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Abstract:  
In this paper a loop-shaping design approach is investigated for distressed fixed-wing aircraft experiencing 
control loss due to surface or power failure. An accurate nonlinear model of the aircraft dynamics is utilized 
to obtain a target aircraft behavior in the emergency situation, for which a loop-shaping controller is 
designed to balance performance and robustness, and to decouple different command channels. A rudder 
servoactuator jam scenario is presented as an example where it is seen that the autopilot recovers level 
flight and responds well to fly-by-wire commands from the operator.  
Keywords: Loop-shaping, loss of control, surface jam, power loss, autopilot design, numerical simulation. 



1. INTRODUCTION 

Many aviation accidents have been caused by the sudden or 
gradual loss of control of the aircraft (Belcastro & Foster, 
2010). Such loss of control may be caused by mechanical 
failures, human factors or environmental conditions. The first 
one includes control surface and engine failures and will 
physically limit the power and flight envelope of the aircraft, 
perhaps causing it to fly in unusual attitudes.  The second and 
third factors are also important since pilot error and 
atmospheric conditions have been determined to be 
responsible for many accidents in aviation history (Gero, 
2013).  

Significant research effort has been devoted in literature to 
classifying aircraft loss of control accidents, as well as 
intervention mechanisms for preventing or recovering from 
mechanical failure, human errors and environmental factors 
(Belcastro, et al., 2014).  Many of the recovery type 
approaches targeted are white-box methods in the sense that 
the designer looks at the aircraft dynamics, proposes a specific 
solution for a specific problem, and comes up with a specific 
intervention strategy (Yu & Jiang, 2012). This approaches 
poses some problems and sources of error however, since 
classical approaches to aircraft modelling and controller 
design make many assumptions and simplification to achieve 
decoupling of longitudinal and lateral channels, as well as 
linear approximations of the dynamics. (Etkin & Reid, 1996), 
(Nelson, 1998), (Stevens & Lewis, 2003), (Blakelock, 1991). 

In an emergency control loss situation however, the aircraft 
will most probably exhibit a highly coupled dynamics and 
designs based on classical assumptions may not be optimal or 
even valid (Gill, et al., 2015). The situation deteriorates quite 
rapidly, perhaps within seconds in such control loss scenarios 
so if it is desired that the aircraft return to its near uncoupled 
and linear behavior, the burden must be shifted to an 
automated control system. This requires the controller to 
handle the system as a whole, and not separately in the 
longitudinal and lateral direction. This calls for a multi-input 

multi-output design, preferably with good robustness 
properties. 

While multi-input multi-output robust flight controller designs 
are not uncommon for missile (Choi, et al., 2012), helicopter 
(Yang & Liu, 2003) and multirotor systems (Liu, Li, Kim, & 
Zhong, 2014) , they are found in fewer numbers for fixed wing 
aircraft since it is much practical to design individual 
controllers for separate channels (Nelson, 1998), (Blakelock, 
1991). Unfortunately a loss of control scenario will likely 
render the standard approaches to separate the channels invalid 
since the aircraft may end up being in an unusual attitude with 
one or more of its four user inputs (throttle, aileron, elevator, 
rudder) being unavailable for recovering the aircraft.  

In this paper we design a multi-input multi-output robust 
controller for a distressed aircraft experiencing some common 
loss of control scenarios. Alternative to a white-box approach 
requiring deep analysis of the aircraft dynamics for each such 
scenario, we take a black-box approach focusing only on 
input-output effects. This makes the control design 
methodology similar to each case, despite the physical 
meaning of the scenarios and their implication on the flight 
dynamics may be substantially different. The prosed 
controllers are verified using numerical simulations, 
hardware-in-the-loop tests, as well as actual flight tests with 
unmanned aerial vehicles. 

 

2. MATHEMATICAL MODEL OF THE AIRCRAFT 

The non-linear model of the aircraft dynamics is derived from 
basic Newtonian mechanics. For a rigid body, the total force 
and moment equations are: 

𝐅 = 𝑚�
𝜕𝐕
𝜕𝑡 + 𝛀 × 𝐕� (1) 

𝐌 =
𝜕(𝐈 ⋅ 𝛀)
𝜕𝑡 + 𝛀 × (𝐈 ⋅ 𝛀) (2) 
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These equations express the motion of a rigid body relative to 
an inertial reference frame. 𝐕 =  [ 𝑢 𝑣 𝑤 ]� is the velocity 
vector at the center of gravity, 𝛀 =  [ 𝑝 𝑞 𝑟 ]� is the angular 
velocity vector about the center of gravity, 𝐅 =  � 𝐹�  𝐹� 𝐹� �

�
 

is the total external force vector, and 𝐌 =  [𝐿 𝑀 𝑁 ]� is the 
total external moment vector. 𝐈 is the inertia tensor of the rigid 
body, which is defined as 

𝐈 = �
    𝐼��   −𝐽��  −𝐽��
−𝐽��     𝐼�� −𝐽��
−𝐽��  −𝐽��    𝐼��

� (3) 

The coefficients of the matrix 𝐈 are the moments and products 
of inertia of the rigid body and they are constant for a frame of 
reference fixed to the aircraft. A manipulation of equations (1)-
(2) yields 

𝜕𝐕
𝜕𝑡 =

𝐅
𝑚 −  𝛀 ×  𝐕  (4) 

𝜕(𝐈 ⋅ 𝛀)
𝜕𝑡 = 𝐌−𝛀 × (𝐈 ⋅ 𝛀) (5) 

from where a state-space model may be derived. The body-
axes elements of linear and rotational velocities can be selected 
as the state variables for the model, whereas the body-axes 
components of the external forces and moments are the inputs 
to the model. A problem is that these inputs are in fact reliant 
upon the state variables so further steps are necessary to couple 
these back to the forces and moments. Nevertheless, using 
appropriate manipulations one could arrive at a non-linear 
state space model as follows: 

𝐱̇ =  𝐟 (𝐱, 𝐅(𝑡),𝐌(𝑡) ) (6) 

with: 

𝐅 =  𝐠�(𝐱(t),𝐮(t),𝐯(t), t) (7) 

𝐌 =  𝐠�(𝐱(t),𝐮(t),𝐯(t), t) (8) 

These equations may be blended into a compact expression 

𝐱̇ =  𝐟(𝐱(t),𝐮(t), 𝐯(t), t) (9) 

with state vector 𝐱, input vector 𝐮, disturbance vector 𝐯, and 
time 𝑡. The state vector 𝐱 ordinarily embodies three linear and 
three angular velocities from 𝐕 and 𝛀, but it is helpful to add 
six additional variables characterizing the attitude and location 
of the aircraft for obtaining a solution of the system. 
Specifically, the spatial orientation of the aircraft is essential 
for working out the gravitational force, the altitude is required 
for the computation of aerodynamic and engine forces both of 
which are influenced by air density that is a function of the 
aircraft's altitude. The position of the aircraft with regards to 
Earth is useful for tasks including evaluating flight trajectories 
of autopilot designs. In practice, it is often easier to utilize 
airspeed, angle of attack and sideslip angle rather than the 
linear velocity components so that 

𝐱 =  [𝑉 𝛼 𝛽 𝑝 𝑞 𝑟 𝜓 𝜃 𝜙 𝑥�  𝑦� 𝐻 ]�   (10) 

in terms of which the state space equations can be derived 
(Rauw, 2001). For solving the abovementioned differential 

equations one should acquire the force and moment values 
𝐅 =  � 𝐹�  𝐹� 𝐹� �

�
and 𝐌 =  [𝐿 𝑀 𝑁 ]� which are dependent 

upon of numerous mass and geometry variables, the engine 
model, in addition to the input commands. These forces and 
moments are handily stated by using stability derivatives, 
which represent the influence of various crucial parameters of 
a given force or moment value. For example the longitudinal 
aerodynamical force is expressed as  

𝐹� = 𝐶�� + 𝐶��𝛼 + 𝐶���𝛼
� + 𝐶���𝛼

� 

+𝐶��
𝑞𝑐̅
𝑉 + 𝐶���𝛿� + 𝐶���𝛿� + 𝐶�� ��

𝛼 𝛿�  
(11) 

where 𝐶��, 𝐶�� , 𝐶���, 𝐶���, 𝐶��, 𝐶��� , 𝐶��� , 𝐶�� ��
 are the 

stability derivatives capturing the effect of their multiplying 
term on 𝐹�. Equations for 𝐹�, 𝐹�, 𝐿, 𝑀, 𝑁 may be written 
likewise in terms of their related stability derivatives (Rauw, 
2001). A fast computer realization of the mathematical 
equations just outlined is essential for developing the flight 
control system and for performing numerical validations. To 
achieve this goal the mathematical software MATLAB and its 
graphical environment Simulink were chosen for this study. 

 

3. CONTROLLER DESIGN 

The first step in controller design is to determine a target safe 
flight condition achievable under the failure experienced by 
the aircraft. The flight controller will attempt to drive the 
aircraft to this condition and then offer the option the pilot one 
of the following options: 1) take over manual control of the 
plane or 2) continue a fly-by-wire travel by providing only 
reference commands to the autopilot, which will transform 
these into real actuator commands. 

Let us denote the normal aircraft dynamics of the form 

𝐱̇ = 𝐟(𝐱,𝐮,𝐯, 𝑡) (12) 

𝐲 = 𝐡(𝐱,𝐮,𝐯, 𝑡) (13) 

where the output vector 𝐲 represents the variables to be 
managed by the flight controller in response to reference 
commands from the pilot. Assume at time 𝑡 = 𝑡� the aircraft 
experiences a problem and control is lost. Depending on the 
problem experienced by the aircraft, the flight dynamics, the 
inputs available for control and the outputs to be controlled 
may be different than those in normal flight for 𝑡 > 𝑡�, which 
we will denote by 

𝐱̇ = 𝐟(̅𝐱,𝐮�,𝐯, 𝑡) (14) 

𝐲� = 𝐡̅(𝐱,𝐮�,𝐯, 𝑡) (15) 

As an example consider a rudder servoactuator failure that 
leaves the rudder stuck at 𝛿�,����� = 10∘  and unusable for the 
rest of the flight. From the moment of failure, the aircraft 
dynamics can be represented by 

𝐱̇ = 𝐟(̅𝐱,𝐮�,𝐯, 𝑡)
= 𝐟(𝐱,𝐮,𝐯, 𝑡)|𝐮��𝐮�,��,��������������� ,��,��,��,������ 

(16) 
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𝐲� = 𝐡̅(𝐱,𝐮�,𝐯, 𝑡)
⊂ 𝐡(𝐱,𝐮,𝐯, 𝑡)|𝐮��𝐮�,��,���������������,��,��,��,������ 

(17) 

where the new input 𝐮� = [𝐹������ ,𝛿�,𝛿�] represents the 
surfaces remaining for control after the rudder surface has been 
lost. The new input 𝐲� is denoted above as being a subset of the 
original output 𝐲 because one of the control surfaces is not 
operational anymore, e.g. one may choose 𝐲� = [𝑉,𝜃,𝜙] as the 
new outputs to be controlled. The target flight condition is 
captured by an optimization problem of the form  

min
𝐱,𝐮�

𝐠(𝐱,𝐮�)    subject to   𝐜�(𝐱,𝐮�) ≈ 0  ∀𝑖 (18) 

and represents the conditions to be satisfied for the aircraft to 
resume safe flight, at least for a reasonable amount of time. For 
the rudder servoactuator failure noted above with 𝛿�,����� =
10∘ = 0.1745 rad, one might define a target flight condition 
as 

𝐠(𝐱,𝐮)

= 𝑤� �
𝜕𝛼
𝜕𝑡
�+ 𝑤� �

𝜕𝛽
𝜕𝑡
�+𝑤� �

𝜕𝑝
𝜕𝑡
� +𝑤� �

𝜕𝑞
𝜕𝑡
�

+𝑤� �
𝜕𝑟
𝜕𝑡
�+𝑤� �

𝜕𝜓
𝜕𝑡
�+𝑤� �

𝜕𝜃
𝜕𝑡
�+𝑤� �

𝜕𝜙
𝜕𝑡
� 

(19) 

𝐜�(𝐱,𝐮) = 𝑣 − 65, 𝐜�(𝐱,𝐮) = 𝐻 − 1000,
𝐜�(𝐱,𝐮) = 𝛿� − 0.17453 (20) 

where 𝑤�, 𝑤�, 𝑤�, 𝑤�, 𝑤�, 𝑤�, 𝑤�, 𝑤� are positive weights 
denoting the importance of their respective terms. Placed into 
the expression (18) these conditions state that in the target 
condition, the aircraft’s rudder is fixed at 𝛿�,����� = 10∘ =
0.1745 rad, the aircraft travels at speed 𝑣 = 65 m/s, altitude 
𝐻 = 1000 m, and the changes in 𝛼,𝛽, 𝑝,𝑞, 𝑟,𝜓,𝜃,𝜙  are 
minimal, so that the aircraft keeps a fixed attitude as long as 
possible, without any pitching, rolling or yawing tendencies.  

To solve the optimization problem in (18) we first augment 𝐱 
and 𝐮 into a composite vector 𝑥̅ for optimization: 

𝐱� = [𝐱�  𝐮�]� . (21) 

Since the derivative terms in 𝑓(𝑥̅) = 𝑓(𝑥, 𝑢) are highly 
nonlinear, we employ a fast and efficient nonlinear 
programming method, namely Sequential Quadratic 
Programming (SQP) to solve this problem (Fletcher, 1987), 
(Schittkowski, 1986). Given the nonlinear optimization 
problem in (18), the main idea is to formulate a Quadratic 
Programming (QP) subproblem based on a quadratic 
approximation of the Lagrangian function 

ℒ(𝐱�, 𝛌) = 𝐠(𝐱�) +�𝜆�𝐜�(𝐱�)
�

 (22) 

where 𝛌 = [𝜆� 𝜆�⋯ ]� is the vector of Lagrange multipliers. 
At an iterate 𝐱��, the SQP algorithm defines an appropriate 
search direction 𝐝� as a solution to the QP subproblem 

min
𝐝

1
2𝐝

�∇�ℒ(𝐱�� ,𝛌)𝐝 + ∇𝐠(𝐱��)�𝐝 (23) 

subject to 

∇𝐠�(𝐱��)�𝐝+ 𝐠�(𝐱��) = 0  ∀𝑖 . (24) 

The subproblem is in standard QP form hence it can be tackled 
with any QP algorithm readily available in many numerical 
solver packages (Gill, Murray, Saunders, & Wright, 1984). 
The solution 𝑑� to this problem is utilized to form a new iterate 

𝐱���� = 𝐱�� + 𝛼�𝐝� (25) 

where the step length 𝛼� is obtained by an appropriate line 
search procedure so that an adequate decrease in a merit 
function is obtained. For this work we employ a merit function 
of the form 

𝚿(𝐱�) = 𝑓(𝐱�) +�𝑟�  𝐠�(𝐱�)
�

 (26) 

where the penalty parameters 𝑟� are some constant values. The 
operating point solving the optimization problem in (18) is 
denoted as (𝑥� ,𝑢�) where 𝑥� =
[𝑣�,𝛼�,𝛽�, 𝑝�,𝑞�,𝑟�,𝜓� ,𝜃�,𝜙�, 𝑥��,𝑦��,𝑧��]� is vector of the 
aircraft states at the trim condition and 𝑢� =
[𝐹��,𝛿��,𝛿��,𝛿��]� is the vector of control inputs to be applied 
at the trim condition. 

The local behavior of the aircraft around the target flight 
condition can be obtained by the linearized dynamics 

𝐆: �𝐱̇ = 𝐀𝐱� + 𝐁𝐮�
 𝐲 = 𝐂𝐱� + 𝐃𝐮� (27) 

where 𝐱� = 𝐱 − 𝐱𝟎, 𝐮� = 𝐮� − 𝐮�𝟎  and  𝐀 = 𝛛𝐟̅

𝛛𝐱
(𝐱𝟎,𝐮�𝟎), 𝐁 =

𝛛𝐟̅

𝛛𝐱
(𝐱𝟎,𝐮�𝟎), 𝐂 = 𝛛𝐡̅

𝛛𝐮�
(𝐱𝟎 ,𝐮�𝟎) and  𝐃 = 𝛛𝐡̅

𝛛𝐮�
(𝐱𝟎 ,𝐮�𝟎). The system 

in (27) can also be expressed in transfer function matrix form 

𝐆(𝑠) = 𝐂(𝑠𝐈 − 𝐀)�𝟏𝐁 + 𝐃 (28) 

 where 𝐈 is the identity matrix.  

At this point a multi-input multi-output robust controller 𝐊 is 
designed for 𝐆 using loop-shaping approach. The goal is to 
compute a stabilizing 𝐻� controller 𝐊 for plant 𝐆 to shape 
the sigma plot of the loop transfer function 𝐆𝐊 to have desired 
loop shape 𝐆� with accuracy 𝛾 in the sense that if 𝜔�  is the 0 
dB crossover frequency of the sigma plot of 𝐆�(𝑗𝜔), then it 
desired to have 

𝜎��𝐆(𝑗𝜔)𝐊(𝑗𝜔)� ≥
1
𝛾  𝜎��𝐆�(𝑗𝜔)�, ∀𝜔 < 𝜔�  (29) 

𝜎��𝐆(𝑗𝜔)𝐊(𝑗𝜔)� ≤  𝛾 𝜎��𝐆�(𝑗𝜔)�, ∀𝜔 > 𝜔�  (30) 

where 𝜎� and 𝜎� denote minimum and maximum singular values 
respectively. Thus, high tracking performance is achieved at 
low frequencies where the system model is more accurate, and 
high robustness is achieved at high frequencies where the 
system model is less accurate and noise effects are stronger. 
We first compute a stable-minimum-phase loop-shaping, 
squaring-down prefilter 𝐖 such that the shaped plant 𝐆�  =
 𝐆𝐖 is square, and the desired shape 𝑮� is achieved with good 
accuracy in adesired frequency range {𝜔��� ,𝜔���} by the 
shaped plant; i.e., 

2016 IFAC SSSC
June 22-24, 2016. Istanbul, Turkey

119



120	 Şeyma Akyürek et al. / IFAC-PapersOnLine 49-9 (2016) 117–123 
 

     

 

𝜎(𝐆�) ≈ 𝜎(𝐆�), ∀𝜔 ∈ {𝜔���  ,𝜔���} (31) 

This filter 𝐖 can be obtained by using greatest common 
divisor (GCD) formulas introduced by Safonov [21]. 
Normalized coprime factor synthesis theory is then used to 
compute an optimal loop-shaping controller for the shaped 
plant. If the shaped planet is factored as 

𝐆�  = 𝐌��𝐍 (32) 

then any perturbed plant can be written as 

𝐆∆ = (𝐌+ ∆𝐌)�𝟏(𝐍 + ∆𝐍) (33) 

where ∆𝐌 and ∆𝐍 are stable and unknown transfer functions 
that represent uncertainties in the nominal plant. The objective 
of the robust controller design is to stabilize by a controller 𝐊, 
not only nominal plant but also the family of perturbed plant 
defined as 

𝐆� = {(𝐌 + ∆𝐌)�𝟏(𝐍 + ∆𝐍): ‖∆𝐌,∆𝐍‖� < 𝜀} (34) 

For robust stability, the internal stability must be achieved for 
the nominal and perturbed plant. If there exist a 𝐊 such that 
(𝐌,𝐍,𝐊, 𝜀) is robustly stable, then (𝐌,𝐍, 𝜀) is said to be 
robustly stabilizable with stability margin 𝜀 [22]. For robust 
stability the following must be satisfied 

(𝐈 − 𝐆𝐊)�𝟏,   𝐊(𝐈 − 𝐆𝐊)�𝟏,   (𝐈 − 𝐆𝐊)�𝟏𝐆,    (𝐈
− 𝐊𝐆)�𝟏  ∈  𝐑𝐇� ,   det(𝐈 − 𝐆𝐊)(∞) ≠ 0 (35) 

inf
𝐊
��𝐊(𝐈 − 𝐆𝐊)�𝟏𝐌�𝟏

(𝐈 − 𝐆𝐊)�𝟏𝐌�𝟏 ��
�

 ≤ 𝜀�� (36) 

where the infimum is taken over all stabilizing controllers. The 
𝐻� optimization problem allows 𝜀�� being chosen as small as 
possible. For actual implementation, the robust stabilization 
problem can be converted to Doyle formulation. Let 

𝐏≜�𝐏�� 𝐏��
𝐏�� 𝐏��

� = ��
𝟎
𝐌�𝟏� � 𝐈𝐆�

𝐌�𝟏 𝐆
� (37) 

ℱ�(𝐏,𝐊) ≜ 𝐏�� + 𝐏��𝐊(𝐈 − 𝐏��𝐊)�𝟏𝐏�� (38) 

Then Equation (36) can be seen to be equivalent to  

inf
𝑲

 ‖ℱ�(𝐏,𝐊)‖�  ≤ 𝜀�� (39) 

where 𝐊 is gain chosen over all stabilizing controllers and 𝐏 is 
a plant of standard form for 𝐻�  optimization problem, the 
solution to which is expressed in [23]. The final controller to 
be used on the aircraft system 𝐆 is then computed by 

𝐊𝐟𝐢𝐧𝐚𝐥 = 𝐖𝐊 . (40) 

 

4. EXAMPLE: RUDDER SERVOACTUATOR JAM 

As an example we consider an aircraft suffering a rudder loss 
situation briefly mentioned in Section 3, where this surface 
gets stuck at 𝛿�,����� = 10∘ while the aircraft is cruising at 
airspeed 𝑣 = 65 m/s and altitude 𝐻 = 1000 m, and is 
unusable for the rest of the flight. The aircraft studied is a 

Cessna 172, which is widespread general aviation aircraft with 
the following specifications: 

Geometry and Mass Parameters:  

[𝑐̅   𝑏    𝑆    𝐼��    𝐼��   𝐼��   𝐽��  𝐽��   𝐽��  𝑚]  = [1.4935 
  10.9118  16.1651  1285.3  1824.9  2666.9  0 0 0   1043.3] 

Aerodynamic D-Force Derivatives:  

[𝐶��  𝐶��  𝐶��  𝐶���  𝐶���]  =  [0.031   0.13  0  0.06  0] 

Aerodynamic L-Force Derivatives:  

[𝐶��  𝐶��  𝐶��  𝐶���  𝐶���]  =  [0.31   5.143    3.9   0.43   0] 

Aerodynamic Y-Force Derivatives:  

�𝐶��  𝐶��   𝐶��  𝐶��  𝐶���  𝐶���� 
=  [0  − 0.31 − 0.037  0.21  0.0  0.187] 

Aerodynamic X-moment Derivatives:  

�𝐶��  𝐶��  𝐶��  𝐶��  𝐶���  𝐶���� 
=  [0    − 0.089  − 0.47  0.096  − 0.178  0.0147] 

Aerodynamic Y-Moment Derivatives:  

�𝐶��  𝐶��  𝐶��  𝐶���
 𝐶���

� 
=  [−0.015  − 0.89  − 12.4   − 1.28   0] 

Aerodynamic Z-moment Derivatives:  

�𝐶��  𝐶��   𝐶��  𝐶��  𝐶���  𝐶���� 
=  [0    0.065    − 0.03  − 0.099  − 0.053  − 0.0657] 

The aircraft is first trimmed for the rudder jam condition, 
which involves solving the optimization problem given in 
equation (18) using the SQP method as described in Section 3. 
The optimization problem converges to the following solution 

𝑥� = [𝑣,𝛼,𝛽,𝑝, 𝑞, 𝑟,𝜓,𝜃,𝜙,𝑥� ,𝑦� , 𝑧�]=[65, 
−0.0073, 0.13, 0, 0, 0, 0,−0.0029, 0.033, 0,0, 1000] 
 𝑢� = [𝐹� ,𝛿� ,𝛿� ,𝛿�] 
= [1170.6,−0.0066292,−0.052421,0.17453] 

(41) 

The three outputs which the autopilot will be controlling are 
picked as airspeed 𝑣, the pitch angle 𝜃, and roll angle 𝜙. At 
this point a loop-shaping controller is designed on the 
linearized dynamics (27) at the operating point (41). The 
desired loop shape 𝐆� is chosen as follows: 

𝐆�(𝑠) = diag�
2

𝑠� + 2𝑠 ,
2

𝑠� + 2𝑠 ,
2

𝑠� + 2𝑠
� (42) 

where diag stands for diagonal matrix. Figure 1 shows the 
singular value plot where is observed that the loop transfer 
function 𝐋(𝑠) approximates the desired loop shape 𝐆�(𝑠) 
within certain tolerance bounds, which limit the singular 
values of the sensitivity function 𝐒(𝑠) and complementary 
sensitivity function 𝐓(𝑠), favoring performance at low 
frequencies and robustness at high frequencies, as described in 
Section 3.  
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Since the loop transfer function 𝐋(𝑠) approximates 𝐆�(𝑠), this 
suggests that the closed loop transfer function matrix 𝐓(𝑠) 
from the references (𝑣���, 𝑧�,��� ,𝜙���) to outputs (𝑣, 𝑧� ,𝜙) 
will approximately be the following 

𝐓(𝑠) = 𝐋(𝑠)�𝐈 + 𝐋(𝑠)��� ≈ 𝐆�(𝑠)�𝐈+ 𝐆�(𝑠)��� 

= diag�
2

𝑠 + 2𝑠 + 2 ,
2

𝑠 + 2𝑠 + 2 ,
2

𝑠 + 2𝑠 + 2
� 

(43) 

From here one observes the following: 

1. The individual transfer functions for the diagonal 
channels are approximated by 

𝑉���(𝑠)
𝑉(𝑠) =

𝑧�,���(𝑠)
𝑧�(𝑠) =

𝜙���(𝑠)
𝜙(𝑠) ≈

2
𝑠� + 2𝑠 + 2 

=
𝜔��

𝑠� + 2𝜁𝜔�𝑠 +𝜔��
 

(44) 

where the last expression is the canonical form for second 
order systems with damping ratio 𝜁 = 0.7071 and natural 
frequency 𝜔� = √2 ≈ 1.4142 rad/s. From here one can 
estimate the characteristics of the transient response as  

𝑀� = 𝑒
��

����� ≈ 0.0432 = 4.32% (45) 

𝑡� =
4
𝜁𝜔�

= 4 s (46) 

where 𝑀� is the overshoot and 𝑡� is the %2 settling time 
(Ogata, 2001). This suggest that the closed loop system will 
track all references successfully with a small overshoot and 
converge to the commanded value in about 4 seconds.  

2. The off-diagonal entries of 𝐓(𝑠) are roughly zero, which 
indicates that the coupling between different command-

response pairs are eliminated; e.g. when the operator 
issues a step input from 𝑣���, this will result in an 
increase in 𝑣 by 1 m/s, but the command will not result in 
any other unintended effects such as a change in the pitch 
or roll angles.  

The assertions above can be verified from the closed loop step 
response which is shown in Figure 2. The plots in the diagonals 
converge to unit value in about 4 seconds with almost no 
overshoot and the off-diagonal plots are virtually identical to 
zero.  

 
For final verification, the emergency flight control system and 
the nonlinear Cessna 172 model were programmed and tested 
under the numerical computing package MATLAB/Simulink. 
Numerous scenarios were studied with satisfactory results, one 
of which is presented here as an example. In this scenario we 
start with the aircraft cruising at an airspeed of 65 m/s and a 
height of 1000 m. Winds up to 10 m/s are typically present at 
these altitudes. The aircraft experiences a malfunction at 𝑡 =
10 s where the rudder servoactuator is suddenly jammed, 
leaving the surface stuck at 𝛿�,����� = 10∘  and unusable. The 
simulation results for this scenario are given in Figure 3 and 
Figure 4. With the rudder suddenly getting stuck, the aircraft 
exhibits a high rolling and yawing tendency and some 
tendency to pitch, as seen from the spikes and pitches in the 
plots for 𝑝, 𝑞, 𝑟, 𝜙, 𝜃 and 𝜓. All of this happens in a fraction 
of a second which is insufficient for the pilot to reach. To avoid 
the situation from deteriorating even further, the emergency 
autopilot takes over at around 𝑡 = 11 s, restores stable flight 
and keeps 𝑝, 𝑞, 𝑟, 𝜙, 𝜃 values close to zero while waiting 
commands from the operator. When the pilot feels ready they 
can either disable the emergency autopilot and resume manual 
flight, or operate the aircraft in fly-by-wire more. In this 
situation the latter option is attractive since the aircraft is 
disabled, flying sideways (𝛽 ≠ 0) and lacks a control surface. 
The pilot in this case restarts controlling the aircraft in fly-by-
wire mode at 𝑡 = 20 s and first commands the aircraft to lower 
airspeed to 60 m/s  between 𝑡 = 21 − 31 s. He/she then holds 

 
Figure 1. Singular value plot for the loop-shaping 
controller.  
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Figure 2. Step response resulting of the closed-loop system 
with the loop-shaping controller.  
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the pitch angle 𝜃 at 3° (0.0524 rad) for some time (𝑡 = 41 −
71 s) to gain altitude, and finally keeps the roll angle 𝜙 at 3° 
(0.0524 rad) for a while (𝑡 = 71− 101 s) to bank the aircraft 
for adjusting the flight path. From Figure 3 it is observed that 
the aircraft states (solid blue lines) follow the reference 
commands (red dotted lines) closely. One also notes that the 
commands only affect the intended channel and the other 
outputs remain virtually unchanged, e.g. the airspeed remains 
constant for 𝑡 = 41− 71 s and 𝑡 = 71− 101 s despite pitch 
and roll commands being issued during these intervals. The 
control inputs applied to the aircraft is presented in Figure 4. It 
can be seen that the thrust and surface deflections remain 
within reasonable limits at all times. Frequency spectrum 
amplitudes of the control inputs are also displayed in this 
figure. One observes from the figure that the control inputs do 
not contain significant power at frequencies higher than about 
0.2 Hz; hence the control does not cause any sharp thrust 
changes or wild oscillations in control surfaces. This is a 
consequence of the loop-shaping design where the control 
action was designed to be conservative at frequencies higher 
than crossover frequency 𝜔� ≈ 0.7464 rad/s, which 
corresponds to 0.1188 Hz. Overall the flight control system 
maintains stable flight and responds well to commands 
received. 

 

 
 

In addition to numerical simulations provided above, 
preliminary empirical verifications of our designs were carried 
out using hardware-in-the-loop (HIL) experiments, as well as 
flight tests using radio controlled (RC) scale models as shown 
in Figure 5. Due to length limitations these results are not 
detailed here but the interested reader is kindly referred to 
(Atlas, et al., 2015), (Kasnakoglu & Kaynak, 2010), (Kaynak, 
et al., 2010), (Korkmaz, Ertin, Kasnakoglu, & Kaynak, 2013) 
and (Ertin, Korkmaz, Kaynak, & Kasnakoglu, 2013). 

 

 

 
 

5. CONCLUSIONS AND FUTURE WORKS 

In this paper a multi-input multi-output robust control 
approach was investigated for distressed aircraft experiencing 
control loss due to surface or power failure. An accurate 
mathematical model of the aircraft dynamics was utilized to 
obtain a target aircraft behavior in the emergency situation, 
around which a dynamical system model was obtained through 
linearization. A loop-shaping controller design was seen to 
achieve a decent balance between performance and robustness; 
the former is favored for low frequencies where the model is 
much more accurate and the latter is preferred at high 
frequencies where the model is poor and noises are strong. The 
control design also decouples different channels successfully 
so that a reference command only affects its intended output. 
A rudder servoactuator jam scenario was presented through 
numerical simulations, where it was seen that the autopilot 
recovers level flight and responds well to fly-by-wire 
commands from the operator.  

Future research directions include studying alternative design 
methods for the controllers, investigating the possibility of 
reducing controller size, as well as performing hardware-in-
the-loop (HIL) and flight tests for verification. 

 

  

 
Figure 3. Aircraft states (solid blue) resulting from 
numerical simulations of the nonlinear aircraft model in 
closed-loop. The reference commands are also shown in red 
dashed lines.  

Rudder loss case outputs (solid blue) under v, theta, phi commands (dashed red)
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Figure 4. Aircraft inputs (top row) and amplitude spectra 
(bottom row) from numerical simulations of the nonlinear 
aircraft model in closed-loop. 

 

Rudder loss case inputs (blue) and spectra (red) under v, theta, phi commands
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Figure 5. Hardware-in-the-loop (HIL) test platform (left) 
and one of the radio controlled (RC) aircraft models (right) 
used for experimental verification of the autopilot designs.  
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