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The Sylvester-Kac matrix, sometimes known as Clement matrix, has Received 29 January 2019
many extensions and applications throughout more than a century Accepted 15 May 2019
of its existence. The computation of the eigenvalues or even the COMMUNICATED BY

determinant have always been challenging problems. In this paper, H-L. Gau
we aim the introduction of a new family of a Sylvester—Kac type
matrix and evaluate the corresponding spectrum. As a consequence, KEYWORDS
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1. Introduction

The Sylvester-Kac matrix, also known as Clement matrix, is the (n + 1) x (n + 1) tridi-
agonal matrix with zero main diagonal, one subdiagonal (1,2, ..., n), while the other one
stands in the reversed order, i.e.

The British mathematician James Joseph Sylvester was the first to consider this matrix in
1854 in his short communication [1], conjecturing that the determinant of its characteristic
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matrix
X 1
n X 2
n—1
2 X n
1 X
was
n
det Ay(x) = [ [Ge+n — 2h). (1)
k=0

The first proof of Sylvester’s determinantal formula is attributed by Muir to Francesco
Mazza in 1866 [2, pp. 442], with a small typographical error as noticed in [3]. Nowadays
it is consensual that Mark Kac, in 1947, with his Chauvenet prize-winning paper [4], was,
in fact, the first to fully prove the formula, using the method of generating functions, and
to provide a polynomial characterization of the eigenvectors. For some early history of
this, the reader is referred to [5]. Results on the spectrum were scrutinized, independently
rediscovered, and extended by many authors based on different approaches [5-16].

Recently, a new interest emerged in the literature about the Sylvester-Kac matrix, with
many new extensions and major results. Perhaps the most relevant can be found in (3,
17-20].

In [18], E. Kili¢ and T. Arikan proposed an extension of A, (x), namely

X 1
n y 2
n—1 x
Aﬂ(x’y): n_l
2 y n
1 X
if n is even, and
X 1
n y 2
n—1 x .
Ap(x,y) = ,
ST
Ly

otherwise, and explicitly evaluate its spectrum, say A(A,(x,y)), using some similarity
techniques:

n/2

1 1
MAn(x,9) = {E(x +y) F E,/ (x—y)?*+ (4k)2} U {x}, forneven,

k=1
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and
1 1 (n—1)/2
AMAL(x, ) = {—(x +yF —\/(x — )2+ (4k + 2)2} , for nodd.
2 2 k=0
The determinant now follows.
Theorem 1.1 ([18]): The determinant of A,(x,y) is
n/2
x H(xy — 21, if n is even,
detA,(x,y) = (nt_:ll)/z
]_[ (xy — 2t + 1)%), if nis odd.
t=0

This extension is in the spirit of the original claim proposed Sylvester since he explicitly
conjectured the determinant of A, (x). The matrix A, (x, y) is also an extension of a previous
work by E. Kili¢ [20], where y = —x.

In this paper, we aim the introduction of a new type of Sylvester-Kac matrix, denoted
by G, (x) or, briefly, G,

x n+3
n X n—+4

n—1 X

Gn(x) = ' s (2)
) 2n+1
2 X 2n+2
1 X

(n+1)x(n+1)

and determine its spectrum, which we will denote by A(G,,). Then we formulate its determi-
nant. Some consequences will be presented as well. In the end, we establish a generalization
of the matrix G, (x), which we will denote by G, (x, y). Here the main diagonal entries will
be in a 2-periodic form, oscillating between x to y. Setting x = y, we will recover the matrix
G, (x). Notice that all these matrices are of order n+1.

2. The spectrum of G, (x)

In this section we first find the spectrum of G, (x), denoted by L(G, (x)) and, later on, derive
its determinant.

Theorem 2.1: The eigenvalues of G, (x) are given by
MGy ={x+2,x+£6,x+10,...,xx£212n—1)}
= {x£2 k- D)
and
MGy ={x,xE+4,xE8,x+12,...,x * 4n}
={x£22h}_,-
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We start finding two eigenvalues of G, and then two corresponding left eigenvectors
associated them.
Let us define the two 2n+-1-vectors,

up=(1,2,3,...,2n+1) and uy=(1,-2,3,...,—-2n,2n+1).
The next lemma says that u; and u; are eigenvectors of Ga,,.

Lemma 2.2: The matrix Gy, has the eigenvalues At = x + 4n and 1~ = x — 4n with left
eigenvectors uy and uy, respectively.

Proof: To prove our claim, it is sufficient to show that
M1G2n = )\.+u1 and uszn = )\._1/[2 .

Notice the kth component of u; by is precisely k. From the definitions of G, and u;, we
should show that

x+ (2n)2 = AT,
(4n+2)2n+xCn+1)=1TQ2n+1), (3)
(k—1D@Cn+1+k +kx+*k+1DQ2n+1—k) =1k for2<k<2n—1.

The only equalities requiring some algebra are those defined in (3). Our first claim follows
then.
The other case, i.e. 4Gz, = A7 uy, can be handled in a similar way. [ |

Similarly to the previous case, we define two 2n-vectors:
v =(01,2,3...,2n) and v, =(1,-2,3,...,—2n).
The next lemma can be proved analogously to the previous result.

Lemma 2.3: The matrix Gy, has the eigenvalues u* = x+2Q2n — 1) and = = x —
2(2n — 1) with left eigenvectors vy and va, respectively.

Now our purpose is to find similar matrices to Gz, and Ga,—1, respectively. We start
with the matrix Gy;,.
Define a matrix T of order 2n+1 as shown

2 3 ... 2n 2n+1
T = 1 -2 3 —2n 2n+1 1,
002n-1)x2 \ Ly

where 0, is the m x n zero matrix and I is the identity matrix of order k. Its inverse is

1
2
1

M [ =D | =

3 0 -5 0 - 0 —@2u+1)
o -2 0 -3 ... —n 0
02n-1)x2 | L

T-! =
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We can easily check that Gy, is similar to the matrix

)»+ 0 02><(2n—1)
0 AT
E= 2n—1 2n—1 s
4 4

002n-2)x2 w

where W is the matrix of order 2n—1 is given by

X 7—2n 0 -32n—1) --- 0 —n@Rn-—1) 0
2n—2 X 2n+6 0
2n—3 X 2n+7
W= 2n—4 o0 ,
. 4n 0
3 X in+1 0
2 X dn+2
1 X

since E = TG,, T~'. Consequently, A* are eigenvalues of both E and G,
We will focus now on the matrix Gy,,_1. Define the matrix Y of order 2n as

2 3 -+ 2n—1 2n
Y = 1 -2 3 -+« 2n—1 =2n
02n-2)x2 \ Ly

Similarly to the previous case, we obtain have

-3 0 -5 0 .- 0 —@n—1) 0
Yy l= -1 0 -2 0 =3 o —(n-1 0 —n
02n-2)x2 | Ly

Therefore, Gy,_ is similar, via Y , to the matrix D = YG,,_; Y ! of the form

s = =
D —

wut 0 02 2n-2)
0 no
D= n—1 n—1 ,
2 2
002n—3)x2 Q
where Q is the matrix, of order 2n—2,
X —2(n—4) 0 —6(n—1) --- 0 —2n(n—1)
2n—3 X 2n+5 0
2n—4 X 2n+6
Q= 2n—>5 0
n — 1 0
2 X 4n
1 X
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Thus u™ and p™ are eigenvalues of the matrix Gyy,—1.

To compute the remaining eigenvalues of G,—1 and Gz, we proceed providing some
auxiliary results.

Define an upper triangle matrix U, as follows

1 0 2 O 3 0o ¢
1 0 2 0 3 0
1 O 2 0
3
U1 =
0
2
0
1
2¢—1)x(2¢—1)
and
1 0 2 0 3 0 £ 0
1 0 2 0 3 0 L
1 0 2 0 3
0
Uy = 3
0
2
0
1 20x2¢
Therefore, for any parity of n, the inverse matrix U, Lig
1 0 -2 0 1
1 0 -2 0 1
Un_1= 1 0o -2 0 1
1 0 -2 0
1 0 -2
1 0
1

Taking into account the definition of Uy, we clearly have

Gz = Upym1 WU, | and Gy = UanUz_,,l-
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Furthermore, let us define the following matrix of order n

L | O >
M, = .
" ( 0(n—2)x2 ‘ Un—z

Hence we get

AT 0 02x(2n-1)
0 AT
ML EMoyiy = 2n—1  2n—1
4 4 .
0(2n—2)><2 UZn_l WUz—1
and
wt 0 02 (2n-2)
0 w-
M;,! DMy, = n—1 n—1
2 2 .,
002n—3)x2 U,,_,QUzu—2

Up to now, we derived the identities
E=TGyuT ',
D=YGy 1Y),
Gonz = Upyot WU, |,
Gano1 = U2 QU;L .

From the definition of G, given in (2), both Mz_nlJrlEMZ,,H and Mz_n1 DM,;,, can be rewritten
in the following lower-triangular block form

At o0 ut 0
0 A” 0 and 0 u- 0 , (4)
| Ganoi * | Gans

respectively.
From (4), we get the recurrences on n > 0,

detGop1 = ™ det Gopz = (x* —402n — 1)*)Gyy_3, with detG_; =1
and
det Gy = ATAT det Goyn = (32 — 16n°) det Goy—y,  with det Gy = x,
which means that

det G, = (x> — 4n®) det G,_,,

with the two initial conditions stated above. Finally, we obtain Theorem 2.1.
Now the determinant of G, follows immediately.
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Theorem 2.4: The determinant of G, (x) is

(n+1)/2
]_[ (x> — (4t — 2)?), if nisodd,

det Gu(x) = | 7

xl_[(x2 — (41)?), if n is even.
t=0

3. A generalization for G, (x)

In the section, we will discuss a generalization of G, (x), where the main diagonal is bi-
periodic, as described in the introduction and studied in a related problem in [18].
Let us consider a new matrix G, (x, y) defined as

x n+3
n y n—+4
n—1 X n+5

n—2
Gu(x,y) =
y 2n+1
2 X 2n+2
1 y
if nis odd, and
x n+3
n y n+4
n—1 X n+5
n—2 y .
Ga(,y) = o ,
x 2n+1
2 y 2n+2
1 X

if n is even.
Now for later use, we shall note a fact. Consider

\/Z' b] z \/Ebl

Fupii= (V2™ det| @ S|V ,

Cn—1 ﬁ \/Ecn—l Z
which, by expanding with the Laplace expansion according to the last row or column, gives
us

Fuy1 = zF, — zbyc,Fy—1  withinitials Fp =1 and F; =z
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Meanwhile, now consider

zc
Pn+1 = det !

¢,z
and if we expand it according to the last row or column, we obtain
Py, = 2zP, — zbycy,Py—; withPp=1 andP; =z

Thus we deduce the fact that since the sequences {F,} and {P,} have the same recursions
and the same initials, these are the same. Clearly, we have

z bl «/E bl

det | %0 & = (V)" det| @
S SR
¢, Z o1 Az

On the other hand, we also obtain similar determinantal identity as shown

(xy) \_n+1/2J)}l’l+l mod 2 det Gn(xay)

xy n+3
xyn xy n+4
xy(n —1) .
= det . 2n41 ’ (1)
xy-2 xy 2n+2
xy-1 xy

We may prove this identity in a similar way to the previous one. In fact, again using a similar
approach as for the previous equality according to the parity of n, the proof could be easily
obtained. Combining the two previous equalities and setting z = ,/xy, we get

det G, (\/xy), if nis odd,

det Gu(x,y) = { \/§ det Gu(/x), if nis even.

This means, from Theorem 2.4,
(n+1)/2
l_[ (xy — (4t — 2)?%), if nisodd,

det G, (x,y) = ;721

x l_[(xy — (41)?), if n is even.
t=0

As a conclusion, we can set the eigenvalues for G, (x, ).
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Theorem 3.1: The eigenvalues of G, (x, y) are:

and

Xty "

MGan-1(x:)) = { 3

%\/(x — 2?4162t — 1)2}

t=1

n

1
M(Gan(%,) = {x}U {% NG 16<2t>2}

t=1
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