure. 

Table D-3. Comparison of the total safety factor SF used in the design of structural parts 
for the SEF and MEF models 

k ( )MEF
F builtS  ( )MEF

F certS  SF 
Ratio(a) ( )SEF

F builtS  ( )SEF
F certS  SF 

Ratio(a) 

0.25 1.725 1.728 1.002 1.725 1.729 1.002 
0.5 1.730 1.741 1.007 1.730 1.745 1.009 

0.75 1.737 1.764 1.016 1.737 1.776 1.023 
1 1.747 1.799 1.030 1.747 1.825 1.044 

1.5 1.779 1.901 1.069 1.779 1.954 1.099 
(a) SF is the ratio of total safety factors before and after certification 
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Figure D-2. Total safety factors for the SEF and MEF model after certification 

Comparing the total safety factors, SF, after certification corresponding to the MEF 

and SEF models (columns 3 and 6, Table D-3), we see that the total safety factor 

corresponding to the SEF model is larger, which will in turn lead to a smaller probability 

of failure (see Table D-2). Columns 4 and 7 of Table D-3 exhibit the expected trend of an 

increase in the total safety factor ratio with increasing error bounds, reflecting more 

effective certification testing.  

In short, the effect of using a more detailed error model can be summarized as 

follows: 

• The uniformly distributed individual error components add up to a bell-shaped 
representative total error. This total error has an asymmetric distribution and this 
asymmetry results in a built-in safety factor.  

• The single error model exaggerates the effectiveness of certification testing, 
because it does not include the fact that error in load calculation is also present in 
the certification process. The single error model inflates the design area after 
certification, thereby leading to under-estimation of probabilities of failures. 
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APPENDIX E 
DETAILS OF SEPARABLE MONTE CARLO SIMULATIONS FOR PROBABILITY 

OF FAILURE CALCULATIONS IN CHAPTER 4 

The separable MCS procedure applies when the failure condition can be expressed 

as g1(x1)>g2(x2), where x1 and x2 are two disjoint sets of random variables. For that case, 

the probability of failure can be written as 

 ( ) ( )2 11fP f t F t dt⎡ ⎤= −⎣ ⎦∫  (E.1) 

where f2 is the probability density function of g2 and F1 is the cumulative distribution 

function of g1. Since the two sets of random variables are disjoint, we can perform one 

Monte Carlo simulation with x1 to calculate F1 and then perform a second Monte Carlo 

simulation on x2 to calculate Pf from Eq. (E.1). Note that 1-F1 in Eq. (E.1) is the 

probability of failure if g2 takes the value t, and the second Monte Carlo simulation 

calculates the average of this probability over all possible values of g2. 

For our problem, f2 is the probability density function of the built safety factor, 

0/builtA A , and F1 is the cumulative distribution function of the required safety 

factor, 0/reqA A′ . Since f1( ) and F2( ) depend on different sets of random variables, we 

separate the MCS into two stages.  

In the first stage, the cumulative distribution function of the required safety factor, 

0/reqA A′ , is assessed. We use 1,000,000 MCS for this purpose. It is possible to assess 

CDF numerically by dividing the range of 0/reqA A′  into a number of bins (for instance, 
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1,000 bins) and calculating the CDF for each bin. Then, in the second stage, the CDF 

value can be obtained by interpolation.  

On the other hand, we notice for our problem that the dominant terms in 0/reqA A′  

are Pact and σf, since they have much larger variabilities than vt and vw (see Table 4-2, 

Chapter 4). Since Pact and σf follow the lognormal distribution, it is possible to represent 

0/reqA A′  with lognormal distribution. We indeed found that numerical CDF is in good 

agreement with the assumed lognormal as shown in Fig. E-1. 

 

Figure E-1. Comparison of numerical CDF with the assumed lognormal CDF for the 
distribution of the required safety factor 

To ensure that the assumed lognormal distribution leads to an accurate probability 

of failure estimations, we performed the following study. Five different sets of 0/reqA A′  

values are obtained from five different MCS with 1,000,000 sample size. Then, the 

probabilities of failure are calculated using the same second-stage random numbers for 

both numerical CDF and assumed lognormal CDF. Table E-1 shows that the probability 
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of failure estimation using assumed lognormal CDF is accurate to the third digit and also 

has a smaller standard deviation indicating that the numerical noise is reduced. 

Table E-1. Comparison of the probability of failure estimations 

 Pf estimation using 
numerical CDF (×10-4) 

Pf estimation using assumed 
lognormal CDF (×10-4) 

MCS 1 8.961 8.855 
MCS 2 8.902 8.807 
MCS 3 8.901 8.825 
MCS 4 8.734 8.856 
MCS 5 8.859 8.816 

Average 8.871 8.832 
Std. dev. 0.085 0.023 
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APPENDIX F 
CALCULATION OF THE SYSTEM FAILURE PROBABILITY USING BIVARIATE 

NORMAL DISTRIBUTION 

Bivariate normal distribution describes the joint behavior of two random variables 

X1 and X2, for which the marginal distributions are normally distributed and correlated 

through the correlation coefficient ρ. The probability density function is defined as 

(Melchers, 1999) 

 ( )1 2
1 2

2 2

1 2 2
1 1 2, , exp

2 2 1X X
X X

h k hkf x x ρρ
π σ σ ρ

⎛ ⎞+ −
= −⎜ ⎟⎜ ⎟−⎝ ⎠

 (F.1) 

where 1 1

1

xh μ
σ
−

=  and 2 2

2

xk μ
σ
−

= , μ1 and σ1 are the mean and standard deviation of 

variable X1, and μ2 and σ2 are the mean and standard deviation of variable X2. 

The joint cumulative distribution is defined as 

   
( ) ( ) ( ) ( )

2 1 2

1 2 2 1 21 2 1 2
1

, , Pr , , , ,
x x

X X i i X X
i

F x x X x f u v du dv x xρ ρ ρ
= −∞ −∞

⎡ ⎤
≡ ≤ = = Φ⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫I     (F.2) 

In addition, ( )2Φ  can be reduced to a single integral (Owen, 1956) 

( ) ( ) ( )
2 2

2 22
0

1 1 1 2, , exp
2 2 11

h k hkh k dz h k
zz

ρ ρρ
π

⎛ ⎞+ −
Φ = − + Φ Φ⎜ ⎟⎜ ⎟−− ⎝ ⎠

∫  (F.3) 

where Ф is the standard normal cumulative distribution function. 

The two local failure events requirement of our problem is modeled as a parallel 

system. Thus we aim at computing the probability of failure of a parallel system 

composed of two elements having equal failure probabilities. We assume that the limit-
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state functions for these two elements follow normal distribution. Thus we can use the 

bivariate normal distribution to calculate the system probability of failure. Since the 

failure probabilities are identical, the reliability indices are also identical (i.e., h=k=β). 

Then Eq. (F.3) can further be simplified into Eq. (F.4). Thus, given the probability of 

failure of a single element and the correlation coefficient ρ, Eq. (F.4) can be used to 

calculate system failure probability PFS. 

 
( )

2
2

2 2
0

1 1, , exp
2 11

FS fP P dz
zz

ρ ββ β ρ
π

⎛ ⎞
= Φ − − = + −⎜ ⎟⎜ ⎟+− ⎝ ⎠

∫  (F.4)  

where Pf and β are the probability of failure and the reliability index for a single element, 

respectively, which are related to each other through Eq. (F.5). 

 ( )fP β= Φ −  (F.5) 
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APPENDIX G 
TEMPERATURE DEPENDENT MATERIAL PROPERTIES FOR THE CRYOGENIC 

LAMINATES IN CHAPTER 6 

Since we analyze the problem that was addressed by Qu et al. (2003), the 

geometry, material parameters and the loading conditions are taken from that paper. Qu 

et al. (2003) obtained the temperature dependent properties by using the material 

properties of IM600/133 given in Aoki et al. (2000) and fitted with smooth polynomials 

in order to be used in calculations. The reader is referred to Appendix 1 of Qu et al. 

(2003) for the details. The temperature dependent material properties are shown in 

Figures G-1 and G-2. 

 

Figure G-1. Material properties E1, E2, G12 and ν12 as a function of temperature 
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Figure G-2. Material properties α1 and α2 as a function of temperature 
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APPENDIX H 
DETAILS OF CONSERVATIVE CUMULATIVE DISTRIBUTION FUNCTION (CDF) 

FITTING 

In Chapter 6, we assume normal distributions for strains in the cryogenic laminates 

and estimate the mean and the standard deviation of the assumed distributions 

conservatively. Conservative fitting is assessed as follows. We first perform Monte Carlo 

simulations with sample size of 1,000 and calculate the mean and the standard deviation 

of the strains. Then we assume that the strains follow normal distribution with the 

calculated mean and standard deviation. We see in Fig. 6-2 (of Chapter 6) that the normal 

CDF is smaller than the empirical CDF for some strain values, and larger for other strain 

values. That is, the normal CDF leads to conservative estimates for some strain values, 

while it leads to unconservative estimates for other strain values. It is desirable to have 

conservative estimates for all strain values, that is, to have a conservative CDF fit which 

is smaller than the empirical CDF for all strain values. However, the tails of the 

distribution are volatile, and fitting conservative CDF including these values can lead to 

over conservative results. Accordingly, we do not apply constraints to the first 5 points 

(out of 1,000 points) of the left tail and last 5 points of the right tail. Out of the remaining 

990points, we choose uniformly spaced 100 points and calculate the maximum deviation 

of the normal CDF fit from the empirical CDF fit at these 100 points. The maximum 

deviation of the fitted CDF for the empirical CDF is called the Kolmogorov-Smirnov 

distance. We shift the mean value of the fitted CDF to close the Kolmogorov-Smirnov 

distance between the normal fit and empirical fit. The normal distribution with this 
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shifted mean and original standard deviation is our conservative normal fit. As we see in 

Fig. 6-2 (of Chapter 6) that the conservative normal CDF lies below the empirical CDF 

for all strains except near the tails.  

A better conservative fit can possibly be obtained by varying the mean and standard 

deviation at the same time. Detailed investigation on conservative estimation of CDF for 

probability of failure calculations is provided in Picheny et al. (2006). 
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APPENDIX I 
DETAILS OF DESIGN RESPONSE SURFACE FITTING FOR THE PROBABILITY 

SUFFICIENCY FACTOR FOR THE CRYOGENIC LAMINATES IN CHAPTER 6 

Qu et al. (2003) showed that using the combination of face centered central 

composite design (FCCCD) and Latin hypercube sampling (LHS) designs gives accurate 

results, so we follow the same procedure.  

The ranges for design variables for design response surface (DRS) are decided as 

follows. The initial estimates of the ranges for design variables were taken from Qu et al. 

(2003). When we used these ranges, we found that the prediction variances at the 

optimum designs were unacceptably large. The ranges for DRS were then reduced by 

zooming around the optimum designs obtained from the wider ranges. After zooming, the 

prediction variances at the optimum designs were found to be smaller than the RMSE 

predictors. The final ranges for response surfaces are given in Table I-1. 

Table I-1. The ranges of variables for the three DRS constructed for PSF calculation 
 t1 and t2 (in) θ1 and θ2 (deg) 

be=0 0.012-0.017 24-27 
be=10% 0.013-0.018 24-26 
be=20% 0.015-0.022 22-25 
 
Qu et al. (2003) used a fifth-order DRS for the probability of failure, and found it to 

be quite accurate. We also use a fifth-order DRS. A fifth-order response surface in terms 

of four variables has 126 coefficients. Following Qu et al. (2003), we used 277 design 

points, 25 correspond to FCCCD and 252 are generated by LHS. In addition to response 

surfaces for probability sufficiency factor, three more DRS were also fitted to the 

probability of failure for comparison purpose. The comparison of the accuracies of DRS 
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for PSF and DRS for Pf are shown in Table I-2. For instance, for error bound of 20%, the 

root mean square error predictions of DRS for PSF and DRS for Pf are 3.610×10-3 and 

7.664×10-4, respectively. Since PSF and Pf are not of the same order of magnitude, we 

cannot compare these errors directly. One possibility is to compare the ratios of RMSE 

and mean of the response. When we compare the ratios for error bound of 20%, we see 

that the ratio of RMSE and mean of the response DRS for Pf is 0.1868, while the same 

ratio of DRS for PSF is 0.0042. It is an indication that DRS for PSF is more accurate than 

DRS for Pf.  

Table I-2. Accuracies of DRS fitted to PSF and Pf in terms of four design variables (t1, t2, 
θ1 and θ2) for error bounds, be, of 0, 10%, and 20% 

  Mean of 
response 

RMSE 
predictor* 

Ratio of 
RMSE to 

the mean of 
response 

Equivalent 
error in Pf 

Equivalent 
error in PSF 

PSF 1.077 4.655×10-3 4.332×10-3 5.397×10-7 

( < 9.447×10-4) --- 
be=0% 

Pf 8.081×10-4 9.447×10-4 1.196 --- 4.205×10-2 

( > 4.655×10-3) 
PSF 0.9694 4.645×10-3 4.792×10-3 4.615×10-6 

( < 8.281×10-4) --- 
be=10% 

Pf 1.340×10-3 8.281×10-4 0.6180 --- 1.862×10-2 

( > 4.645×10-3) 
PSF 0.8621 3.610×10-3 4.187×10-3 6.308×10-5 

( < 7.664×10-4) --- 
be=20% 

Pf 4.103×10-3 7.664×10-4 0.1868 --- 1.013×10-2 
( > 3.610×10-3) 

 
Another way of comparing the accuracies is to calculate equivalent errors of DRS 

for PSF to those of DRS for Pf. That is, the equivalent error in Pf due to error in DRS for 

PSF can be compared to the equivalent error in PSF due to error in DRS for Pf.  

The standard errors in calculation of PSF and Pf due to limited MCS sample size 

are given in the last two columns of Table I-2. The standard error for Pf is calculated 

from 
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( )1

f

f f
P

P P

N
σ

−
=  (I.1) 

The standard error in PSF is calculated as illustrated in the following example. 

Assume that for calculating a probability of failure of 1×10-4, we use sample size of 106 

in MCS. Then, the number of simulations failed is 100 and the standard error for Pf 

calculation from Eq. (I.1) is 1×10-5. Thus, 10 simulations out of 100 represent the 

standard error. The standard error in PSF can be approximated as the difference between 

the 105th smallest safety factor and 95th smallest safety factor. A better estimation for 

PSF can be obtained by utilizing the CDF of the safety factor S. 

The equivalent error in Pf due to the error in DRS for PSF, for error bound of 20% 

for instance, can be approximated as follows. The mean of response and RMSE 

prediction of DRS for PSF are μ=0.8621 and σ=3.610×10-3, respectively. We calculate 

the Pf values corresponding to PSF values of μ-σ/2 and μ-σ/2 as 4.605×10-4 and 

3.974×10-4, respectively. The difference between these two Pf values, 6.31×10-5, gives an 

approximation for the equivalent error in Pf. We see that this equivalent error in Pf is 

smaller than the error in DRS for Pf, 7.664×10-4, indicating that the DRS for PSF has 

better accuracy than DRS for Pf. The equivalent error in PSF due to errors in DRS for Pf 

can be computed in a similar manner. The equivalent error in PSF (1.013×10-2) due to 

error in DRS for Pf is larger than the error in DRS for PSF (3.610×10-3) indicating that 

the DRS for Pf does not have good accuracy. The errors in DRS for Pf are clearly 

unacceptable in view that the required probability of failure is 1×10-4. 
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DRS for error and quality control case 

Table I-1 showed the ranges of design variables for DRS when only error reduction 

was of interest. When quality control is also considered, we changed the ranges of the 

design variables. All properties such as the design of experiments and the degree of 

polynomial were kept the same for the new response surfaces; the only change made was 

the ranges of design variables. The new ranges of design variables used while 

constructing the new response surfaces are given in Table I-3. Notice that the ranges for 

laminates thicknesses are reduced and ranges for ply angles are increased, the safety of 

the laminates are further improved by addition of quality control. 

Table I-3. Ranges of design variables for the three DRS constructed for probability of 
failure estimation for the error and variability reduction case 

 t1 and t2 (in) θ1 and θ2 (deg) 
be=0 0.008-0.012 27-30 

be=10% 0.009-0.014 26-29 
be=20% 0.013-0.018 24-27 
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APPENDIX J 
ASSESSMENT OF THE ERROR DUE TO LIMITED NUMBER OF COUPON TESTS 

Since the (mean) failure stress of a material is estimated based on a finite number 

of coupon tests, the estimate involves error. Recall that the true mean of the failure stress 

(i.e., the population mean) ( )fc true
σ  and the estimated mean failure stress ( )fc calc

σ  are 

related to each other via 

 ( ) ( ) ( )1fc fc fccalc true
eσ σ= −  (J.1) 

Now, the error term can be written as  

 
( )
( )

1
fc calc

fc
fc true

e
σ

σ
= −  (J.2) 

Even though the true mean failure stress is a deterministic value, the calculated 

mean failure stress is random due to limited number of coupon tests. The mean and 

standard deviation of the calculated mean failure stress are given by 

 ( )( ) ( )fs fscalc true
E σ σ=  (J.3) 

 ( )( ) ( )( )fs true
fs calc

Std
Std

n

σ
σ =  (J.4) 

where E and Std denote the expected value and the standard deviation, respectively. 

Then, the mean and standard deviation of efc can be estimated as follows. 

The mean value of efc can be estimated by using first order Taylor series expansion 

as 



223 

 

 ( )
( )( )

( )
1

fc calc
fc

fc true

E
E e

σ

σ
≅ −  (J.5) 

Since the mean value of the calculated mean and true mean are the same, Eq. (J.3), 

we have 

 ( ) 0fcE e ≅  (J.6) 

Similarly, the standard deviation of efc can be calculated by using uncertainty 

propagation equation as 

 ( ) ( ) ( )( )fc
fc fc calc

fc calc

e
Std e Std σ

σ

∂
≅

∂
 (J.7) 

where 
( ) ( ) ( )

1 1m

fc fc fccalc true calc

e
Eσ σ σ

∂
= − = −

∂
. Hence, combining Eqs. (J.4) and (J.7) 

we can obtain the standard deviation of efc as 

 ( )
( )( )c.o.v. fc calc

fcStd e
n

σ
≅  (J.8) 

where c.o.v. denotes the coefficient of variation. 
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APPENDIX K 
PROBABILITY OF FAILURE CALCULATIONS FOR CHAPTER 7 USING 

SEPARABLE MCS 

As noted earlier, the separable Monte Carlo procedure applies when the failure 

condition can be expressed as g1(x1)>g2(x2), where x1 and x2 are two disjoint sets of 

random variables. To take advantage of this formulation, we need to formulate the failure 

condition in a separable form, so that g1 will depend only on variabilities and g2 only on 

errors.  

The separable MCS procedure applies when the failure condition can be expressed 

as g1(x1)>g2(x2), where x1 and x2 are two disjoint sets of random variables. For that case, 

the probability of failure can be written as 

 ( ) ( )2 11FP f t F t dt⎡ ⎤= −⎣ ⎦∫  (K.1) 

where f2 is the probability density function of g2 and F1 is the cumulative distribution 

function of g1. Since the two sets of random variables are disjoint, we can perform one 

Monte Carlo simulation with x1 to calculate F1 and then perform a second Monte Carlo 

simulation on x2 to calculate PF from Eq. (K.1). Note that 1-F1 in Eq. (K.1) is the 

probability of failure if g2 takes the value t, and the second Monte Carlo simulation 

calculates the average of this probability over all possible values of g2. 

The common formulation of structural failure condition is in the form of a stress 

exceeding the material limit. This form, however, does not satisfy the separability 

requirement. For example, the stress depends on variability in material properties as well 

as design area which reflects errors in the analysis process. To bring the failure condition 
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to the right form, we formulate it instead as the required cross section area reqA′  being 

larger than the built area Abuilt as given in Eq. (K.2) 

 
( )( )1 1

req
built req

t w

A
A A

v v
′< ≡

+ +
 (K.2)  

where Areq is the cross-sectional area required to calculate the actual service load, which 

is defined as 

 req fA P σ=  (K.3) 

The required area depends only on variability, while the built area only on errors. 

When certification testing is taken into account, the built area, Abuilt, is replaced by the 

certified area, Acert, which is the same as the built area for companies that pass 

certification, but companies that fail are not included. That is, the failure condition is 

written as 

 Failure without certification tests:     0req builtA A′ − >  (K.4a) 

 Failure with certification tests:     0req certA A′ − >   (K.4b) 

Equations (K.4a) and (K4.b) can be normalized by diving the terms with A0 (load 

carrying area without safety measures). Since Abuilt/A0 or Acert/A0 are the total safety 

factors, Eq. (K.5) states that failure occurs when the required safety factor is larger than 

the built one. 

 Failure without certification tests:     ( ) ( ) 0F Freq builtS S− >  (K.5a) 

 Failure with certification tests:     ( ) ( ) 0F Freq certS S− >  (K.5b) 
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So for our problem, f2 is the probability density function of the built safety factor, 

( )F builtS , and F1 is the cumulative distribution function of the required safety factor, 

( )F reqS . So we can re-write the probability of failure as  

 ( ) ( )1
F built F built builtbuilt reqf S F S F FP f S F S dS⎡ ⎤= −⎢ ⎥⎣ ⎦∫  (K.6)  

Here the probability of failure for a single company is 1
Freqf SP F= − , and 

integration of Pf over all aircraft companies gives the average probability of failure PF. 

For a given ( )F builtS  we can calculate the probability of failure, Eq. (K.5a), by 

simulating all the variabilities with an MCS. Figure K-1 shows the dependence of the 

probability of failure on the total safety factor obtained using MCS with 1,000,000 

variability samples. The zigzagging in Figure K-1 at high safety factor values is due to 

limited sample of MCS.  

The dependence on log10(Pf) on ( )F builtS  can be represented with response surface 

approximations (RSA), which also eliminates the noise at high failure probabilities. The 

fitted RSA for log10(Pf) in terms of the required safety factor ( )F builtS  is given in Eq. 

(K.7). 

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( )

4 3 2
10

1 0 0.8

log 5.783 18.06 13.29 1.55 2.886 0.8 1.3

4.801 4.657 1.3

F built

f F F F F Fbuilt built built built built

F Fbuilt built

for S

P S S S S for S

S for S

⎧ ≤ ≤
⎪
⎪= − + + − ≤ ≤⎨
⎪

− + ≥⎪⎩
 

           (K.7) 
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Figure K-1. The variation of probability of failure with built total safety factor. Note that 
Pf is one minus the cumulative distribution function of ( )F reqS . 

Figure K-2 represents flowchart of separable MCS procedure. In Stage-1 of 

separable MCS, we first assess the cumulative distribution function 
FreqSF  numerically, 

that is we calculate the empirical CDF. Then, we compute ( )1
F builtreqS FF S− , which is 

equal to the probability of failure for a single company. As noted earlier we find that the 

dependence on log10(Pf) on ( )F builtS  can be represented accurately with response surface 

approximations. We use 1,000,000 MCS for generating the RSA. Using Fig. K-1 (that is, 

Eq. (K.7), we calculate probability of failure for a given ( )F builtS  for an individual 

aircraft company. The integration of Pf over all companies to estimate the average 

probability of failure over all companies, PF, is performed in Stage-2. 
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Figure K-2. Flowchart for MCS of component design and failure 

In Stage-2, N designs are generated for N different aircraft companies. For each 

new design, different random errors are picked from their corresponding distributions. 

The testing of designs is performed in a building-block type of approach. In this 

sequence, first simulate coupon tests (i.e., unidirectional laminate tests) that reduce errors 

in the material constants and failure limits. The nominal value of the number of tests is 

taken as 40, but the number of tests is varied to see their effect on the results. Then, we 

simulate structural element tests and material allowable stress is updated based on these 

tests. Finally, certification testing is simulated in this stage.  

The separable Monte Carlo procedure reduces the computational burden greatly. 

For instance, if the probability of failure is 2.5×10-5, a million MCS estimates this 

probability with 20% error. We found for our problem that the use of separable Monte 
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Carlo procedure requires only 20,000 simulations (10,000 simulations for Stage-1 and 

10,000 for Stage-2) for the same level of accuracy. 

Once the probability of failure of a single structural part is calculated, the 

probability of failure of the system can be calculated from 

 
2

2
2

0

1 1 exp
2 11

FS fP P dz
zz

ρ β
π

⎛ ⎞
= + −⎜ ⎟⎜ ⎟+− ⎝ ⎠

∫  (K.8) 

Calculation of system probability of failure utilizing bivariate normal distribution is 

discussed in detail in Appendix E. 
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APPENDIX L 
CHANGE IN COST DUE TO INCREASE OF THE STRUCTURAL WEIGHT 

The cost associated with a change in the structural weight and the fuel cost is taken 

from PhD thesis of Kale (2005). Kale refers to Venter (1999) who assumed a jet fuel cost 

of $0.89 per gallon and calculated that a pound of structural weight costs 0.1 pound of 

fuel per flight. Using this information Kale (2005) calculated a pound of structural weight 

costs $0.015 per flight for fuel. Here, in this paper, we update the fuel cost by simply 

doubling it to take the recent fuel price increase into account. That is, we assume that fuel 

cost is $1.78 per gallon. So, a pound of structural weight costs $0.03 per flight. The 

material and manufacturing cost per pound of structural weight is taken as $150 as in 

Kale (2005). Following the cost function formulation of Kale (2005), we write the cost 

function as 

 ( )c c f strucCost M F N W= +  (L.1) 

where Mc is material and manufacturing cost per pound of structural weight, Fc is fuel 

cost per flight per pound of structural weight, Nf is the number of flights (taken as 40,000 

following Kale (2005)) and Wstruc is the structural weight. Using Mc=$150/lb, Fc=$0.03 / 

(lb-flight) and Nf=40,000, the cost function in Eq. (L.1) becomes 

 ( )150 1200 1350struc strucCost W W= + =  (L.2) 

where Cost is in dollars when Wstruc is in pounds. Notice from Eq. (L.2) that fuel cost 

dominates over material and manufacturing cost (fuel cost is eight times larger than 

material and manufacturing cost). The structural weight of a typical large transport 
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aircraft is about 100,000 pounds. We assume that half of the structure is designed for 

point stress failure. So, half of the structural weight will be affected from the simple 

analysis presented herein. For example, when our analysis results in 1% weight 

reduction, it translates into $675,000 cost saving. Note that we use a simple cost function 

with representative cost parameters, but still it helps to translate the weight saving due to 

of structural element tests and uncertainty reduction mechanisms to lifetime cost saving. 
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APPENDIX M 
RESPONSE SURFACE APPROXIMATIONS FOR RELIABILITY INDEX OF 

CERTIFICATION FAILURE RATE, RELIABILITY INDEX OF PROBABILITY OF 
FAILURE AND BUILT SAFETY FACTOR IN CHAPTER 7 

In order to alleviate the computational cost of the optimization problems stated in 

Eqs. (7.44) and (7.47) we use response surface approximations, RSA. The reliability 

index of CFR, CFRβ , reliability index of PF, 
FPβ , and built safety factor, (SF)built, are 

approximated with fifth-order polynomial RSAs. For design of experiments, we use 

combination of face centered composite central design (FCCCD) and Latin hypercube 

sampling (LHS). A fifth-order polynomial in two variables (here Scl and Sch) have 21 

coefficients. FCCCD provides 9 designs for two variables, and we generate 33 designs 

via LHS so that the number of designs is twice the number of coefficients. Table M-1 

presents evaluation of the accuracies of RSAs for the nominal case (i.e., number of 

coupon tests is 40, number of element tests is 3, error bounds are at their nominal values 

and coefficient of variation of the failure stress is 8% as given in Tables 7-1 and 7-2 of 

Chapter 7). We see that accuracies of RSAs are at acceptable level. 

Table M-1. Accuracy of response surfaces 
 RSA for CFRβ  RSA for 

fPβ  RSA for (SF)built 

R2
adj 0.9991 0.9988 1.000 

RMSE predictor/mean of the 
response 

0.95% 0.54% 0.01% 

erms in 10 tests points/mean of the 
response* 

2.62% 0.39% 0.01% 

* Test points are generated via Latin hypercube sampling 
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APPENDIX N 
CALCULATION OF THE MEAN AND THE C.O.V. OF THE STRESS 

DISTRIBUTION USING PROBABILITY OF FAILURE INFORMATION 

The probability of failure is defined in terms of the probability distribution 

functions of the stress and the failure stress in Chapter 8, Eq. (8.5)  

 ( ) ( )fP F s dσ σ σ= ∫   

We assume that the stress follows normal distribution. The parameters of the 

normally distributed stress are the mean, σμ , and standard deviation (or coefficient of 

variation, cσ , can also be used instead of standard deviation). We assume that material 

characterization tests provide us an accurate failure stress distribution. If the failure stress 

also follows normal distribution with mean value of fμ  and coefficient of variation of fc  

then Eq. (8.5) can be reduced to  

 ( )1fP β= − Φ  (N.1) 

where Φ  is the cumulative distribution function of the standard normal distribution and 

β  is the reliability index, which is calculated as 

 ( )
2 2 2 2

, f

f f

c
c c

σ
σ σ

σ σ

μ μ
β μ

μ μ

−
=

+
 (N.2) 

Now consider the reverse situation. Given the estimate of the probability of failure, 

Pf given, and the coefficient of variation of the stress cσ , we can compute the mean value 

of the stress σμ  from 



234 

 

 
2 4

2
B B AC

Aσμ − ± −
=  (N.3)  

where 2 2 1givenA cσβ= − , 2 fB μ= , ( )2 2 2 1f given fC cμ β= − , and ( )1 1given f givenPβ −= Φ − . 

Similarly, if the mean value of the stress is known, then the coefficient of variation 

of the stress can be calculated from Eq. (N.1). 

When the failure stress follows lognormal distribution, then the probability of 

failure is calculated via the integral given in Eq. (8.5). Hence, given the distribution 

parameters of lognormally distributed failure stress fλ  and fζ , probability of failure is a 

function of the mean and coefficient of variation of the stress as given in Eq. (N.4) 

 ( ) ( ) ( ), , , , ,f f fP c F s c dσ σ σ σμ λ ζ σ μ σ σ= ∫  (N.4)  

So given the estimate of the probability of failure, f givenP , the mean and coefficient 

of variation of the stress distribution can be calculated from  

 ( ), 0f f givenP c Pσ σμ − =  (N.5)  

Equation (N.5) is nonlinear in terms of σμ  and cσ . When cσ  is known, then σμ  

can be calculated using Bisection method or Newton’s method. Alternatively, if the mean 

value of the stress is known, then the coefficient of variation of the stress can be 

calculated. 

The computations are performed using MATLAB which has the following built-in 

functions for numerical computations. Equation (N.5) can be solved for the mean or 

coefficient of variation of the stress using the function fzero, which uses a combination 

of bisection, secant, and inverse quadratic interpolation methods. The integral given in 

Eq. (N.4) can be computed using the function quadl, which numerically evaluates the 
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integral using adaptive Lobatto quadrature technique. The integrand of Eq. (N.4) can be 

easily calculated using MATLAB. For normally distributed stress, the function 

normpdf can be used to compute the probability density function s(σ) and for 

lognormally distributed failure stress the function logncdf can be used to compute the 

cumulative distribution function F(σ). 
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APPENDIX O 
RELATION OF COMPONENT WEIGHTS AND OPTIMUM COMPONENT 

FAILURE PROBABILITIES IN CHAPTER 8 

In Chapter 8, we found that the ratio of probabilities of failure of the wing and the 

tail are very close to the ratio of their weights. Here we aim to provide an analytical proof 

by utilizing some approximations. 

The probability of failure of the wing and tail system is defined as 

 ( )( )1 1 1f fW fTP P P= − − −  (O.1) 

Let w be the weight transferred from the wing to the tail as a result of probabilistic 

optimization. The optimality condition of optimization for safety is  

 ( ) ( )1 1 0f fT fW fT fW
fW fT

P P P P P
P P

w w w w w
∂ ∂ ∂ ∂ ∂

= − + − ≅ + =
∂ ∂ ∂ ∂ ∂

 (O.2) 

Noting that ( )*
fT TP F σ=  and ( )*

fW WP F σ= , where F is the cumulative 

distribution function of the failure stress, and using the chain rule the partial derivatives 

in Eq. (O.2) can be written as 

 
* *

*
fT fT T T

T
T

P P
f

w w w
σ σ

σ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂∂
,   

* *

*
fW fW W W

W
W

P P
f

w w w
σ σ

σ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂∂
 (O.3) 

where and Tf  and Wf  are the values of probability density function (PDF) of the failure 

stress evaluated at *
Tσ  and *

Wσ , respectively. That is, ( )*
T Tf f σ= and ( )*

W Wf f σ= , 

where f is the PDF of the failure stress. Now, combining (O.2) and (O.3) we get 
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**

0WT
T Wf f

w w
σσ ∂∂

+ =
∂ ∂

,   or 
*

*
WT

W T

wf
f w

σ
σ

∂ ∂
= −

∂ ∂
 (O.4) 

Recall that we assumed the stresses and weights are inversely proportional. That is,  

 * * *dW dW
W dW dW

W dW

W W
W W w

σ σ σ= =
−

,   * * *dT dT
T dT dT

T dT

W W
W W w

σ σ σ= =
+

 (O.5)  

Then, the ratio of partial derivatives *
W wσ∂ ∂  and *

T wσ∂ ∂  can be approximated as 

 ( )

( )

*
2*

* *
2

dW
dW

dWW dT

dT dWT dT
dT

W
W ww W

W Ww
W w

σ
σ
σ σ

−∂ ∂
= ≅ −

∂ ∂ −
+

 (O.6) 

where we the second equality holds true since the moved material w is much smaller than 

both component weights dTW  and dWW , and the deterministic characteristic stresses are 

equal (since they are made of the same material and designed for the same probability of 

failure). Then, Eqs. (O.4) and (O.6) can be combined to yield 

 dTT

W dW

Wf
f W

≅  (O.7) 

Now, we need to relate the ratio of PDFs to the ratio of probabilities of failure. The 

probability of failure is defined in terms of the PDF of the failure stress as 

 ( )
*

fP f x dx
σ

−∞

= ∫  (O.8) 

If we assume that the failure stress is normally distributed, then the probability of 

failure can be written as 

 
*

2 2
s

x
fP c e dx−

−∞

= ∫  (O.9) 
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where c is a constant and *s  is the characteristic stress scaled with the mean and standard 

deviation of the failure stress as given in Eq. (O.10) 

 1
2

c
π

= ,   
*

* f

f
s

std
σ μ−

=  (O.10) 

Here fμ  and fstd  are the mean and standard deviation of the failure stress. Since 

the normal distribution is symmetric, the probability of failure, Eq. (O.9), can be re-

written as 

 
*

2 2

*

2 2
s

x x
f

s

P c e dx c e dx
∞

− −

−∞ −

= =∫ ∫  (O.11)  

The probability of failure can be re-formulated by using the equality, Eq. (O.12), 

given in Abramovitz and Stegun (p. 298, eq. 7.1.14) 

 ( )
2 2 1 1/ 2 1 3/ 2 22 0z x

z

e e dx z
z z z z z

∞
− = ℜ >

+ + + + +∫ L  (O.12)  

where 1 1/ 2 1 3/ 2 2
z z z z z+ + + + +

Lis a continued fraction (let’s denote as CF(z)) which can 

also be written as 

 ( ) 1 1/ 2 1 3/ 2 2 1
1/ 2

1
3/ 2

2

CF z
z z z z z z

z
z

z
z

= =
+ + + + + +

+
+

+
+

L

L

 (O.13)  

Then, Eq. (O.12) is re-written as  

 ( )2 2

2
x z

z

CF z
e dx e

∞
− −=∫  (O.14)  

or 
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2 22 21

2 2
x z

z

ze dx CF e
∞

− −⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (O.15)  

Then, the probability of failure, Eq. (O.11), is reduced to 

 ( )2** 2

2 2
s

f
c sP CF e

− −⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (O.16)  

Since the probabilities of failure of aircraft structures are on the orders of 10-7, the 

scaled characteristic stress is negative and its absolute value is much smaller than one. 

That is,  

 * 1s >> ,   * 0s <  (O.17)  

Based on Eq. (O.17), the continued fraction in Eq. (O.13) can be approximated as 

( ) 1CF z
z

≅ . Then, the probability of failure, Eq. (O.16), becomes  

 ( ) ( )2* *
2

* *
s

f

f scP e
s s

−
≅ − = −  (O.18)  

Thus, from Eq. (O.18) the probabilities of failure of the wing and the tail are 

 
( )*

* *
T

fT
T f

f

f s fP
s

std
σ μ

≅ − = −
⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠

,   
( )*

* *

W W
fW

W W f

f

f s fP
s

std
σ μ

≅ − = −
⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (O.19)  

which leads to 

 
*

*
fT W fT

fW W T f

P f
P f

σ μ

σ μ

⎛ ⎞−
⎜ ⎟≅
⎜ ⎟−⎝ ⎠

 (O.20)  

Note that the stresses at the deterministic design are close to stresses at probabilistic 

design, so 
*

* 1W

T

σ
σ

≅ . Then, Eq. (O.20) can be simplified to 
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 fT T

fW W

P f
P f

≅  (O.21)  

Finally, combining Eqs. (O.7) and (O.21) we find that the ratio of failure 

probabilities is approximately equal to the ratio of weights. That is,  

 fT dTT

fW W dW

P Wf
P f W

≅ ≅  (O.22)  
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APPENDIX P 
HISTORICAL RECORD FOR AIRCRAFT PROBABILITY OF FAILURE 

Since aircraft structural design still relies on deterministic optimization, we first 

look at the historical record on the probability of failure of traditionally (i.e., via 

deterministic design) designed aircraft structures. Tong (2001) performed a thorough 

literature review on aircraft structural risk and reliability analysis. Tong (2001) refers to 

the paper by Lincoln (1996) that reports the overall failure rate for all systems due to 

structural faults is one aircraft lost in more than ten million flight hours, i.e. Pf =10-7 per 

flight hours. The Boeing Company publishes the Statistical Summary of Commercial Jet 

Aviation Accidents each year, and provides data back to 1959 to indicate trends. The 

number of accidents that occurred between 1959 and 2001 due to structural failure, the 

total number of accidents and the accident rate corresponding to different aircraft 

generations are listed in Table P-1. Table P-1 shows that failure probability per departure 

of second generation airplanes is 4.31×10-8, whereas the failure probability of early 

widebody airplanes and current generation airplanes are 2.0×10-7 and 1.86×10-8, 

respectively. 

Cowan et al. (2006) presented data on commercial jet plane accidents involving 

aircraft operated by U.S. Air Carriers between 1983 and 2003, and listed the number of 

accidents that caused failure of structural components. The number of accidents resulted 

in wing failure is given as 18, while the number of accidents due to tail failure is 9. This 

indicates that the probability of failure of the tail is about half of that of the wing. 
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Table P-1. Aircraft accidents and probability of failure of aircraft structures. Examples of 
first generation airplanes are Comet 4, 707, 720, DC-8. Boeing 727, Trident, 
VC-10, 737-100/-200 are examples of second generation airplanes. Early 
widebody airplanes are 747-100/-200/-300/SP, DC-10, L-1011 and A300. 
Examples of current generation airplanes are MD-80/-90, 767, 757, A310, 
A300-600, 737-300/-400/-500, F-70, F-100, A320/319/321. 

Aircraft 
Generation* 

Accident Rate 
per million 
departures* 

(A) 

Total 
Number of 
accidents* 

(B) 

Accidents 
due to 

structural 
failure* 

(C) 

Structural failure 
rate per departure 

(A×C / B) 

First 27.2 49 0 0 
Second 2.8 130 2 4.31×10-8 

Early widebody 5.3 53 2 2.00×10-7 
Current 1.5 161 2 1.86×10-8 
Total --- 393 6 --- 

* These columns are taken from the Boeing accident report (2001) 
 

 



243 

 
LIST OF REFERENCES 

Abramovitz, M., and Stegun, I. (1970), Handbook of Mathematical Functions. Dover, 
New York. 

Acar, E., Kale, A., and Akgün, M.A. (2004a), Reliability-Based Design and Inspection 
Schedule Optimization of an Aircraft Structure Containing Multiple Site Damage. 
Proceedings of New Trends in Fatigue and Fracture IV, Paper no. 19, Aleppo, 
Syria, 10-12 May 2004. 

Acar, E., Kale, A., and Haftka, R.T. (2004b), Effects of Error, Variability, Testing and 
Safety Factors on Aircraft Safety. Proceedings of the NSF workshop on Reliable 
Engineering Computing, Savannah, Georgia, September 2004, pp. 103-118. 

Acar, E., Kale, A., Haftka, R.T., and Stroud, W.J. (2006a), Structural Safety Measures for 
Airplanes. Journal of Aircraft, Vol. 43, No. 1, pp. 30-38. 

Acar, E., Haftka, R.T., Sankar, B.V., and Qui, X. (2006b), Increasing Allowable Flight 
Loads by Improved Structural Modeling. AIAA Journal, Vol. 44, No. 2, pp. 376-
381. 

Acar, E., Haftka, R.T., and Johnson, T.F. (2006c), Tradeoff of Uncertainty Reduction 
Mechanisms for Reducing Structural Weight. ASME Journal of Mechanical 
Design, in press. 

Acar, E., Kale, A., and Haftka, R.T. (2006d), Comparing Effectiveness of Measures that 
Improve Aircraft Structural Safety. ASCE Journal of Aerospace Engineering, 
submitted. 

Acar, E., and Haftka, R.T. (2006e), Reliability Based Aircraft Structural Design Pays 
Even with Limited Statistical Data, Journal of Aircraft, submitted. 

Aerospace Information Report, (1997), Integration of Probabilistic Methods into the 
Design Process. Society of Automotive Engineers, Report No: AIR-5080. 

Ang, A.H-S., and Tang, W.H. (1975), Probability Concepts in Engineering Planning and 
Design, Volume I: Basic Principles. John Wiley & Sons, New York. 

Antonsson, E.K., and Otto, K.N. (1995), Imprecision in Engineering Design. ASME 
Journal of Mechanical Design, Vol. 117 B, pp. 25-32. 



244 

 

Aoki, T. Ishikawa, T., Kumazawa, H., and Morino, Y. (2000), Mechanical Performance 
of CF/Polymer Composite Laminates under Cryogenic Conditions. 41st 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, Atlanta, GA, AIAA Paper 2000-1605. 

Arbocz, J., Starnes, J. H. Jr., and Nemeth, M. P. (2000), A Comparison of Probabilistic 
and Lower Bound Methods for Predicting the Response of Buckling Sensitive 
Structures. 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, Atlanta, GA, AIAA Paper-2000-1382. 

Arbocz, J., and Starnes, J. H. (2005), Hierarchical High-Fidelity Analysis Methodology 
for Buckling Critical Structures. ASCE Journal of Aerospace Engineering, Vol. 18, 
No. 3, 2005, pp. 168–178. 

Avery, J.L., and Sankar, B.V. (2000), Compressive Failure of Sandwich Beams with 
Debonded Face-sheets. Journal of Composite Materials, Vol. 34, No. 14, pp. 1176-
1199. 

Ayyub, B.M., and Haldar, A. (1984), Practical Structural Reliability Techniques. Journal 
of Structural Safety, Vol. 11, No. 2, pp. 131-146. 

Ayyub, B.M., and Lai, K.L. (1989), Structural Reliability Assessment Using Latin 
Hypercube Sampling. Proceedings of the 5th International Conference on 
Structural Safety and Reliability, Vol. 2. Ang, A.H.S., Shinozuka, M. and 
Schueller, G.I., Eds. New York, American Society for Civil Engineers, pp. 1193-
1200. 

Ayyub, B.M., and McCuen, R.H. (1995), Simulation-Based Reliability Methods. In: 
Probabilistic Structural Mechanics Handbook, Theory and Industrial Applications, 
Sundararajan, C., Editor. New York: Chapman & Hall, pp. 53-69. 

Barnett, R.L., and Hermann, P.C. (1965), Proof Testing in Design with Brittle Materials. 
Journal of Spacecraft and Rockets, Vol. 2, pp. 956-961. 

Ben Haim, Y., and Elishakoff, I. (1990), Convex Models of Uncertainty in Applied 
Mechanics. Elsevier, Amsterdam. 

Bing, L., Akintoye, A., Edwards, P. J., and Hardcastle, C. (2005), The allocation of risk 
in PPP/PFI construction projects in the UK. International Journal of Project 
Management, Vol. 23, No. 1, pp. 25-35. 

Breitung, K. (1984), Asymptotic Approximations for Multi-Normal Integral. Journal of 
Engineering Mechanics, Vol. 110, pp 357-366. 

Bucher, C.G. (1988), Adaptive Sampling-An Iterative Fast Monte Carlo Procedure. 
Structural Safety, Vol. 5, pp. 119-126. 



245 

 

Bucher, C.G., and Bourgund, U. (1987), Efficient Use of Response Surface Methods., 
Institute of Engineering Mechanics, Report 9-87, University of Innsburg. 
Innsbruck, Austria. 

Chamis, C.C., and Murthy, P.L.N. (1991), Probabilistic Composite Analysis. First NASA 
Advanced Composites Technology Conference, Part 2, NASA CP-3104-PT-2, pp. 
891–900. 

Chamis, C.C. (1997), Probabilistic Composite Design. Composite Materials: Testing and 
Design, Vol. 13, ASTM STP 1242, ed. by S. J. Hooper, pp. 23-42. 

Chen, X., and Hasselman, T.K., and Neill, D.J. (1997), Reliability Based Structural 
Design Optimization for Practical Applications. 38th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics and Materials Conference, Kissimmee, FL, AIAA 
Paper 1997-1403. 

Cho, N.Z., Papazoglou, I.A., and Bari, R.A. (1986), A Methodology for Allocating 
Reliability and Risk. Brookhaven National Laboratory, NUREG/CR-4048. 

Composite Materials Handbook MIL-HDBK-17 (2002), “Guidelines for Property Testing 
of Composites,” ASTM Publications, Vol. I., Chapter 2. 

Composite Materials Handbook MIL-HDBK-17 (2002), “Statistical Methods,” ASTM 
Publications, Vol. I., Chapter 8. 

Cornell, C.A. (1967), Bounds on the Reliability of Structural Systems. ASCE Journal of 
the Structural Division, Vol. 93, No. ST1, pp. 171-200. 

Cowan, T., Acar, E., and Francolin, C. (2006). Analysis of Causes and Statistics of 
Commercial Jet Plane Accidents between 1983 and 2003. Unpublished, available 
online at http://plaza.ufl.edu/eacar/paper/accident_report.pdf. 

Das, P.K., and Zheng, Y. (2000a), Cumulative Formulation of Response Surface and Its 
Use in Reliability Analysis. Probabilistic Engineering Mechanics, Vol. 15, pp.309-
315. 

Das, P.K., and Zheng, Y. (2000b), Improved Response Surface Method and Its 
Application to the Stiffened Plate Reliability Analysis. Engineering Structures, 
Vol. 22, pp. 544-551. 

Der Kiureghian, A., Lin, H.Z., and Hwang, S.J. (1987), Second-Order Reliability 
Approximations. Journal of Engineering Mechanics, Vol. 113, pp. 1208-1225. 

Der Kiureghian, A., and De Stefano, M. (1991). Efficient Algorithm for Second-Order 
Reliability Analysis. Journal of Engineering Mechanics, Vol. 117, pp. 2904-2923. 



246 

 

Du, X., and Chen, W. (2000), Towards a Better Understanding of Modeling Feasibility 
Robustness in Engineering. ASME Journal of Mechanical Design, Vol. 122, No. 4, 
pp. 357–383. 

Du, X., and Chen, W. (2004), Sequential Optimization and Reliability Assessment 
Method for Efficient Probabilistic Design. Journal of Mechanical Design, Vol. 
126, No. 2, pp. 225-233. 

Elishakoff, I. (2001), Interrelation between Safety Factors and Reliability, NASA Report 
CR-2001-211309. 

Enevoldsen, I., and Sorensen, J.D. (1993), Reliability-Based Optimization of Series Sys-
tems of Parallel Systems. Journal of Structural Engineering, Vol.119, pp.1069-
1084. 

Fadale, T., and Sues, R. H. (1999), Reliability-Based Analysis and Optimal Design of an 
Integral Airframe Structure Lap Joint. 40th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics, and Materials Conference, St. Louis, MO, AIAA 
Paper 1999-1604. 

Federal Aviation Regulations, Part 25, Airworthiness Standards: Transport Category Air-
planes, Sec. 25.303, Factor of Safety. 

Federal Aviation Regulations, Part 25, Airworthiness Standards: Transport Category Air-
planes, Sec. 25.307, Proof of Structure. 

Federal Aviation Regulations, Part 25, Airworthiness Standards: Transport Category Air-
planes, Sec. 25.613, Material Strength Properties and Material Design Values. 

Fissler, B., Neumann H.J., and Rackwitz R. (1979), Quadratic Limit States in Structural 
Relaibility. ASCE Journal of the Engineering Mechanics Division, Vol.105, 1979, 
pp. 661- 676. 

Fox, E. P. (1994), The Pratt & Whitney Probabilistic Design System. Proceedings of 35th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, Hilton Head, SC, AIAA Paper 1994-1442. 

Fox, E. P. (1996), Issues in Utilizing Response Surface Methodologies for Accurate 
Probabilistic Design. Proceedings of 37th AIAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics, and Materials Conference, Salt Lake City, UT, AIAA 
Paper1996-1496. 

Freudenthal, A.M. (1947), Safety of Structures. Transactions of ASCE, Vol. 112, pp. 125-
180. 



247 

 

Fujimoto, Y., Kim, S.C., Hamada, K. and Huang, F. (1998), Inspection Planning Using 
Genetic Algorithm for Fatigue Deteriorating Structures. Proceedings of the 
International Offshore and Polar Engineering Conference, ISOPE, Golden, CO, 
pp. 461-468.  

Fujino, Y., and Lind, N.C. (1977), Proof-Load Factors and Reliability. ASCE Journal of 
Structural Division, Vol. 103, No. ST4, pp. 853-870. 

Gayton, N., Bourinet, J.M., and Lemaire, M. (2003), CQ2RS: A new Statistical Approach 
to the Response Surface Method for Reliability Analysis. Structural Safety, Vol. 
23, pp.99-121. 

Gokcek, O., Temme, M.I., and Derby, S.L. (1978), Risk Allocation Approach to Reactor 
Safety Design and Evaluation. Proceedings of Topical Meeting on Probabilistic 
Analysis of Nuclear Reactor Safety. 

Gollwitzer, S., and Rackwitz, R. (1983), Equivalent Components in First-Order System 
Reliability. Reliability Engineering, Vol. 5, pp 99-115. 

Grandhi, R. V., and Wang, L. P. (1998), Reliability-Based Structural Optimization Using 
Improved Two-Point Adaptive Nonlinear Approximations. Finite Element Analysis 
and Design, Vol. 29, No.1, pp. 35–48. 

Grau, D. (2003), Relating Interfacial Fracture Toughness to Core Thickness in 
Honeycomb Core Sandwich Composites. M.S. Thesis, Dept. of Mechanical and 
Aerospace Engineering, University of Florida, Gainesville, FL. 

Grau, D.L., Qiu, S., and Sankar, B.V. (2006), Relation between Interfacial Fracture 
Toughness and Mode-mixity in Honeycomb Core Sandwich Composites, Journal 
of Sandwich Structures & Materials, Vol. 8, No. 3, pp. 187-203. 

Gupta, S.S. (1963), Probability Integrals of Multivariate Normal and Multivariate t1, The 
Annals of Mathematical Statistics, Vol. 34, No.3, pp.792-828. 

Haftka, R.T. (2005). Reflections on Jim Starnes’ Technical Contributions. 45th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, Austin, TX, AIAA Paper 2005-1872. 

Haftka, R.T., and Gurdal, Z. (1992), Elements of Structural Optimization. Kluwer 
Academic Publishers, 3rd edition. 

Haimes, Y.Y., Barry, T., and Lambert, J.H. (1994), When and How Can You Specify a 
Probability Distribution When You Don't Know Much? Risk Analysis, Vol. 14, No. 
5, pp. 661-706. 

Hall, W.B., and Lind, N.C. (1979), Safety Verification by Load Tests: A Literature 
Review. Department of Civil Engineering, University of Waterloo, Canada. 



248 

 

Hall, W.B., and Tsai, M. (1989), Load Testing, Structural Reliability and Test 
Evaluation. Structural Safety, Vol. 6, pp. 285-302. 

Harbitz, A., and Veritas, D.N. (1983), Efficient and Accurate Probability of Failure 
Calculation by Use of the Importance Sampling. Proceedings of the Fourth 
International Conference on Applications of Statistics and Probability in Soil and 
Structural Engineering, pp. 825-836. 

Harkness, H.A., Fleming, M., Moran, M., and Belytschko, T. (1994), Fatigue Reliability 
Method with In-Service Inspections. FAA/NASA International Symposium on 
Advanced Structural Integrity Methods for Airframe Durability and Damage 
Tolerance, pp. 307-325. 

Hasofer, A.M., and Lind, N. (1974), An Exact and Invariant First-Order Reliability For-
mat. Journal of Engineering Mechanics, Vol. 100, pp.111-121. 

Herbert, J.J., and Trilling, L.H. (2006), Development of Factors of Safety for Structural 
Analysis and Verification of Cryogenic Structures Using Probabilistic Methods, 
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, Newport, RI, AIAA Paper 2006-1992. 

Hoffman, F.O., and Hammonds, J.S. (1994), Propagation of Uncertainty in Risk 
Assessments: The Need to Distinguish Between Uncertainty Due to Lack of 
Knowledge and Uncertainty Due to Variability. Risk Analysis, Vol. 14, No. 5, 
1994, pp. 707-712. 

Hohenbichler, M., and Rackwitz, R. (1983), First-order Concepts in System Reliability. 
Structural Safety, Vol.1, pp 177-188. 

Hohenbichler, M., Gollwitzer, S., Kruse, W., and Rackwitz, R. (1987), New Light on 
First and Second-Order Reliability Methods. Structural Safety, Vol. 4, No. 4, pp. 
267-284. 

Hurd, D.E. (1980), Risk Analysis Methods Development. General Electric, GEFR-14023-
13, April-June 1980. 

Ifju, P.G., Niu, X., Kilday, B.C., Liu, S.C., and Ettinger, S.M. (2000), Residual Strain 
Measurement in Composites Using the Cure-Referencing Method. Journal of 
Experimental Mechanics, Vol. 40, No. 1, pp. 22-30. 

Iman, R.L., and Canover, W.J. (1980), Small Sample Sensitivity Analysis Techniques for 
Computer Models with an Application to Risk Assessment. Communications in 
Statistics, Theory and Methods, Vol. A9, No. 17, pp. 1749-1842. 

Ivanovic, G. (2000), The Reliability Allocation Application in Vehicle Design. 
International Journal of Vehicle Design, Vol. 24, No.2-3, pp. 274-286. 



249 

 

Jiao, G., and Moan, T. (1990), Methods of Reliability Model Updating through 
Additional Events. Structural Safety, Vol. 9, pp. 139-153. 

Kale, A., Haftka, R.T., Papila, M., and Sankar, B.V. (2002), Tradeoffs of Weight and 
Inspection Cost in Safe-Life Design. 44th Structures, Structural Dynamics, and 
Materials Conference, Denver, CO, AIAA Paper 2002-1402. 

Kale, A.A. (2005), Interaction of Conservative Design Practices, Tests and Inspections in 
Safety of Structural Components. Ph.D. Dissertation, Dept. of Mechanical and 
Aerospace Engineering, Univ. of Florida, Gainesville, FL. 

Kale, A.A., Haftka, R.T., and Sankar, B.V. (2005), Reliability Based Design and 
Inspection of Stiffened Panels Against Fatigue. 46th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics & Materials Conference, AIAA Paper 2005-2145, 
April, 2005. 

Kale, A.A., and Haftka, R.T. (2005), Effect of Safety Measures on Reliability of Aircraft 
Structures Subjected to Damage Growth. 31st ASME Design and Automation 
Conference, Simulation Based Design under Uncertainty, Long Beach, CA. 

Karamchandani, A., Bjerager, P., and Cornell, C.A. (1989), Adaptive Importance 
Sampling. In: Proceedings of the 5th International Conference on Structural Safety 
and Reliability. Ang, A.H-S, Shinozuka, M. and Scheuller, G.I., Eds. New York, 
American Society of Civil Engineers, pp. 855-862. 

Ke, H.Y. (1999), Sampling Plans for Vehicle Component Reliability Verification. 
Quality and Reliability Engineering International, Vol. 15, pp. 363-368. 

Kelton, W.D., Sadowski, R.P., and Sadowski, D.A. (1998), Simulations with Arena. 
WCB McGraw Hill, Boston, Massachusetts. 

Kiureghian, A.D., Zhang, Y., and Li, C.C. (1994), Inverse Reliability Problem. Journal of 
Engineering Mechanics, Vol. 120, No. 5, pp. 1154-1159. 

Kjerengtroen, L. (1985), Reliability Analysis of Series Structural Systems. PhD 
Dissertation, University of Arizona. 

Knoll. A. (1983), Component cost and reliability importance for complex system 
optimization. Proceedings of International ANS/ENS Topical Meeting on 
Probabilistic Risk Assessment, Vol. 11, Port Chester, NY. 

Koch, P.N., and Kodiyalam, S. (1999), Variable Complexity Structural Reliability 
Analysis for Efficient Reliability-Based Design Optimization. 40th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, St. Louis, MI, AIAA Paper 99-1210. 

Koyluoglu, H.U., and Nielsen, S.R.K. (1994), New Approximations for SORM Integrals, 
Structural Safety, Vol. 13, No. 4, pp. 235-246. 



250 

 

Kuschel, N., and Rackwitz, R. (2000), A New Approach for Structural Optimization of 
Series Systems, In: Melchers, R.E. and Stewart, M.G., (eds). Applications of 
Statistics and Probability, Balkema, Rotterdam, pp. 987-994. 

Kwon, Y.W., and Berner, J.M. (1997), Matrix Damage of Fibrous Composites: Effect of 
Thermal Residual Stresses and Layer Sequences. Computes and Structures, Vol. 
64, No. 1-4, pp. 375-382. 

Law, A.M., and Kelton, W.D. (1982), Simulation Modeling and Analysis,:McGraw-Hill, 
New York, NY. 

Lee, T.W., and Kwak, B.M. (1987), A Reliability-based Optimal Design Using Advanced 
First Order Second Moment Method. Mechanics of Structures and Machines, Vol. 
15, No. 4, pp. 523 – 542. 

Lee, J.O., Yang, Y.S., and Ruy, W.S. (2002), A Comparative Study on Reliability-index 
and Target Performance-based Probabilistic Structural Design Optimization. 
Computers and Structures, Vol. 80, No. 3-4, pp. 257-269. 

Li, Y.W., Elishakoff, I., Starnes, J.H., Jr., and Bushnell, D. (1997), Effect of the 
Thickness Variation and Initial Imperfection on Buckling of Composite Cylindrical 
Shells: Asymptotic Analysis and Numerical Results by BOSOR4 and PANDA2. 
International Journal of Solids and Structures, Vol. 34, No. 28, pp. 3755-3767. 

Li, H., and Foschi, O. (1998), An Inverse Reliability Measure and Its Application,” 
Structural Safety, Vol. 20, No. 3, pp. 257-270. 

Liang, J., Mourelatos, Z.P., and Tu, J. (2004), A Single Loop for Reliability Based 
Design Optimization. Proceedings of the 30th ASME Design Automation 
Conference, Salt Lake City, UT, Paper No. DETC2004/DAC-57255. 

Lincoln, J.W. (1980), Method for Computation of Structural Failure Probability for an 
Aircraft. ASD-TR-80-5035. 

Lincoln, J.W. (1996), Aging Aircraft Issues in the United States Air Force. 41st 
International SAMPE Symposium and Exhibition, Anaheim, California. 

Lind, N.C., Krenk, S., and Madsen, H.O. (1985), Safety of Structures, Prentice-Hall, 
Englewood Cliffs. 

Long, M.W., and Narciso. J.D. (1999), Probabilistic Design Methodology for Composite 
Aircraft Structures. DOD/FAA/AR-99/2, Final Report, June 1999.  

Madsen, H.O., Krenk, S., and Lind, N.C. (1986), Methods of Structural Safety. 
Englewood Cliffs, New-Jersey, Prentice-Hall. 

Mansour, A. (1989), An Introduction to Structural Reliability Theory. Ship Structure 
Committee Report, SSC-351, January 1989, p. 145. 



251 

 

Martz, H.F., and Walker, R.A. (1982). Bayesian Reliability Analysis. Wiley, New York. 

Melchers, R.E. (1989), Improved Importance Sampling for Structural System Reliability 
Calculation, In: Proceedings of the 5th International Conference on Structural 
Safety and Reliability. Ang, A.H-S, Shinozuka, M. and Scheuller, G.I., Eds. New 
York, American Society of Civil Engineers, pp. 1185-1192. 

Melchers, R.E. (1999), Structural Reliability Analysis and Prediction. John Wiley&Sons, 
New York, NY. 

Mohamed, A., Lawrence, L.M., and Ravindran, A. (1991), Optimization Techniques for 
System Reliability: A Review. Reliability Engineering and System Safety, Vol. 35, 
No. 2, pp. 137-146. 

Morgan, B.W. (1968), An Introduction to Bayesian Statistical Decision Processes. 
Prentice Hall, New-Jersey. 

Muller, G.E., and Schmid, C.J. (1978), Factor of Safety-USAF Design Practice, AFFDL-
TR-78-8, U.S. Air Force. 

Murthy, P.N., and Chamis, C.C. (1995), Probabilistic Analysis of Composite Material 
Structure. NASA Tech Briefs, November 1995, pp. 60-61. 

Neal, D.M., Matthews, W. T., and Vangel, M.G. (1992), Uncertainties in Obtaining High 
Reliability from Stress-Strength Models. Proceedings of the 9th DOD-/NASA/FAA 
Conference on Fibrous Composites in Structural Design, Lake Tahoe, NV, 1991, 
DOT/FAA/CT 92-95, Vol. I, pp. 503-521. 

Nikolaidis E., Chen, S., Cudney, H., Haftka, R.T., and Rosca, R. (2004), Comparison of 
Probability and Possibility for Design Against Catastrophic Failure Under 
Uncertainty. ASME Journal of Mechanical Design, Vol. 126, pp. 386-394. 

Niehaus, G. (2002), The Allocation of Catastrophe Risk. Journal of Banking & Finance, 
Vol. 26, No. 2-3, Pages 585-596. 

Niu, M.C.Y. (1988), Airframe Structural Design. Conmilit Press Ltd, Hong Kong. 

Oberkampf, W.L., Deland, S.M., Rutherford, B.M., Diegert, K.V., and Alvin, K.F. 
(2000), Estimation of Total Uncertainty in Modeling and Simulation. Sandia 
Report, SAND2000-0824, Albuquerque, NM. 

Oberkampf, W.L., Deland, S.M., Rutherford, B.M., Diegert, K.V., and Alvin, K.F. 
(2002), Error and Uncertainty in Modeling and Simulation. Reliability Engineering 
and System Safety, Vol. 75, pp. 333-357. 

Owen, D.B. (1956), Tables for Computing Bivariate Normal Probabilities. Annals of 
Mathematical Statistics, Vol. 27, pp. 1075-1090. 



252 

 

Pai, S.S. (1990), Probabilistic Structural Analysis of a Truss Typical for Space Station. 
NASA Technical Memorandum 103277. 

Pai, S.S., and Chamis, C.C. (1991), Probabilistic Progressive Buckling of Trusses. NASA 
Technical Memorandum 105162. 

Pai, S.S., and Chamis, C.C. (1992), Probabilistic Assessment of Space Trusses Subjected 
to Combined Mechanical and Thermal Loads. NASA Technical Memorandum 
105429. 

Park, C.H., and McManus, H.L. (1996), Thermally Induced Damage in Composite 
Laminates: Predictive Methodology and Experimental Investigation. Composites 
Science and Technology, Vol. 56, pp.1209-1219. 

Picheny, V., Kim, N.H, and Haftka, R.T. (2006), Conservative Estimation of CDF for 
Probability of Failure Calculation. 11th AIAA/ISSMO Multidisciplinary Analysis 
and Optimization Conference, Portsmouth, Virginia. 

Provan, J.W., and Farhangdoost, K. (1994), A new Stochastic Systems Approach to 
Structural Integrity. FAA/NASA International Symposium on Advanced Structural 
Integrity Methods for Airframe Durability and Damage Tolerance, September 
1994. Part I, p 603-619.  

Pugsley, A.G. (1944), The History of Structural Testing. International Journal of 
Structural Engineering, December 1944. 

Qu, X., Haftka, R.T., Venkataraman, S., and Johnson, T.F. (2003). Deterministic and 
Reliability-Based Optimization of Composite Laminates for Propellant Tanks. 
AIAA Journal, Vol. 41, No. 10, pp. 2029-2036. 

Qu, X., and Haftka, R.T. (2004), Reliability-based Design Optimization Using 
Probabilistic Sufficiency Factor. Journal of Structural and Multidisciplinary 
Optimization, Vol. 27, No.5, pp. 314-325. 

Qu, X., Singer, T., and Haftka, R.T. (2004), Reliability-based Global Optimization of 
Stiffened Panels Using Probabilistic Sufficiency Factor. 45th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material 
Conference, Palm Springs, CA, 2004, AIAA Paper 2004-1898. 

Rackwitz, R., and Fiessler, B. (1978), Structural Reliability under Combined Random 
Load Sequences. Computers and Structures, Vol. 9, No.5, pp. 489-494. 

Rackwitz, R., and Schrupp, K. (1985), Quality Control, Proof Testing and Structural 
Reliability. Structural Safety, Vol. 2, pp. 239-244. 

Rajashekhar, M.R., and Ellingwood, B. (1993), A New Look at the Response Surface 
Approach for Reliability Analysis. Structural Safety, Vol. 12, No. 3, pp. 205-220. 



253 

 

Ramu, P., Qu, X., Youn, D.B., Haftka, R.T., and Choi, K.K. (2004), 45st AIAA/ASME/ 
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 19-22 
April 2004, Palm Springs, CA, AIAA Paper 2004-1670. 

Romero, V.J., and Bankston, S.D. (1998), Efficient Monte Carlo Probability Estimation 
with Finite Element Response Surfaces Built from Progressive Lattice Sampling. 
Proceedings of 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, 
and Materials Conference, Long Beach, CA, pp.1103-1119. 

Royset, J.O., Der Kiureghian, A., and Polak, E. (2001), Reliability-based Optimal 
Structural Design by the Decoupling Approach. Reliability Engineering and System 
Safety, Vol. 73, pp. 213-221. 

Sankar, B.V., and M. Narayanan (2001), Finite Element Analysis of Debonded Sandwich 
Beams under Axial Compression. Journal of Sandwich Structures & Materials, 
Vol. 3, No. 3, pp. 197-219. 

Schuller, G.I., Bucher, C.G., Bourgund, U., and Ouypornprasert, W. (1989), An Efficient 
Computational Scheme to Calculate Structural Failure Probabilities. Probabilistic 
Engineering Mechanics, Vol. 4, No. 1, pp. 10-18. 

Schultz, W., Smarslok, B., Speriatu, L., Ifju, P.G., and Haftka, R.T. (2005), Residual 
Stress Determination Using Temperature Dependent Material Properties and 
Uncertainty Analysis. SEM Annual Conference and Exposition, Portland, OR. 

Shinozuka, M. (1969), Structural Safety and Optimum Proof Load. Proc. Symp. Concepts 
of Safety of Structures and Methods of Design, Int. Assoc. Bridge and Struc. Eng., 
London. 

Smarslok, B., Haftka, R.T., and Kim, N.H. (2006), Comparison and Efficiency Analysis 
of Crude and Separable Monte Carlo Simulation Methods. 47th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials 
Conference, Newport, RI, AIAA Paper 2006-1632. 

Soundappan, P., Nikolaidis, E., and Dheenadayalan, P. (2004), Targeted Testing for 
Reliability Validation. SAE 2004 World Congress & Exhibition, Paper no. 2004-01-
0239. 

Suo, Z. (1999), Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media. 
Proceedings of the Royal Society of London, A427, 331-358. 

Thoft-Cristensen, P., and Baker, M.J. (1982). Structural Reliability Theory and Its 
Applications. Springer-Verlag, NewYork, NY. 

Tong, Y.C. (2001), Literature Review on Aircraft Structural Risk and Reliability 
Analysis. DSTO Aeronautical and Maritime Research and Laboratory Technical 
Report, DSTO-TR-1110. 



254 

 

Tu, J., Choi, K.K., and Park, Y.H. (1999), A New Study on Reliability Based Design 
Optimization. ASME Journal of Mechanical Design, Vol. 121, No. 4, 1999, pp. 
557-564. 

Turkstra, C.J. (1970), Theory of Structural Safety. SM No. 2, Solid Mechanics Division, 
University Waterloo, Onteria, Canada. 

Vanegas, L.V., and Labib, A.W. (2005), Fuzzy Approaches to Evaluation in Engineering 
Design. ASME Journal of Mechanical Design, Vol. 127, pp. 24-33. 

Venter, G. (1998), Non-Dimensional Response Surfaces for Structural Optimization with 
Uncertainty, Ph.D. Dissertation, Dept. of Mechanical and Aerospace Engineering, 
Univ. of Florida, Gainesville, FL. 

Venter, G., and Sobieszczanski-Sobieski, J. (2002).Multidisciplinary Optimization of a 
Transport Aircraft Wing using Particle Swarm Optimization. 9th AIAA/ISSMO 
Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, AIAA 
Paper 2002–5644. 

Vogler, K.H. (1997), Risk Allocation and Inter-dealer Trading. European Economic 
Review, Vol. 41, No. 8, pp. 1615-1634. 

Whittemore, H.L. (1954), Why Test Building Constructions? Symposium on Methods of 
Testing Building Constructions, Annals of Society of Testing Materials, Special 
Technical Publication, No. 166. 

Wirsching, P.H. (1992), Literature Review on Mechanical Reliability and Probabilistic 
Design. Probabilistic Structural Analysis Methods for Select Space Propulsion 
System Components (PSAM), NASA Contractor Report 189159, Vol. III, 1992. 

Wu, Y.T. (1994), Computational Methods for Efficient Structural Reliability and 
Reliability Sensitivity Analysis. AIAA Journal, Vol. 32, No.8, pp. 1717–1723. 

Wu, Y.T., Shin, Y., Sues, R., and Cesare, M. (2001), Safety-Factor Based Approach for 
Probabilistic-based Design Optimization. 42nd AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics and Materials Conference, Seattle, WA, AIAA 
Paper 2001-1522. 

Yang, J., Hwang, M., Sung, T., and Jin, Y. (1999), Application of Genetic Algorithm for 
Reliability Allocation in Nuclear Power Plants. Reliability Engineering and System 
Safety, Vol. 65, pp. 229–238. 

Yang, J.N. (1976), Reliability Analysis of Structures under Periodic Proof Test in 
Service. AIAA Journal, Vol. 14, No. 9, pp.1225-1234. 

Yang, J-S. (1989), System Reliability Optimization of Aircraft Wings. PhD Dissertation, 
Virginia Polytechnic Institute. 



255 

 

Yang, X.P., Kastenberg, W.E., and Okrent, D. (1989), Optimal Safety Goal Allocation 
for Nuclear Power Plants. Reliability Engineering and System Safety, Vol. 25, No. 
3, pp. 257-278. 

Youn, B.D., and Choi, K.K. (2004), A New Response Surface Methodology for 
Reliability-Based Design Optimization. Computers and Structures, Vol. 82, pp.241-
256. 

Zang, T.A., Hemsch, M.J., Hilburger, M.W., Kenny, S.P., Luckring, J.M., Maghami, P., 
Padula, S.L., and Stroud, W.J. (2002), Needs and Opportunities for Uncertainty-
Based Multidisciplinary Design Methods for Aerospace Vehicles. NASA/TM-
2002-211462. 

Zhang, R., and Mahadevan, S. (2001), Integration of Computation and Testing for 
Reliability Estimation. Reliability Engineering and System Safety, Vol. 74, pp. 13-
21. 

Zhao, Y.G., and Ono, T. (1999), New Approximations for SORM: Part 1 and 2. Journal 
of Engineering Mechanics, Vol. 125, pp 79-93. 

 



256 

 
BIOGRAPHICAL SKETCH 

Erdem Acar was born in Ankara, Republic of Türkiye, in 1977. He received his 

Bachelor of Science in aeronautical engineering from Middle East Technical University 

in June 1999. Mr. Acar started his graduate studies as a graduate research assistant in the 

same institution. He did his master’s on the subject of thermo-mechanical fatigue life 

assessment of jet engine components. His interest in conducting research motivated him 

to join the Structural and Multidisciplinary Optimization Group of Professor Haftka at the 

University of Florida, in July 2003, to pursue his PhD degree in aerospace engineering. 

During his PhD study, he did internship in EMBRAER aircraft company in Brazil, where 

he worked on multidisciplinary design optimization of tail boom of an aircraft.  

 

 

 
 


	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	INTRODUCTION
	Motivation
	Objectives
	Methodology
	Outline

	LITERATURE REVIEW
	Probabilistic vs. Deterministic Design
	Structural Safety Analysis
	Probability of Failure Estimation
	Analytical calculation of probability of failure
	Moment-based techniques
	Simulation techniques
	Separable Monte Carlo simulations
	Response surface approximations

	Reliability-Based Design Optimization
	Double loop (Nested) RBDO
	Single loop RBDO


	Error and Variability
	Uncertainty Classification
	Reliability Improvement by Error and Variability Reduction

	Testing and Probabilistic Design

	WHY ARE AIRPLANES SO SAFE STRUCTURALLY? EFFECT OF VARIOUS SAFETY MEASURES
	Introduction
	Structural Uncertainties
	Safety Measures
	Design of a Generic Component
	Design and Certification Testing
	Effect of Certification Tests on Distribution of Error Factor e
	Probability of Failure Calculation by Analytical Approximation

	Effect of Three Safety Measures on Probability of Failure
	Summary

	COMPARING EFFECTIVENESS OF MEASURES THAT IMPROVE AIRCRAFT STRUCTURAL SAFETY
	Introduction
	Load Safety Factor
	Conservative Material Properties
	Tests
	Redundancy
	Error Reduction
	Variability Reduction

	Errors, Variability and Total Safety Factor
	Errors in Design
	Errors in Construction
	Total Error Factor
	Total Safety Factor
	Variability

	Certification Tests
	Probability of Failure Calculation
	Probability of Failure Calculation by Separable MCS
	Including Redundancy

	Results
	Effect of Errors
	Weight Saving Due to Certification Testing and Error Reduction
	Effect of Redundancy
	Additional Safety Factor Due to Redundancy
	Effect of Variability Reduction

	Summary

	INCREASING ALLOWABLE FLIGHT LOADS BY IMPROVED STRUCTURAL MODELING
	Introduction
	Structural Analysis of a Sandwich Structure
	Analysis of Error and Variability
	Deterministic Design and B-basis Value Calculations
	Assessment of Probability of Failure
	Analyzing the Effects of Improved Model on Allowable Flight Loads via Probabilistic Design
	Summary

	TRADEOFF OF UNCERTAINTY REDUCTION MECHANISMS FOR REDUCING STRUCTURAL WEIGHT
	Introduction
	Design of Composite Laminates for Cryogenic Temperatures
	Calculation of Probability of Failure
	Probabilistic Design Optimization
	Probabilistic Sufficiency Factor (PSF)
	Design Response Surface (DRS)

	Weight Savings by Reducing Error and Employing Manufacturing Quality Control
	Choosing Optimal Uncertainty Reduction Combination
	Summary

	OPTIMAL CHOICE OF KNOCKDOWN FACTORS THROUGH PROBABILISTIC DESIGN
	Introduction
	Testing of Aircraft Structures
	Quantification of Errors and Variability
	Errors in Estimating Material Strength Properties from Coupon Tests
	Errors in Structural Element Tests
	Allowable stress updating and the use of explicit knockdown factors
	Current industrial practice on updating allowable stresses using worst-case conditions (implicit knockdown factors)
	Proposal for a better way to update allowable stresses: Using the average failure stress measured in the tests and using optimal explicit knockdown factors
	Error updating via element tests

	Errors in Design
	Errors in Construction
	Total Error Factor
	Total Safety Factor

	Variability

	Simulation of Certification Test and Probability of Failure Calculation
	Simulation of Certification Test
	Calculation of Probability of Failure

	Results
	Optimal Choice of Explicit Knockdown Factors for Minimum Weight and Minimum Certification Failure Rate
	Optimal Choice of Explicit Knockdown Factors for Minimum Weight and Minimum Probability of Failure
	Effect of Coupon Tests and Structural Element Tests on Error in Failure Prediction
	Effect of number of coupon tests alone (for a fixed number of element tests, ne=3)
	Effect of number of element tests alone (for a fixed number of coupon tests, nc=40)

	Advantage of Variable Explicit Knockdown Factors
	Effect of Other Uncertainty Reduction Mechanisms
	Effect of variability reduction
	Effect of error reduction

	Effect of Number of Coupon Tests
	Effect of Number of Structural Element Tests

	Summary

	RELIABILITY BASED AIRCRAFT STRUCTURAL DESIGN PAYS EVEN WITH LIMITED STATISTICAL DATA
	Introduction
	Demonstration of Gains from Reliability-Based Structural Design Optimization of a Representative Wing and Tail System
	Problem Formulation and Simplifying Assumptions
	Probabilistic Optimization with Correct Statistical Data

	Effect of Errors in Information about Deterministic Design
	Errors in Coefficient of Variation of Stresses
	Erroneous Mean Stresses
	Errors in Probability of Failure Estimates of Deterministic Design
	Effect of Using Wrong Probability Distribution Type for the Stress

	Approximate Probabilistic Design Based on Failure Stress Distributions
	Application of Characteristic Stress Method to Wing and Tail Problem
	Summary

	CONCLUDING REMARKS
	A-BASIS AND B-BASIS VALUE CALCULATION
	PROBABILITY CALCULATIONS FOR CHAPTER 3
	Calculation of Pr(CT|e), the Probability of Passing Certification Test
	Calculations of Mean and Standard Deviation of Probability of Failure

	CONFLICTING EFFECTS OF ERROR AND VARIABILITY ON PROBABILITY OF FAILURE IN CHAPTER 3
	COMPARISON OF RESULTS OF SINGLE ERROR FACTOR AND MULTIPLE ERROR FACTOR CASES
	DETAILS OF SEPARABLE MONTE CARLO SIMULATIONS FOR PROBABILITY OF FAILURE CALCULATIONS IN CHAPTER 4
	CALCULATION OF THE SYSTEM FAILURE PROBABILITY USING BIVARIATE NORMAL DISTRIBUTION
	TEMPERATURE DEPENDENT MATERIAL PROPERTIES FOR THE CRYOGENIC LAMINATES IN CHAPTER 6
	DETAILS OF CONSERVATIVE CUMULATIVE DISTRIBUTION FUNCTION (CDF) FITTING
	DETAILS OF DESIGN RESPONSE SURFACE FITTING FOR THE PROBABILITY SUFFICIENCY FACTOR FOR THE CRYOGENIC LAMINATES IN CHAPTER 6
	ASSESSMENT OF THE ERROR DUE TO LIMITED NUMBER OF COUPON TESTS
	PROBABILITY OF FAILURE CALCULATIONS FOR CHAPTER 7 USING SEPARABLE MCS
	CHANGE IN COST DUE TO INCREASE OF THE STRUCTURAL WEIGHT
	RESPONSE SURFACE APPROXIMATIONS FOR RELIABILITY INDEX OF CERTIFICATION FAILURE RATE, RELIABILITY INDEX OF PROBABILITY OF FAILURE AND BUILT SAFETY FACTOR IN CHAPTER 7
	CALCULATION OF THE MEAN AND THE C.O.V. OF THE STRESS DISTRIBUTION USING PROBABILITY OF FAILURE INFORMATION
	RELATION OF COMPONENT WEIGHTS AND OPTIMUM COMPONENT FAILURE PROBABILITIES IN CHAPTER 8
	HISTORICAL RECORD FOR AIRCRAFT PROBABILITY OF FAILURE
	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

