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A B S T R A C T   

Early prediction of mortality and length of stay (LOS) of a patient is vital for saving a patient’s life and man-
agement of hospital resources. Availability of Electronic Health Records (EHR) makes a huge impact on the 
healthcare domain and there are several works on predicting clinical problems. However, many studies did not 
benefit from the clinical notes because of the sparse, and high dimensional nature. In this work, we extract 
medical entities from clinical notes and use them as additional features besides time-series features to improve 
proposed model predictions. The proposed convolution based multimodal architecture, which not only learns 
effectively combining medical entities and time-series Intensive Care Unit (ICU) signals of patients but also al-
lows to compare the effect of different embedding techniques such as Word2vec and FastText on medical entities. 
Results show that the proposed deep multimodal method outperforms all other baseline models including 
multimodal architectures and improves the mortality prediction performance for Area Under the Receiver 
Operating Characteristics (AUROC) and Area Under Precision-Recall Curve (AUPRC) by around 3%. For LOS 
predictions, there is an improvement of around 2.5% over the time-series baseline. The code for the proposed 
method is available at https://github.com/tanlab/ConvolutionMedicalNer.   

1. Introduction 

Electronic Health Record (EHR) data collected from patients who 
have been admitted into hospitals or Intensive Care Units (ICU) offer a 
detailed overview of patients consisting of but not limited to de-
mographics, insurance, laboratory test results, and medical notes. With 
the EHR data becoming available for researchers, there has been 
increasing interest in using it with deep learning algorithms. Besides 
rapid progress in deep learning area, after Medical Information Mart for 
Intensive Care (MIMIC-III) [1], today’s most popular public EHR data-
base, was released, numerous studies have achieved successful results 
using this data set in predicting different clinical outcomes [2–4]. 

Understanding the health condition of the patient by observing the 
clinical measurements, laboratory test results and predicting the con-
dition of patients during their ICU stay is a vital problem. In this paper, 
we focus on two different common risk prediction tasks, mortality (in- 
hospital & in-ICU) and length of ICU stay (LOS). Both are very important 
clinical outcomes for determining treatment methods, planning hospital 
resources, and ultimately saving lives. Previous studies primarily 
focused on predicting clinical events using only the structured data of 

patient such as historical patient diagnosis (ICD codes) [5,6], lab results 
and patient ICU measurements [7–9] and did not benefit from the un-
structured data in EHR. The EHR data which consists of clinical notes 
written by doctors, nurses, or radiologists, discharge notes, and many 
other sources, contains quite detailed information about patients, pro-
jecting the knowledge and inference of doctors and even critical details 
about patient health status for many cases. As per the importance of the 
clinical notes, researchers want to take advantage of the rich content in 
clinical notes. Moreover, with the recent developments in Natural Lan-
guage Processing (NLP), there has been an increasing interest in using 
clinical notes to make clinical model predictions [10,11]. Although it 
may be possible to leverage clinical notes to make more accurate pre-
dictions, these notes may consist of long written free-text with an un-
usual grammatical structure and may contain redundant information. As 
it may be hard to process raw clinical notes, because of their 
high-dimensional and sparse nature, extracting medical entities is 
required to unlock the medical information trapped in the clinical notes 
and to feed them into prediction models. 

Named Entity Recognition (NER) is a fundamental task in NLP that 
focuses on information extraction aiming to extract entities in a text and 
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classify them into predefined classes. These classes can be locations, 
people, or organizations in general NER algorithms [12,13]. There can 
be various NER models for different domains like cybersecurity [14] or 
medicine [15]. Recently, several deep learning algorithms were applied 
to clinical texts to train clinical Named Entity Recognition models. These 
clinical NER models generally try to extract medical information such as 
disease, drugs, dosage and frequency. 

In this paper, we argue that the integration of structured data in EHR 
and medical entities positively affects the prediction of mortality and 
LOS. Also, the effect of different word representations such as Word2Vec 
[16], FastText [17] and the concatenation of both on medical entities are 
investigated. To evaluate the success of the proposed multimodal ar-
chitecture, first models are trained separately with structured and 
medical entity features. Then we apply multimodal approach and use 
these features together in several ways to show the effectiveness of the 
proposed network. The results indicate a promising increase in perfor-
mance on mortality and LOS tasks when the medical entities are used 
with structured data in a multimodal approach. To sum up, the main 
contributions of this work can be listed as follows.  

• Comparing clinical word embeddings. Representing the medical 
entities is a critical problem and there are various word embedding 
methods that capture different semantic and syntactic features about 
the same word. In this study, different types of word embedding 
methods (Word2Vec, FastText, Concatenation) are experimented 
and the outcomes of these methods on clinical tasks are discussed.  

• Embedding techniques for medical entities. To find an efficient 
way for embedding medical entities, we make experiments with 
different methods such as average representation, Doc2Vec, and 1D 
Convolutional Neural Networks (CNN). The experimental results 
show that convolutional based method is the best way to embed 
medical entities among the candidate methods.  

• Novel pipeline for mortality and LOS problems. We work with 
four different clinical outcomes such as in-hospital mortality, in-ICU 
mortality, LOS >3 and, LOS >7. To make successful predictions on 
these clinical tasks, we propose a novel, fully reproducible, and 
convolutional based deep multimodal pipeline. 

In the next section, similar studies that work on clinical domain 
especially predicting mortality and length of stay at ICU are summa-
rized. Following that, the data set, problem definitions, and deep 
learning models used in this study are discussed. Then, the experimental 
results are reported and the paper is concluded in the last section. 

2. Related work 

With the rapid development of deep learning algorithms in the last 
decade, the number of deep learning models increased substantially for 
various clinical predictions. Several studies have explored EHRs to solve 
clinical problems, e.g., Lipton et al. [18] used 13 different vital mea-
surements to classify 128 diagnoses using Long Short Term Memory 
(LSTM) and DoctorAI [5] used Gated Recurrent Unit (GRU) to predict 
multi-label diagnosis for the next visit. Choi et al. [19] proposed early 
heart failure detection using Recurrent Neural Networks (RNNs). Fore-
casting the LOS and mortality have been a popular clinical problem for 
healthcare researchers in recent years. In earlier studies [20–22] on 
mortality prediction, hand-crafted features are selected and used simple 
machine learning models like logistic regression with different severity 
scores such as APACHE [23], SAPS-II [24], and SOFA [25]. Nowadays 
with the progress on deep learning, different architectures have been 
applied on EHR data to predict these kind of problems. Awad et al. [26] 
used ensemble learning to make an early mortality prediction and 
Sadeghi et al. [27] proposed a method to predict mortality using 12 
features extracted from the vital signals in the first hour of ICU admis-
sion. Darabi et al. [28] used convolutional neural network to predict 
long-term mortality risk on the MIMIC-III dataset. More recent work [8] 

includes attention to their deep learning model to improve models’ 
success. Another work [29] try to predict LOS for acute coronary syn-
drome patients. There is a comprehensive survey on mortality prediction 
and LOS [30]. Despite these studies and developments, one of the major 
problems that the healthcare researchers experienced, the researches on 
the literature are short of standardized preprocessing steps such as unit 
conversion, handling outlier and missing values, and transforming raw 
structured data into usable hourly time series data. In order to solve this 
problem, these studies [31–33] carried out a comprehensive benchmark 
on MIMIC-III for various tasks such as mortality, LOS, readmission, 
phenotyping and make their code publicly available. Purushotham et al. 
[33] extracts 17 features from the MIMIC-III and works on hospital 
mortality, LOS and ICD-9 code group predictions. They compared their 
proposed super learner method with feedforward and recurrent neural 
network. Another research [31] benchmarked their results on the 
MIMIC-III. They used multi-task learning approaches to predict four 
clinical prediction tasks such as risk of mortality, LOS, detecting phys-
iologic decline, and phenotype classification. MIMIC-Extract [32] is the 
most recent work which is an open source pipeline for transforming 
MIMIC-III data into directly usable features. Their pipeline first trans-
forms the raw vital sign and laboratory data into hourly time series and 
then apply some preprocessing steps such as unit conversion, outlier 
handling and imputing missing data. In this study, to increase repro-
ducibility, MIMIC-Extract pipeline is used to featurize MIMIC-III data. 

Medical entities which are extracted from clinical notes are used to 
improve proposed model predictions. Clinical natural language pro-
cessing and information extraction has been widely studied in recent 
years on clinical notes. Two studies [34,35] proposed a deep learning 
based multi-task learning to make clinical predictions from clinical 
notes. Boag et al. [11] compared different embedding approaches such 
as Bag of Words (BoW), Word2Vec and LSTM on clinical note repre-
sentation by evaluating the prediction performance on diagnosis pre-
diction and mortality risk estimation. More recently, transformer-based 
architectures such as BERT [36], XLNET [37] gave state-of-the-art per-
formance on different NLP tasks. These models are pre-trained on 
medical data, which is then fine-tuned on clinical text [38,39]. However, 
clinicians generally use medical jargon and shorthands when they take 
these clinical notes which makes it hard to process directly. There are a 
number of studies in the field of clinical NLP which try to extract medical 
entities in clinical notes [40–42]. In this work, we use med7 [15] which 
is developed for free-text Electronic Health Record. Then, these medical 
entities are combined with structured data to benefit from multimodal 
approach. For a detailed overview on deep learning for natural language 
processing in the clinical domain, readers can refer to [43]. 

Multimodal learning is a key research area that uses multiple sources 
to predict unique tasks [44]. This approach has shown success in image 
captioning tasks [45], visual question answering [46] and speech 
recognition [47]. In the healthcare research domain, Khadanga et al. 
[48] combines unstructured clinical notes and structural time-series 
data for predicting in-hospital mortality, decompensation, and LOS. 
Similarly, Shukla and Marlin [49] made unified mortality prediction and 
try to explore how physiological time series data and clinical notes can 
be integrated. The study by Jin et al. [50] is the closest to this work in 
terms of motivation. They made hospital mortality prediction by 
combining clinical notes and time series data. Clinical notes are repre-
sented with Doc2VecC [51] algorithm in two different ways. First, they 
directly combine clinical notes with time series data, second, they use 
neural network based clinical NER service to extract five types of 
medical entities and identify negated entities from clinical notes. After 
this pre-processing, they use the same representation with the first 
model and reported a 2% increase in the Area Under their Curve (AUC). 

3. Materials and methods 

In this section, we begin by describing the dataset. Next, the details 
of baseline models and clinical NER model are discussed. Finally, the 
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proposed multimodal deep learning models are explained. 

3.1. Data 

All models are trained on a publicly available MIMIC-III dataset 
which contains de-identified EHR data of 58,976 unique hospital ad-
missions, 61,532 ICU admissions from 46,520 patients in the ICU of the 
Beth Isreal Deaconess Medical Center between 2001 and 2012. MIMIC- 
Extract [32], an open source data extraction pipeline, is used to extract 
structured time series features in MIMIC-III. MIMIC-Extract mainly fo-
cuses on the patient’s first ICU visit with some patient inclusion criteria. 
They eliminate data from patients younger than 15 years old and where 
the LOS is not between 12 h and 10 days. This pipeline produces a cohort 
of 34,472 patients and 104 clinically aggregated time-series variables. In 
all experiments, we use the first 24 h of patient’s data after ICU 
admission and only consider the patients with at least 30 h of present 
data like MIMIC-Extract. In the proposed multimodal approach, medical 
entities and time-series features are combined to be used together. 
Before applying the clinical NER model on notes, discharge summaries 
are dropped to avoid any information leak. Furthermore, clinical notes 
without the chart time information are eliminated. After these steps, we 
drop all patients who do not have any clinical notes in 24 h. The pre-
processing on clinical notes are performed similar to [48]. In the 
train-test split, for all clinical tasks, we split the data based on class 
distribution with 70%/10%/20% ratio. Statistics of the final cohort and 
the others are summarized in Table 1. 

Problem Definition. We mainly focus on two vital clinical predic-
tion tasks, mortality(in-hospital & in-ICU) and LOS (>3 & >7) at ICU. 
The same definitions of the benchmark tasks defined by MIMIC-Extract 
are used as the following four binary classification tasks. The explana-
tion of these tasks and the class distributions are as follows:  

1. In-hospital mortality: Patient who dies during hospital stay after 
ICU admission (Significantly imbalanced, %10.5).  

2. In-ICU mortality: Patient who dies during ICU stay after ICU 
admission (Significantly imbalanced, %7).  

3. Length-of-stay >3: Patient who stays in the ICU longer than 3 days 
(Slight imbalanced, %43.2).  

4. Length-of-stay >7: Patient who stays in the ICU longer than 7 days 
(Significantly imbalanced, %7.9). 

3.2. Baseline models 

In this subsection, the time-series baseline model that is evaluated on 
each of four benchmark tasks is discussed. Furthermore, the clinical NER 
model, embedding approaches to represent medical entities, and the 
multimodal baselines used in this study are explained. 

3.2.1. Time series model 
We employ both Long Short Term Memory (LSTM) [52] and Gated 

Recurrent Units (GRU) [53] networks to capture the temporal infor-
mation between the patient features. As a result of time-series baseline 
experiments, GRU has shown a better AUC and AUPRC performance 

than LSTM up to %0.5–%1, while using a simpler architecture. There-
fore, GRU is used for all of the multimodal architectures. In general, GRU 
cell has two gates, a reset gate r and an update gate z. With these gates, 
GRU can handle the vanishing gradient problem. 

The mathematical formulation of GRU model can be iterated as 
follows: 

zt = σ(Wzxt + Uzht− 1 + bz)

rt = σ(Wrxt + Urht− 1 + br)

ĥt = tanh(Whxt + rt∘Uhhi− t + bh)

ht = zt∘ht− 1 + (1 − zt)∘ĥt  

̂prediction = sigmoid(Whht + bh)

where zt and rt respectively represent the update gate and the reset gate, 
ĥt the candidate activation unit, ht the current activation, and ∘ repre-
sents element-wise multiplication. For predicting the mortality and LOS, 
a sigmoid classifier is stacked on top of the one layer GRU with 256 
hidden units. 

3.2.2. Multimodal approaches 
In this work, besides time series features, information from clinical 

notes is used to improve clinical task prediction performance. Instead of 
working directly with clinical notes, we first aim to extract medical 
related keywords. Recently, there are some notable works in the clinical 
domain that made their pre-trained clinical NER models publicly 
available [54,55,15]. We use a pre-trained clinical NER model, med7 
[15], which uses the same dataset that we use in experiments, MIMIC-III. 
This clinical NER model extracts seven different named entities such as 
‘Drug’, ‘Strength’, ‘Duration’, ‘Route’, ‘Form’, ‘Dosage’, ‘Frequency’. To 
represent the patient’s medical entities, we try two different embedding 
methods, word embedding and document embedding. First, three 
different word embedding algorithms are used to represent each clinical 
NER model outputs and compare their performance. Second, Doc2Vec 
[56] algorithm is trained to represent the whole documents consisting of 
medical entities. The detailed schema of these two approaches are 
shown in Fig. 1 and the statistics of the extracted medical entities by 
med7 in MIMIC-III dataset for selected patients are shown in Table 2. 

Word Embeddings. Different word embedding methods might 
capture various semantic features on the same word. In the experiments, 
to understand this variety, the performance of Word2Vec, FastText, and 
the concatenation of Word2Vec & FastText embeddings are compared. 
Word2Vec [16] is a two-layer neural network that learns the represen-
tations of words in the given text with two ways: as a continuous 
bag-of-words (CBOW) and as a skip-gram. FastText [17] is an extension 
of the skip-gram model implemented by Facebook’s AI Research (FAIR) 
lab which can handle out-of-vocabulary (OOV) words, and can learn 
better representations for rare words using several n-grams for words. 
We use pre-trained Word2vec (wi ∈ ℝ100) and FastText embeddings 
(fi ∈ ℝ100) which was trained on 2.8 billion words from MIMIC-III clin-
ical notes as shown in [38]. Lastly, an experimental embedding 
approach is designed which concatenates the Word2Vec and FastText 
representations horizontally (ci ∈ ℝ200). When the Word2Vec embed-
ding does not exist for a given word, we make zero padding in this 
setting. 

Document Embeddings. Doc2Vec is an extension of Word2Vec 
model to learn document-level embeddings instead of word level. Before 
learning document level representations, the first 24 h of patient’s 
clinical notes are combined and clinical NER algorithm is applied on 
them to keep only medical related keywords in the clinical notes. When 
training Doc2Vec, the context window size is selected of 5 words. This 
algorithm produces the fixed-length feature vector (di ∈ ℝ100) for each 
patient. 

Table 1 
Summary statistics of the original MIMIC-III dataset, and the final cohort that is 
used in this study.   

# of 
Patient 

# of hospital 
admission 

# of ICU 
admission 

MIMIC-III (>15 years old) 38,597 49,785 53,423 
MIMIC-Extract 34,472 34,472 34,472 
MIMIC-Extract (at least 24 + 6 

(gap) hours patient) 
23,937 23,937 23,937  

Final cohort (After clinical 
note elimination) 

21,080 21,080 21,080  
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In this study, two different baseline multimodal approaches are 
presented with word and document embeddings that combine time- 
series data and medical entities. 

Multimodal with Average Representation. This model takes the 
average of all medical entities associated with a patient. For each pa-
tient, there are N clinical notes and K medical entities extracted from 
these N clinical notes. Each medical entity is represented by a word 
embedding which is explained in Word Embeddings section. We sum K 
n-dimensional clinical entity representations component-wise and then 
divide this by K. Two different input types are used to train multimodal 
model. Time series data is processed through one layer GRU layer with 
256 hidden units as explained in Section 3.2.1. Averaged representa-
tions of medical entities are combined with time-series feature maps that 
are learned via GRU. In the end, these merged feature representations 
are fed into the fully connected layer with 256 neurons, and a sigmoid 
classifier is added to the model. 

Multimodal with Doc2Vec Representation. In this multimodal 
approach, instead of averaging medical entities, Doc2Vec algorithm is 
trained to obtain the fixed-length feature vector. First, we concatenate N 
clinical notes for each patient and discard keywords from these notes if 
the keyword is not a medical entity. Then the Doc2Vec algorithm is 
applied to learn a low level representation from notes for each patient. 
After the learning fixed-length feature vector, the same architecture as 

the average embedding approach is used. 

3.3. Proposed model 

Fig. 2 describes the proposed multimodal approach which takes the 
advantage of 1D convolutional layers as a feature extractor on medical 
entities. Applying 1D Convolutional Neural Networks (CNN) on text 
learns the combination of adjacent words and shows successful results 
for various NLP problems [57]. In the proposed model, K medical en-
tities were extracted from N clinical notes from each patient. These K 
medical entities are first represented as a sequence of word embeddings 
with different word representation techniques such as Word2Vec, 
FastText, and a combination of them. These entities ei ∈ ℝd are com-
bined vertically and each patient is represented by a matrix M ∈ ℝk∗d 

where rows are filled with medical entity representations. This patient 
clinical NER entity matrix (padded where necessary) is represented as: 

e1:k = e1 ⊗ e2 ⊗ ⋯ ⊗ ek (1)  

where ⊗ is the concatenation operator and e refers to the representation 
of the medical entity and k is the number of the entity. We use a 1D-CNN 
model similar [58] to extract features from medical entities. We stack 
three consecutive 1D convolutional layers with filter size 32, 64, and 96. 
The kernel size is same for three convolutional layers. The output of the 
last convolutional layer is followed by the max-pooling layer. The final 
features of the max-pooling layers are concatenated with the features 
from one layer GRU with 256 hidden units and fed through one 
fully-connected layer with 512 hidden units. 

4. Experimental results 

In this section, the results of baseline and multimodal experiments 
are reported. Moreover, we explain the metrics used for evaluation, and 
the details about the implementation. 

4.1. Setting 

Training. For all tasks, we use the patient’s first 24 h ICU 

Fig. 1. Methodology for learning medical entity vectors. (1) The medical entities that are extracted from clinical notes are embedded into continuous word vectors. 
Then, we take the mean of these learned entity representations. (2) The words are removed from clinical notes if they are not belong to any medical entity category. 
Then, Doc2Vec is trained on the preprocessed clinical notes to learn low dimensional representation of medical entities. 

Table 2 
The first column shows the type of medical entity, the second columns shows the 
total number of related entity found in clinical notes, and the third column 
shows the number of unique entity number. The last column shows the output of 
med7 for example sentence given from clinical notes.  

Medical entity Total count Unique count Example 

Drug 744,778 18,268 Magnesium 
Strength 156,486 10,749 400 mg/5 ml 
Form 40,885 597 suspension 
Route 207,876 1193 PO 
Dosage 126,756 7239 30 ml 
Frequency 71,285 3344 bid 
Duration 5939 1185 next 5 days  
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measurements. For multimodal architectures, 0.2 dropout rate is 
selected at the end of the fully connected layer. A ReLU activation 
function is used for nonlinearity and L2 norm for sparsity regularization 
is selected with the 0.01 scale factor. For the optimization, we use ADAM 
[59] algorithm with a learning rate of 0.001. All models are trained to 
minimize the binary cross-entropy loss and we independently tune the 
hyperparameters – number of hidden layers, hidden units, convolutional 
filters, filter size, learning rate, dropout rates and regularization pa-
rameters on the validation set. Each model is trained for 50 epochs and 
early stopping is performed on the validation loss. We train each model 
10 times with different initialization seeds and report the average 
performance. 

Evaluation metrics. The clinical problems that we work on suffer 
from class imbalance problem. We use three different metrics which are 
AUROC, AUPRC and F1. AUROC is a popular robust metric for 

imbalanced datasets [60]. The second metric AUPRC does not include 
the true negatives in the calculation and this approach makes it useful 
for data with many true negative similar to the dataset in this study. F1 is 
the final metric which calculates the harmonic mean of precision and 
recall. 

Implementation Details. The aforementioned deep learning algo-
rithms are implemented using Keras [61], which runs Tensorflow [62] 
on its backend. med7 is used for extracting clinical related entities from 
clinical notes. All experiments were performed on a computer with 
NVIDIA Tesla K80 GPU with 24 GB of VRAM, 378 GB of RAM and Intel 
Xeon E5 2683 processor. The full code of this work is available at 
https://github.com/tanlab/ConvolutionMedicalNer. 

Fig. 2. Overview of Proposed multimodal architecture for predicting the In-Hospital Mortality, In-ICU Mortality, LOS >3, and LOS >7. To extract timeseries features, 
we use MIMIC-EXTRACT pipeline and fed these features through GRU. We also preprocess the clinical notes and use med7 to extract medical entities. 1D CNN is 
applied to extract features from medical entity representations. In the final layer, we concatenate features that are extracted from timeseries and medical entities and 
fed through fully connected layer to predict 4 different binary clinical tasks. 

Table 3 
Performance comparison of baseline methods. For all four clinical tasks, we report both AUC, AUPRC and F1 scores and the standard deviations. (Bold indicates best 
results).  

Task Baseline model Embedding AUROC AUPRC F1 

In-hospital mortality 

GRU – 85.04 ± 0.004 52.15 ± 0.009 42.29 ± 0.016 
Doc2Vec multimodal Doc2Vec 85.96 ± 0.002 54.17 ± 0.004 46.60 ± 0.016  

Word2Vec 86.42 ± 0.004 54.22 ± 0.008 45.42 ± 0.013 
Averaged multimodal FastText 86.09 ± 0.004 54.47 ± 0.007 45.50 ± 0.010  

Concat 85.98 ± 0.002 54.19 ± 0.008 45.66 ± 0.021  

In-ICU mortality 

GRU – 86.32 ± 0.004 46.51 ± 0.011 36.30 ± 0.026 
Doc2Vec multimodal Doc2Vec 86.80 ± 0.002 48.22 ± 0.006 41.95 ± 0.017  

Word2Vec 87.17 ± 0.002 48.47 ± 0.006 42.30 ± 0.021 
Averaged multimodal FastText 87.14 ± 0.003 48.36 ± 0.006 42.91 ± 0.014  

Concat 86.90 ± 0.004 48.28 ± 0.007 40.76 ± 0.022  

LOS >3 days 

GRU – 67.40 ± 0.003 60.17 ± 0.005 53.36 ± 0.016 
Doc2Vec multimodal Doc2Vec 68.90 ± 0.002 61.88 ± 0.002 54.32 ± 0.008  

Word2Vec 68.63 ± 0.003 61.81 ± 0.003 54.19 ± 0.012 
Averaged multimodal FastText 68.55 ± 0.003 61.59 ± 0.003 54.46 ± 0.012  

Concat 68.61 ± 0.003 61.69 ± 0.003 54.70 ± 0.009  

LOS >7 days 

GRU – 70.54 ± 0.004 16.35 ± 0.006 2.33 ± 0.012 
Doc2Vec multimodal Doc2Vec 71.63 ± 0.005 17.22 ± 0.004 1.50 ± 0.007  

Word2Vec 71.59 ± 0.005 17.91 ± 0.006 1.35 ± 0.008 
Averaged multimodal FastText 71.31 ± 0.008 17.57 ± 0.007 1.02 ± 0.008  

Concat 71.59 ± 0.007 17.67 ± 0.007 1.37 ± 0.013  
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4.2. Results 

4.2.1. Baseline model results 
We work on four different clinical tasks with the patient’s first 24 h 

ICU measurements and medical entities. Table 3 summarizes the overall 
performance of baseline methods. As seen from results, instead of strong 
results of time-series GRU model, multimodal approaches improve the 
performance, as expected. For in-hospital mortality prediction, we see 
an improvement of %1.5 AUROC, %2.5 AUPRC and %4 F1 score 
compared to the time-series GRU model. For other mortality prediction 
task, in-ICU mortality, multimodal approach improve the performance 
around %2 for AUROC and AUPRC and %7 for F1 score. Multimodal 
approaches also improve the performance of prediction tasks in LOS 
problem. Both in LOS >3 and LOS >7, all metrics are improved around 
%1.5. Time-series GRU model only achieves a better F1 score for LOS >7 
problem compared to other models. 

To demonstrate the effectiveness of medical entities, averaged and 
Doc2Vec multimodal methods are trained. The results clearly show that 
using medical entities with time-series based patient features corre-
spondingly improve the mortality and LOS predictions in both types of 
representations. We observe that averaged and Doc2Vec’s performance 
do not change significantly. Apart from the fact that these two ap-
proaches increase the performance of the models, in order to utilize 
these medical entities in an efficient way, the experiments are carried 
out labeling the convolutional based deep multimodal model as the most 
feasible approach. 

4.2.2. Proposed model results 
In this section, we compare the results of the proposed model against 

the best scores taken from baseline models and discuss the efficiency and 
reliability of the proposed model. All results for the proposed model 
against best baseline scores are provided in Table 4. As shown in Table 3, 
multimodal approach improves the performance of predictions tasks 
over the time-series, however we try to use medical entities more effi-
ciently to improve the prediction of multimodal approaches. Except the 
F1 score of LOS >7 clinical task, the proposed multimodal architecture 
robustly outperforms all other baseline models for each task. 

We associated the efficiency of proposed model with factors mostly 
related to the usage of medical entities and convolutional based deep 
multimodal architecture. Due to the advantages of CNNs in capturing 
local features, it was adapted to various NLP tasks in the literature [63, 
64]. Since the high performance of 1D CNN algorithms on text based 
data is well known [57], we take advantage of convolutional layers in 

the proposed model. Considering the results obtained from the experi-
ments, using convolution to extract features on medical entities results 
in consistently better performance. To test the reliability of all the 
models, the experiments are repeated 10 times with different initiali-
zation and the mean performance scores are reported. 

5. Discussion 

Table 3 shows that the use of medical entity features improve the 
prediction performance on all clinical tasks. As shown in Table 3, 
multimodal baseline modals increase all metrics performance which 
indicates the benefit of using medical entities for predicting mortality 
and LOS. These experiments also provide an opportunity to compare the 
medical entity representation methods. Although there is no certain 
winner for all tasks, in the baseline models, the results show us for 
mortality prediction tasks, representing the medical entities with aver-
aging method gives better results. For LOS prediction tasks, representing 
all medical entities together with Doc2Vec is also successful as averaging 
method. Furthermore, both scores in Tables 3 and 4 gives a chance to 
compare the word embedding approaches. We do not observe a signif-
icant change in performance between word embedding techniques, 
however pretrained Word2Vec model generally achieves slightly higher 
scores (around %0.5) than FastText and experimental concatenated 
embeddings. Apart from these experiments and comparisons, the main 
motivation is finding an efficient way to combine time-series features 
with medical entities. Even though both baseline multimodals improve 
the prediction results compared to timeseries baseline, to make better 
feature extraction on medical entities, we want to take the advantage of 
1D CNN. We stack three 1D convolution operation to extract the fea-
tures, and then apply 1D max pooling operation over the time-step to 
obtain a fixed-length vector. By analyzing the results between the pro-
posed and baseline multimodals, we see that 1D CNN based multimodal 
approach give better results than the averaging and document based 
embedding methods. In addition to these trials, we also make experi-
ments by using only medical entity features as another baseline. How-
ever, only medical entity baseline give poor results (around less than % 
10 for all tasks) compared to the timeseries and multimodal, so we do 
not report these results. 

In the literature, there are several studies concerning mortality and 
LOS prediction. Purushotham et al. [33] work on in-hospital mortality, 
LOS, and ICD-9 code group predictions. They propose a pipeline to 
extract 136 raw and 12 clinical aggregate features from MIMIC-III and 
use more traditional machine learning techniques to make predictions. 

Table 4 
Proposed model performance comparison with best baseline model. We select the highest score for each metric and each clinical task from baseline methods. (Bold 
indicates best results).  

Task Model Embedding AUROC AUPRC F1 

In-hospital mortality 

Best baseline – 86.42 ± 0.004 54.47 ± 0.007 46.60 ± 0.016  
Word2Vec 87.55 ± 0.003 55.87 ± 0.008 47.23 ± 0.014 

Proposed model FastText 87.15 ± 0.002 55.68 ± 0.005 46.87 ± 0.015  
Concat 86.98 ± 0.003 55.35 ± 0.008 46.38 ± 0.027  

In-ICU mortality 

Best baseline – 87.17 ± 0.002 48.47 ± 0.006 42.91 ± 0.014  
Word2Vec 88.35 ± 0.002 49.23 ± 0.008 43.02 ± 0.029 

Proposed model FastText 87.85 ± 0.001 48.78 ± 0.009 43.09 ± 0.026  
Concat 87.66 ± 0.002 48.74 ± 0.009 42.24 ± 0.027  

LOS >3 days 

Best baseline – 68.90 ± 0.002 61.88 ± 0.002 54.70 ± 0.009  
Word2Vec 69.54 ± 0.002 62.68 ± 0.003 55.04 ± 0.012 

Proposed model FastText 69.61 ± 0.003 62.55 ± 0.003 55.87 ± 0.017  
Concat 69.93 ± 0.001 62.77 ± 0.002 55.82 ± 0.008  

LOS >7 days 

Best baseline – 71.63 ± 0.005 17.91 ± 0.006 2.33 ± 0.012  
Word2Vec 72.55 ± 0.005 18.78 ± 0.006 1.58 ± 0.001 

Proposed model FastText 71.81 ± 0.004 18.01 ± 0.004 1.08 ± 0.008  
Concat 71.92 ± 0.007 18.25 ± 0.006 1.38 ± 0.009  
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In this study, we use MIMIC-Extract to represent the time-varying fea-
tures and work with a much larger set of 104 clinical aggregate features. 
Also, all clinical tasks in this study are formulated as a classification 
problem, while Purushotham et al. formulate the LOS task as a regres-
sion problem and use the mean squared error to evaluate their model 
performance. Nallabasannagari et al. [65] propose a model that com-
bines multiple data sources in MIMIC-III to predict in-hospital mortality 
and LOS >7. To extract features from raw data, they use the same 
strategy for each data source. Features containing free-text data are split 
on whitespace to create tokens, and other features are combined with 
them. This tokenization process creates a two-dimensional array which 
consists of hospital admissions and a list of tokens for each hospital 
admission. The architecture of the model is simply constructed with 
embedding layers, an averaging layer, and multiple dense layers. With 
this proposed method, they avoid discarding too much patient data. 
However, the complex and multi-source raw patient data may need 
more detailed preprocessing steps. In addition, in our study, instead of 
using only dense layers, to benefit from temporal information in the 
data, we apply time-series based algorithms to the patient’s 
time-varying features and use 1D CNN for text based medical entity data 
with different word embedding techniques. Another work, Jin. et al. 
[50] propose a multimodal neural network that uses time series features 
with unstructured clinical notes and tries to predict in-hospital mortality 
risk for ICU patients. To represent clinical notes, only Document Vector 
through Corruption (Doc2VecC) is used. In this study, we work with 
three more additional outcomes which are in-ICU mortality, LOS >3, 
and LOS >7 rather than just in-hospital mortality. We also compare 
different types of methods to represent medical entities like averaging, 
Doc2Vec, and convolutional based. Therefore, to discuss the effect of 
different word embedding methods, all experiments are carried out with 
Word2Vec, FastText, and concatenation of them. 

6. Conclusion and future work 

Over the past decade, there has been increased attention to improve 
mortality and LOS prediction performance. Predicting any complica-
tions and saving patient’s life is an important task for healthcare system 
which motivates us to work on mortality prediction. LOS is another 
important clinical problem to improve hospital performance and better 
healthcare resource utilisation. In this work, we present 1D-CNN based 
multimodal deep learning architecture that use time-series features and 
medical entities together and this model outperforms several baselines. 
The proposed model performance gain over multimodal baselines is 
around %1–%1.5 AUPRC, and the improvement over time-series base-
line is around %2.5–%3 AUPRC. We also make experiments to investi-
gate the effect of different word embedding algorithms to solve clinical 
problems and report the results. 

Despite these contributions, the proposed model also has some lim-
itations that can be addressed in a future work. First, we only use 
context-independent word embedding techniques such as Word2Vec, 
FastText to represent medical entities. Second, the pre-trained models 
that are used in this study such as word embeddings and clinical NER 
models are trained on MIMIC-III dataset. Moreover, the time-series 
feature extraction pipeline is also specific to MIMIC-III dataset. There-
fore, using the proposed methodology on an EHR dataset different from 
MIMIC-III may lead to some problems. Third, although the proposed 
model is shown to be successful on clinical tasks, the level of explain-
ability of the predictions are low. 

This work can be extended in multiple directions. First, recent 
context-dependent embeddings like BERT to represent medical entities 
can be utilized. Second, clinical word embeddings and clinical NER 
model can be trained on a more general clinical based corpus rather than 
MIMIC-III. Third, we can add more features associated with patients 
such as prescription data and diagnosis codes to improve the prediction 
performance. Another thing we may consider in the future is to use more 
advanced deep learning architectures with attention mechanism to 

improve explainability and the accuracy of predictions. 
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