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Abstract

We consider a flow shop type manufacturing cell consisting of m machines and a

material handling robot producing multiple parts. The robot transfers the parts between

the machines and loads/unloads the machines. We consider the cyclic scheduling of the

parts and the robot moves with the objective of maximizing the throughput rate. We

develop a mixed integer linear programming formulation of the problem. The formulation

is improved with several valid inequalities and reformulations of the constraints. We

also develop a hybrid metaheuristic algorithm for this strongly NP-Hard problem. The

algorithm is modified to handle both 1-unit and multi-unit robot cycles. Multi-threading

is used to parallelize the algorithm in order to improve its efficiency. After calibrating the

parameters of the heuristic algorithm, an extensive computational study is performed to

evaluate its performance. The results of this study revealed that the developed heuristic

provides near-optimal solutions in reasonable solution times. The effects of parallelization

and the benefits of considering multi-unit cycles instead of 1-unit cycles are also quantified

with this study.
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1. Introduction

The use of industrial robots increases continuously among the manufacturing firms.

According to Robotic Industries Association, 14,583 robots valued at $817 million were

ordered from North American robotics companies in the first half of 2016, an increase of

two percent in units over the same period in 2015 (Robotics Online, 2016). The com-

panies utilize industrial robots in order to increase productivity, safety, product quality,

consistency, and flexibility. However, in order to get the maximum benefit from this

high-cost investment, some complex operational problems must be solved. One of the

most important operational problems is the sequencing and scheduling of the parts to be

processed and the robot moves. In this study, we consider a flow shop type production

system that consists of an input device denoted by M0, a number of machines denoted by

M1, . . . ,Mm, an output device denoted by Mm+1, and a material handling robot as can

be seen in Figure 1. Such a production system is called a robotic cell. Multiple parts with

different processing times are to be processed in this cell. The problem is to determine

the part sequence and the robot move sequence that jointly maximize the throughput or

equivalently minimize the cycle time. The cycle time is defined as the long run average

time to produce a single part.
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Figure 1: Robotic cell

In the literature mostly the makespan and the cycle time minimization objectives are

considered for robotic cells. In the makespan minimization case, it is assumed that the

production is not repetitive. All machines are initially idle, a specific number of parts are

to be processed, and at the end, all machines become idle again. Soukhal and Martineau

(2005) developed an integer programming model and a Genetic Algorithm (GA) based

heuristic for this problem. Carlier et al. (2010) proposed an exact branch-and-bound
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algorithm and developed a GA. Elmi and Topaloglu (2014) considered a hybrid flow shop

type robotic cell in which there are different speed parallel machines at each stage. They

developed an integer programming formulation and proposed a Simulated Annealing (SA)

based algorithm. Liu and Kozan (2016) considered the job shop version of the problem

and developed a hybrid metaheuristic algorithm.

In the cycle time minimization case, it is assumed that the same set of parts are to be

processed indefinitely. Therefore, the system is not required to start with an empty state

in which all machines are idle. The state of the system can be identified with the position

of the robot and the status of all machines (whether they are idle or loaded with a part).

In order to satisfy repetitiveness, the final state of a cycle must be identical to its initial

state. Such cyclic schedules are used extensively especially in mass production where

the same set of parts are produced in large volumes. In a robotic cell, cyclic production

refers to the repetition of the same sequence of robot moves indefinitely. Cyclic schedules

are easy to implement and control for real life applications. Furthermore, Geismar et al.

(2005) proved that such schedules are optimal for robotic flow shops producing identical

parts. Sethi et al. (1992) defined an n-unit cycle as a sequence of robot activities in

which the system returns to the same state after producing n parts. In these cycles, each

machine is loaded and unloaded exactly n times and n parts are produced at the end.

Most studies on robotic cell scheduling problems assume the parts to be identical. With

this assumption, the part sequencing problem vanishes and the robot move sequencing

remains as the only problem. Sethi et al. (1992) proved that 1-unit cycles are optimal for

two-machine cells producing identical parts. Crama and van de Klundert (1997) extended

this result for three-machine cells. However, for m-machine cells where m ≥ 4, Brauner

and Finke (2001) showed that a multi-unit cycle can lead to a cycle time that is smaller

than the smallest 1-unit cycle time. There are several studies that consider multi-unit

cycles and develop exact or heuristic solution procedures for the identical parts case (see

e.g. Kats et al., 1999; Che et al., 2011; Zhou et al., 2012; Li and Fung, 2014; Elmi and

Topaloglu, 2016).

In the multiple part-types case, the repetitive production of a Minimal Part Set (MPS)

is considered. An MPS is the smallest possible set of parts having the same proportions

as the production target. For example, if the demands for three products for some fixed
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period of time are given as 400 for product A, 250 for product B, and 150 for product C,

then the MPS consists of 8 product A’s, 5 product B’s, and 3 product C’s that makes a

total of 16 products. Given an MPS of n parts, an MPS cycle is equivalent to an n-unit

robot move cycle. The cycle time can be defined as the total time to produce all n parts

in the MPS. We utilize this definition of the cycle time throughout this study,. The per

unit cycle time can be found easily by dividing this total time by n. A Concatenated

Robot Move (CRM) cycle is a special class of MPS cycles in which the same 1-unit cycle

is repeated n times (Sriskandarajah et al., 2004). The reason for considering CRM cycles

lies in the easiness of implementation and control of these cycles. In most studies in the

literature, the robot move sequence is fixed to a specific CRM cycle and the corresponding

optimal part sequence is determined accordingly (Dawande et al., 2007). Sethi et al. (1992)

solved the part sequencing problem for a given CRM cycle in a two-machine cell. Hall

et al. (1998) proved that finding the optimal part sequence in two of the six possible CRM

cycles in a three-machine robotic cell is strongly NP-Hard. Sriskandarajah et al. (1998)

generalized these results for the m-machine cells and categorized the part sequencing

problem for the CRM cycles into four categories depending on their complexity status.

Kamalabadi et al. (2008) considered the part sequencing problem when the CRM cycle is

fixed in a three-machine robotic cell and proposed a Particle Swarm Optimization (PSO)

method. Abdulkader et al. (2013) considered the same problem in a four-machine robotic

cell and proposed a GA. On the other hand, Hall et al. (1997) proved that the optimal

cycle is not generally a CRM cycle even for the two-machine cells. They developed

an algorithm with O(n4) complexity to determine the optimal MPS cycle for the two-

machine case. Aneja and Kamoun (1999) improved the time complexity to O(nlogn)

by formulating the problem as a special case of the Traveling Salesman Problem (TSP).

However, the problem is strongly NP-Hard for the m-machine robotic cells when m ≥ 3

and the robot sequence is not fixed (Hall et al., 1998).

Zahrouni and Kamoun (2012) developed a constructive heuristic inspired by the NEH

algorithm of Nawaz et al. (1983) for the three-machine case. Batur et al. (2012) formu-

lated the two-machine problem in which the processing times are also decision variables

as a variation of the TSP. Since the model size increases drastically with respect to m,

extending this formulation to the m-machine case is not practical. Fazel Zarandi et al.
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(2013) developed a branch and bound algorithm and proposed an SA algorithm for the

two-machine case that includes sequence-dependent setup times. Che et al. (2010) consid-

ered the cyclic hoist scheduling with multiple parts, fixed processing times, and no-wait

constraints. They developed an MILP formulation which makes use of the no-wait con-

straints and developed a dynamic branch and bound procedure.

In this study, we consider both the CRM and MPS cycles and develop an MILP for-

mulation of the general m-machine case that determines the part sequence and the robot

move sequence simultaneously. As far as the authors know, this is the first formulation to

solve this general problem. We develop a lower bound and several valid inequalities and

utilize these in the formulation. However, since this problem is strongly NP-Hard (Hall

et al., 1997), we develop a Parallel Hybrid Metaheuristic algorithm to find near-optimal

solutions in reasonable CPU times for the MPS case. We modify this algorithm to handle

the CRM case as well. In this approach, a parallel GA determines the part sequence. For

a given part sequence, a Tabu Search (TS) algorithm determines the corresponding best

robot move cycle and calculates the resulting cycle time. The performance of the heuris-

tic is analyzed through an extensive computational study by comparing its results with

the MILP. Furthermore, in order to quantify the benefits of utilizing multi-unit cycles in

terms of the throughput rate, 1-unit and multi-unit cycles are compared with each other.

This is important since there is a tradeoff between the throughput rate and the easiness

of implementing and controlling the cycle. This quantification helps decision makers to

make a choice between the CRM cycles and more complex MPS cycles.

Table 1 lists the closely related studies and provides the position of the current study

with respect to them. The studies that consider multiple part-types either consider the

makespan or the cycle time objectives. Studies considering cycle time minimization usu-

ally assume the robot move sequence (RMS) or the part sequence (PS) to be given and

try to determine the other one. Furthermore, usually the problem is limited to the CRM

cycles which are not guaranteed to be optimal. Although a few studies examine the

problem of determining the best multi-unit cycle, these studies consider a small number

of machines (e.g. 2 or 3). According to this table, the current study is the first one to

consider the cyclic scheduling of both the robot moves and the parts in the general m-

machine case. Both the CRM and the MPS cycles are considered and their performances
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Table 1: Multiple part type robotic cell scheduling literature classification

Study
Cyclic

Solution
multi-
unit

m-
machine

RMS PS Main Contribution

Sethi et al. (1992) X X Polynomial time algo-
rithm

Hall et al. (1997) X X X X O(n4) time algorithm
Hall et al. (1998) X X Complexity analysis of

part sequencing for CRM
cycles

Aneja and Kamoun
(1999)

X X X X O(nlogn) time algorithm

Soukhal and Martineau
(2005)

X X X MILP formulation and a
GA

Kamalabadi et al.
(2008)

X X Petri nets based mathe-
matical model and a PSO

Carlier et al. (2010) X X X Branch & bound algo-
rithm for PS and a GA for
RMS

Zahrouni and Kamoun
(2012)

X X X X NEH based constructive
heuristic

Batur et al. (2012) X X X X MILP formulation and a
heuristic algorithm

Abdulkader et al. (2013) X X GA for PS for each of the
24 CRM cycles

Fazel Zarandi et al.
(2013)

X X X MILP formulation and a
SA algorithm

Elmi and Topaloglu
(2014)

X X X MILP formulation and a
SA algorithm

Current Study X X X X X MILP formulation,
parallel hybrid meta-
heuristic algorithm,
and comparison of
CRM and MPS cycles

RMS: Robot Move Sequence, PS: Part Sequence

are compared with each other.

The remainder of the paper is organized as follows. The notation, problem definition,

and mathematical programming formulations are presented in the next section. Section 3

presents the proposed hybrid metaheuristic algorithm. In Section 4 the methodology and

the results of the computational tests are summarized. Section 5 concludes the study.

2. Problem Definition

In this section, we provide the formal definition of the problem and develop an MILP

formulation. We also develop a lower bound for the cycle time and determine several valid
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inequalities and utilize these of the model. We evaluate their effects on the solution time of

the model using several test problems. According to the flow shop assumption, each part to

be processed goes through each machine in the same sequence; M0,M1, . . . ,Mm,Mm+1. In

the considered system, the loading/unloading of the machines and part transfers between

the machines are performed by the robot. Since the robot can hold only one part at

a time and there are no buffers between the machines, it is possible to represent robot

move cycles with a robot activity definition. Crama and van de Klundert (1997) defined

Ai, i = {0, 1, 2, . . . ,m} as the robot activity in which the robot unloads a part from Mi,

travels from Mi to Mi+1, and loads this part to Mi+1. Each loading/unloading time is

assumed to be equal and denoted by ε. After loading a part on a machine, the robot

either waits in front of that machine or moves to another machine to take a new part.

Let pij denote the processing time of part j on Mi. In this study, we consider free

pickup criterion in which a part can stay on the machine indefinitely after its processing

is completed. The machines in the system are equidistant and the robot’s travel time

between adjacent machines (Mi−1 and Mi, i = 1, . . . ,m + 1) is denoted by δ. This

travel time is additive. That is, the travel time between any two machines Mi, Mj,

0 ≤ i, j ≤ m+ 1 is |i− j|δ. The following example is useful in understanding the problem

and the operation of the cell.

Example 1. Let’s consider a three-machine cell where there are n = 4 parts in the MPS.

Loading/unloading and travel times are given as ε = 1 and δ = 1. The processing times

are provided in Table 2. The optimal solution is found by the MILP model developed

later in this section. The optimal part sequence is σPS = {4, 1, 2, 3} and the robot

activity sequence (σRMS) together with their starting times are provided in Table 3. The

corresponding Gantt chart is depicted in Figure 2.

Table 2: Processing times for Example 1

m\n 1 2 3 4

1 13 16 22 12

2 7 11 9 5

3 8 4 14 13
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Table 3: The RMS and activity start times for Example 1

σRMS A0 A2 A1 A0 A3 A2 A1 A0 A3 A2 A1 A0 A3 A2 A3 A1

T 0 7 15 20 26 31 36 41 47 52 60 65 70 77 84 90

R  

M1  idle

M2  

M3  

idle idle

idleidle

idle idle

idleidle

4136

idle idle

idle idle

idle

 Machine waiting for loading

 Robot waiting time

idle

idle idle

idleidle

2070 15 77 84 90 95

 Empty travel time

 Unloading+travel+loading time (ε+δ+ε)

 Machine waiting for unloading

4726 31 52 60 65 70

3

33

3

2

2

2

44

4

4

1

1

1

Figure 2: Gantt chart for Example 1

In an n-unit cycle each activity Ai, i = (0, 1, 2, . . . ,m) must be performed exactly n

times. The developed mathematical model determines the sequence of these activities

by assigning them to positions. Since there are a total of (m + 1) activities and since

each of them are repeated n times, the total number of positions is n(m+ 1).Crama and

van de Klundert (1997) defined the feasibility conditions for robot move cycles. Accord-

ing to this, the robot cannot be instructed to load an occupied machine and cannot be

instructed to unload an unoccupied machine. For 1-unit cycles, all possible permutations

of the activities lead to a feasible cycle. However, this is not valid in an n-unit cycle.

Crama and van de Klundert (1997) defined the necessary and sufficient conditions for an

activity sequence to represent a feasible cycle. According to this, between two consecutive

occurrences of Ai, i = (0, 1, . . . ,m− 1), there must be exactly one Ai+1 and between two

consecutive occurrences of Ai, i = (1, 2, . . . ,m), there must be exactly one Ai−1. These

conditions will be used in order to generate feasible activity sequences in the following

model. The model calculates the starting time of each activity depending on its position

in the activity sequence.

In the following formulation, B is used to denote a very large number. This number

must at least be larger than the optimal cycle time value. Therefore, B can be selected

as the cycle time of any feasible cycle with the corresponding part sequence. The CRM
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cycle that repeats the A0A1 . . . Am sequence n times is a very good candidate for this

purpose. This is because, the cycle time formula of this cycle, which can be calculated as

2n(m+ 1)(ε+ δ) +
∑m

i=1

∑n
j=1 pij, does not depend on the part sequence.

2.1. Mixed Integer Linear Programming Formulation

We use the following sets and parameters in the MILP formulation:

N = {1, 2, . . . , n}: The set of parts. Since each activity Ai is repeated n times in an

MPS cycle, this set is also used to represent these repetitions,

M = {M0,M1, . . . ,Mm+1}: The set of machines. M0 is the input buffer and Mm+1 is

the output buffer,

A = {0, 1, . . .m}: The set of activity indices, (A0, A1, . . . , Am),

P = {1, 2, . . . , n(m+ 1)}: The set of positions to represent an n-unit cycle,

pij : The processing time of part j ∈ N on machine i ∈M \ {M0,Mm+1},

ε : Loading/unloading time,

δ : Traveling time of the robot between adjacent machines,

B : A very large number.

We define the following decision variables:

xilk =

 1, If repetition l ∈ N of activity i ∈ A is assigned to position k ∈ P ,

0, Otherwise.

zilj =

 1, If repetition l ∈ N of activity i ∈ A belongs to part j ∈ N ,

0, Otherwise.

We also introduce yjlok in order to linearize the multiplication xilk.zilj:

yilkj =


1, If repetition l ∈ N of activity i ∈ A belongs to part j ∈ N and it is

assigned to position k ∈ P ,

0, Otherwise.

In order to calculate the cycle time, the starting time of individual activities must be

known. In order to calculate these we define the following decision variables:
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Tk : The starting time of the activity that is assigned to position k ∈ P ,

CT : The cycle time.

The assignment of parts to activities and activities to positions are satisfied by the

following constraints:∑
k∈P

xilk = 1 ∀i ∈ A, ∀l ∈ N (1)∑
l∈N

∑
i∈A

xilk = 1 ∀k ∈ P (2)∑
l∈N

zilj = 1 ∀i ∈ A,∀j ∈ N (3)∑
j∈N

zilj = 1 ∀i ∈ A, ∀l ∈ N (4)

yilkj ≥ xilk + zilj − 1 ∀i ∈ A,∀j, l ∈ N , ∀k ∈ P (5)

xilk ≥ yilkj ∀i ∈ A, ∀j, l ∈ N ,∀k ∈ P (6)

zilj ≥ yilkj ∀i ∈ A, ∀j, l ∈ N ,∀k ∈ P (7)

Constraint (1) ensures that each repetition of each activity is assigned to one position

whereas Constraint (2) ensures that a single repetition of a single activity is assigned to

each position. For each part, each activity must be utilized once as satisfied by Constraint

(3) and each repetition of each activity must belong to a single part as imposed by

Constraint (4). xilk.zilj multiplication is linearized in Constraints (5), (6), and (7). The

following set of constraints calculates the starting times of the activities.

Tk ≥ Th + 2ε+ δ +
∑
l∈N

∑
j∈N

yilkj.pij +B

(∑
l∈N

xilk +
∑
l∈N

x(i−1)lh − 2

)
∀k, h ∈ P : k > h, ∀i ∈ A \ {0} (8)

CT + Tk ≥ Th + 2ε+ δ +
∑
l∈N

∑
j∈N

yilkj.pij +B

(∑
l∈N

xilk +
∑
l∈N

x(i−1)lh − 2

)
∀k, h ∈ P : k < h, ∀i ∈ A \ {0} (9)

Tk+1 ≥ Tk + 2ε+ δ + δ|g − (i+ 1)|+B

(∑
l∈N

xilk +
∑
l∈N

xgl(k+1) − 2

)
∀i, g ∈ A : i 6= g, ∀k ∈ P \ {n(m+ 1)} (10)

CT ≥ Tn(m+1) + 2ε+
∑
i∈A

∑
l∈N

(i+ 2)δ.xil(n(m+1)) (11)

T1 = 0 (12)
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If Ai−1 is assigned to position h and Ai is assigned to position k where k > h then,

the starting time of Ai (denoted by Tk in this case) must be later than the completion of

the processing of the part on this machine as depicted in Figure 3a. Activity Ai−1 starts

at time Th. The robot unloads Mi−1, moves to Mi, and loads it, which takes a total of

2ε+ δ amount of time. The processing of the part on Mi starts at this time. This relation

between Tk and Th is formulated in Constraint (8). On the other hand, if Ai−1 appears

later than Ai in the activity sequence (k < h), this means that in the initial state of the

cycle, Mi is loaded. When the robot arrives in front of this machine to unload it, in order

to guarantee that the processing is completed, the starting time of Ai (Tk) plus the cycle

time (CT ) must be larger than the completion time of the part on Mi as depicted in

Figure 3b. This is satisfied by Constraint (9).

A
0
….... A

i-1
.............. A

i
....... A

0
…

T
h

T
k

(a) k > h

A
0
…... A

i
….... A

i-1 
....... A

0
…... A

i
….

T
k

T
h 

CT+T
k

CT

(b) k < h

Figure 3: Relation between starting times of activities

Constraint (10) determines the relation between the starting times of activities that

are assigned to consecutive positions. If Ai is in position k and Ag is in position k + 1,

then the starting time of Ag (Tk+1 in this case) must be later than the completion time

of Ai plus the robot travel time from Mi to Mg. Starting at time Tk, the robot unloads

Mi, moves to Mi+1, and loads it after 2ε + δ amount of time. Then the robot moves

from Mi+1 to Mg in |g − (i + 1)|δ time. Constraint (11) calculates the cycle time, which

must be greater than the completion time of the last activity in the sequence plus the

necessary time for the robot to return back to the input buffer. Constraint (12) sets the

starting time of the first activity. The following set of constraints satisfies the feasibility
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conditions for the activity sequence.∑
k∈P

k.xilk ≤
∑
k∈P

k.xirk ∀i ∈ A, ∀l, r ∈ N : l < r (13)

∑
r∈N

h−1∑
s=k+1

x(i−1)rs ≥ 1−B(2− xilk − xi(l+1)h)

∀k, h ∈ P : k < h,∀i ∈ A \ {0}, ∀l ∈ N \ {n} (14)∑
r∈N

h−1∑
s=k+1

x(i+1)rs ≥ 1−B(2− xilk − xi(l+1)h)

∀k, h ∈ P : k < h,∀i ∈ A \ {m},∀l ∈ N \ {n} (15)∑
j∈N

y011j = 1 (16)

∑
l∈N

h−1∑
s=k+1

y(i+1)lsj ≥ 1−B

(
2−

∑
l∈N

yilkj −
∑
l∈N

∑
t∈N

y(i+1)lht

)
∀i ∈ A \ {m},∀j ∈ N ,∀k, h ∈ P : k < h (17)

xilk, zilj, yilkj ∈ {0, 1} ∀i ∈ A,∀j, l ∈ N ,∀k ∈ P (18)

Tk, CT ≥ 0 ∀k ∈ P (19)

Constraint (13) satisfies that the earlier repetition of an activity must be assigned to an

earlier position. In order an activity sequence to be feasible, between any two repetitions

of Ai, i ∈ A \ {0}, there must be one Ai−1.This is satisfied by Constraint (14). Similarly,

between any two repetitions of Ai, i ∈ A \ {m}, there must be one Ai+1 as satisfied by

Constraint (15). We assume that all cycles start with activity A0 without loss of generality

as satisfied by Constraint (16). If an Ai activity belongs to part j, then the first Ai+1

following this Ai must also belong to part j. This is satisfied by Constraint (17).

Using these constraints the problem named as MILP1 can be formulated as follows:

MILP1: Minimize CT

s.t. Constraints (1)− (19)

2.2. Lower Bound and Valid Inequalities

In this section we first derive a lower bound on the cycle time. We also determine

several valid inequalities for MILP1. We will utilize the lower bound and the valid in-

equalities into MILP1 to reduce its solution time. Several lower bounds are developed for

12



different cell configurations (see e.g. Crama and van de Klundert (1997), Gultekin et al.

(2008), and Gultekin et al. (2009)). In the following, we derive a lower bound for the

current cell configuration.

Theorem 1. The optimal cycle time of MILP1 can not be less than LB where,

LB = max

{
2n(m+ 1)(ε+ δ) +

n∑
j=1

m∑
i=1

min{pij, δ}, 4n(ε+ δ) + max
i

{
n∑
j=1

pij

}}
(20)

Proof. The lower bound is given as the maximum of two terms. The first term calculates

the total time that the robot must perform in order to complete a cycle. Each part to

be processed must start from the input buffer, visit all machines and must be dropped

to the output buffer. Which means that the robot must travel from the input buffer to

the output buffer and return back to the input buffer for each part. In an m-machine

cell, the distance between the input and the output buffers is (m + 1)δ. Therefore, the

total travel time to complete n parts must be at least 2n(m + 1)δ. Besides this, each

part must be taken from the input buffer, visit each machine, and dropped to the output

buffer. This makes a total of 2n(m + 1)ε loading/unloading time for all parts. After

loading a part to a machine, the robot either waits in front of the machine to complete

the processing or moves to another machine to make some other activities. If it moves

to another machine the minimum time before starting a new activity is δ. Therefore, the

minimum of these two values for each part and each machine this must be included in

the lower bound function. This makes
n∑
j=1

m∑
i=1

min{pij, δ}. Summing up this value with

the total loading/unloading and travel times, we get the first term of the lower bound

function.

The cycle time can also be defined as the time between the starting times of the same

activities corresponding to the same part in the two consecutive repetitions of the MPS

sequence. The second term of the max function in Equation (20) utilizes this definition.

When the robot starts unloading a machine, Mi, it must complete the following minimal

set of moves before performing the same activity in the next repetition of the MPS cycle:

Unload Mi (ε), move to Mi+1 (δ), load this machine (ε), move to Mi−1, (2δ), unload

this machine (ε), move to Mi (δ), load this machine (ε), wait for the processing to be

completed, (pij). This set of moves must be repeated for each part in the MPS. Therefore,
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the total time is 4n(ε + δ) +
n∑
j=1

pij. On the other hand, a different lower bound appears

by considering each machine separately. The best lower bound is found by taking the

maximum of these that leads to the second term of the max function. �

MILP1 is the complete formulation of the problem. However, we can include the

following two constraints into MILP1 in order to increase its performance.∑
l∈N

∑
k∈P

xilk = n ∀i ∈ A (21)∑
j∈N

∑
k∈P

k.yilkj ≤
∑
j∈N

∑
k∈P

k.yirkj ∀i ∈ A, ∀l, r ∈ N : l < r (22)

Equation (21) states that each activity will be used n times in the activity sequence of any

cycle. Equation (22) is similar to Constraint (13) and satisfies that the earlier repetition

of an activity is assigned to an earlier position. Besides these additional constraints, we

can also reformulate Constraint (10) as follows:

Tk+1 ≥ Tk+2ε+δ+δ

∣∣∣∣∣∑
i∈A

∑
l∈N

i.xil(k+1) −

(∑
i∈A

∑
l∈N

i.xilk + 1

)∣∣∣∣∣ ∀k ∈ P\{n(m+1)} (23)

This constraint satisfies the necessary relation between Tk+1 and Tk as in Constraint

(10) without using a big number B which may improve the relaxation bounds. The

absolute value calculates the distance between the machines corresponding to the activities

that are assigned to positions k and k+ 1. In order to linearize this constraint, we define

two new positive decision variables, uk and vk and replace the constraint with the following

two constraints. Since the cycle time is being minimized, and since the cycle time is large

than all starting times of the activities, this linearization works correctly.

Tk+1 ≥ Tk + 2ε+ δ + δ(uk + vk) ∀k ∈ P \ {n(m+ 1) (24)

uk − vk =
∑
i∈A

∑
l∈N

i.xil(k+1) −

(∑
i∈A

∑
l∈N

i.xilk + 1

)
∀k ∈ P \ {n(m+ 1) (25)

As a consequence, we can formulate MILP2 as follows:

MILP2: Minimize CT

s.t. Constraints (1)− (9), (11)− (22), (24), (25)

Note that, in MILP2, the lower bound in Equation (20) is written as a constraint as

CT ≥ LB. In order to test the effects of these valid inequalities and reformulations we
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modeled both formulations in General Algebraic Modeling System (GAMS) and solved

using the CPLEX 12.6.2 solver with a time limit of 3600s. The tests are performed on

a machine with Intel Xeon E5645 2.40 GHz CPU (2×6 cores), 18 GB of RAM under

a 64bit operating system. We used a total of 24 test problems, which differ in terms

of the number of parts, the number of machines, as well as the loading/unloading time.

The processing times are generated randomly. The problem complexity depends on the

magnitude of δ with respect to the processing times. If the δ value is too small, then one

specific cycle usually becomes optimal, whereas when it is too large, another specific cycle

becomes optimal. In order to avoid these instances, δ values are selected accordingly for

each problem.

Table 4: Comparison of MILP1 and MILP2

MILP1 MILP2

(n,m, δ) Gap (%) CPU Time (s) Gap (%) CPU Time (s)

(3, 3, 50) 0 2.01 0 2.28
(3, 3, 100) 0 1.92 0 1.50
(4, 3, 50) 0 38.81 0 29.00
(4, 3, 100) 0 80.73 0 19.64
(5, 3, 30) 0 1039.98 0 505.97
(5, 3, 75) 0 1794.12 0 583.42
(6, 3, 50) 120.46 TL 9.69 TL
(6, 3, 100) 138.59 TL 16.00 TL
(3, 4, 30) 0 61.70 0 40.16
(3, 4, 60) 0 96.73 0 58.61
(4, 4, 30) 43.43 TL 0 2678.62
(4, 4, 60) 98.21 TL 8.75 TL
(5, 4, 50) 130.35 TL 11.22 TL
(5, 4, 100) 212.98 TL 24.94 TL
(6, 4, 40) NA TL NA TL
(6, 4, 80) NA TL NA TL
(3, 5, 30) 54.63 TL 0 708.45
(3, 5, 60) 80.43 TL 0 1150.11
(4, 5, 40) 101.18 TL 16.69 TL
(4, 5, 80) 170.41 TL 20.22 TL
(5, 5, 40) NA TL NA TL
(5, 5, 75) NA TL NA TL
(6, 5, 40) NA TL NA TL
(6, 5, 75) NA TL NA TL

* TL: Time Limit, NA: Not Available

All test results are presented in Table 4. TL represents Time Limit in this table. In

some cases, the formulations cannot find any integer solution in a one-hour time limit.

These situations are denoted with NA. As it can be seen, MILP1 found the optimal so-

lution in 8 of the 24 instances (gap=0), whereas MILP2 found in 11 of the instances.
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The average and maximum percent gaps of all instances for MILP1 are 63.93 and 212.98,

respectively. These are 5.97 and 20.22 for MILP2. The CPU times are also better for

MILP2 nearly in all instances. Therefore, we conclude that MILP2 has a better perfor-

mance and we will use this formulation in the rest of this study. However, the solution

time of MILP2 increases drastically with the problem size and there are instances for

which MILP2 could not find even an integer feasible solution in one-hour time limit. As

a consequence, it is necessary to develop a heuristic algorithm.

3. Hybrid Metaheuristic Algorithm

In this section, we develop a hybrid meta-heuristic algorithm that solves both the

part sequencing and the robot move sequencing problems. The heuristic is developed

to generate MPS cycles. We later modify it to generate CRM cycles as well. GA is a

widely used heuristic algorithm and is very suitable for the part sequencing problem of

the current study. However, it is not very suitable for the robot move sequencing problem,

which has a number of feasibility conditions as explained before. Therefore, the classical

crossover operators of the GA may not yield feasible offsprings. A TS algorithm with a

carefully defined neighborhood is more suitable for the robot move sequencing problem.

Therefore we combined these two algorithms. The part sequence is determined by the

GA at the top level. Then for each individual in the population (i.e., the part sequence)

the corresponding robot move sequence is determined by a TS algorithm and its fitness

value (the cycle time) is calculated with an iterative procedure. Furthermore, in order

to reduce the solution time we parallelized the GA. That is, after the individuals of a

population (part sequence) are determined, the robot move sequence is determined and

their cycle times are calculated by distributing the individuals to different cores of the

CPU. The flowchart of the developed algorithm can be seen in Figure 4.

The details of the developed GA and TS are explained in the following two sections,

the modification of the hybrid algorithm to handle CRM cycles is explained in Section

3.3, and the parameters of the heuristic are calibrated with a computational study as

explained in Section 3.4.
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Figure 4: Flow chart of the parallel hybrid metaheuristic algorithm

3.1. Part Sequencing

The main features of the GA that is used for sequencing the parts are as follows:

Solution encoding: A feasible solution for this problem is a permutation of parts.

σPS = {j1, j2, . . . , jn} is used to represent a chromosome. Since the production is cyclic

and the same MPS is repeated indefinitely, the total number of permutations is (n− 1)!.

Population size: Since the number of distinct permutations depend on n, instead of

utilizing a constant population size for all problem instances, we determined population

size as a function of the number of parts, β×n. The value of the β parameter is determined

by computational tests.

Fitness computation: Given an individual, its fitness is calculated by a TS algorithm,

which will be explained in Section 3.2. The TS algorithm first determines the correspond-

ing robot move sequence. Then the cycle time is calculated by an iterative procedure.

Elite solutions: A number of elite individuals are moved directly to the next generation.
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By this way, “fittest individuals” are maintained through different generations. Elite

solutions are determined depending on their fitness values. The number of elite solutions

to be moved to the next generation are determined as a percentage, θ, of the population

size. The value of this parameter is determined by computational tests. Elite solutions

are also considered as potential parents for crossover.

Crossover: Roulette wheel selection method is used to implement crossover. The prob-

ability of selecting an individual for crossover, ρj, is based on its fitness values and calcu-

lated as follows:

ρj =
1/CTj∑β.n

j=1(1/CTj)
,

where CTj is the cycle time of the jth individual. According to this formula, if a

solution has a better fitness value, it has a higher probability of selection.

Two parents are selected from the population according to their selection probabilities.

Similar Job Order Crossover method of Ruiz and Maroto (2006) is used as the crossover

operator. In this method, a random cutting point is determined. The job sequence of the

first (second) offspring until this cutting point is inherited directly from the first (second)

parent. The second part beyond the cutting point is filled by copying the same sequence

of the missing jobs in the other parent.

Mutation: Whether to mutate an individual or not is decided randomly according to a

given mutation probability, µ. If an individual is selected for mutation, two jobs are se-

lected randomly and their positions are interchanged. Mutation probability is determined

by computational tests.

Termination criteria: GA is terminated after γg non-improving generations. This

parameter is also determined by computational tests.

3.2. Robot Move Scheduling

When the part sequence is determined by the GA, the corresponding robot move cycle

is determined and its cycle time is calculated by a TS algorithm. The details of the TS

algorithm are as follows:

Initial solution: The initial robot move sequence is determined randomly. Starting

with A0, activities are sequenced randomly. However, at each iteration, the feasibility

conditions presented in Section 2 is maintained. For an m-machine robotic cell in which
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the MPS contains n parts, the final robot move sequence must contain n(m+1) activities.

Each of these activities is associated with a part in the MPS. Hence, in the solution

encoding the activity sequence and the associated parts are represented together as shown

in the following example with m = 4 and n = 3:

σRMS = {Aj10 , A
j3
3 , A

j1
1 , A

j2
0 , A

j1
2 , A

j2
1 , A

j3
4 , A

j1
3 , A

j3
0 , A

j1
4 , A

j2
2 , A

j3
1 , A

j2
3 , A

j2
4 , A

j3
2 }

In this example, the robot takes the first part of the MPS (j1) from the input buffer

and loads the to M1. Then, moves to M3 and unloads the last part of the MPS sequence

from this machine and loads to M4. Note that, we consider the steady state repetition of

the cycles. In this example, at the beginning of the cycle, M3 is loaded with j3 and all

other machines are empty. At the end of the cycle, three parts are dropped to the output

buffer, M3 is loaded with j3, and all other machines are empty again. When the part

sequence and the robot move sequence are given, the activities and the parts can easily

be associated with each other by assuming (without loss of generality) that the first A0

activity is always associated with j1.

Neighborhood definition: At each iteration, the TS algorithm checks the neighbors

of the current solution and moves to the best non-tabu neighbor. The performance of

the algorithm depends highly on the neighborhood definition. In this study, we use the

insertion operator to generate neighbors. However, since the generated neighbors must

be feasible, the moves are constrained by the feasibility conditions. In order to generate

all neighbors of a given activity sequence, each activity is considered one by one starting

from the first activity in the sequence (A0). Let the currently considered activity be Aj.

The next repetition of the same activity is found and its position is determined. Let this

position be p. Then, by moving Aj to positions p− 1, p− 2, . . . new neighboring activity

sequences are determined and recorded. This is continued until reaching an Aj−1 or an

Aj+1 activity. Since the feasibility conditions state that between any two consecutive

repetitions of Aj there must be exactly one Aj−1 and one Aj+1 activity, the Aj activity

cannot be moved in front of any one of these two activities. Similarly, Aj is also moved

in the other direction to positions p + 1, p + 2, . . . until reaching any one of the Aj−1 or

Aj+1 activities. If the end of the activity sequence is reached before finding any one of

Aj−1 or Aj+1, the search continues from the beginning of the activity sequence.
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As an example consider the σRMS activity sequence given above and consider Aj11 in

position 3. The next repetition of A1 is in position 6. Since there is an A2 in position

5, Aj21 cannot be moved forward. But it can be moved backward until position 8 where

there is an A0. Therefore, the neighbors that we can attain by considering Aj11 are the

following two activity sequences:

σN1 = {Aj10 , A
j3
3 , A

j1
1 , A

j2
0 , A

j1
2 , A

j3
4 ,A

j2
1 , A

j1
3 , A

j3
0 , A

j1
4 , A

j2
2 , A

j3
1 , A

j2
3 , A

j2
4 , A

j3
2 }

σN2 = {Aj10 , A
j3
3 , A

j1
1 , A

j2
0 , A

j1
2 , A

j3
4 , A

j1
3 ,A

j2
1 , A

j3
0 , A

j1
4 , A

j2
2 , A

j3
1 , A

j2
3 , A

j2
4 , A

j3
2 }

All activities are considered in a similar way and all possible neighbors are generated.

Calculation of the cycle time:

When the part sequence σPS and the robot move sequence σRMS are determined, the

associated decision variables in MILP1 and/or MILP2 can be fixed. This converts both

formulations into linear programs. The resulting cycle time can be calculated by solving

any one of these LPs. However, here we develop an iterative procedure which calculates

the cycle time without requiring to solve any mathematical program. In order to present

the iterative algorithm, let the part sequence be given as {j1, j2, . . . , jn} and let us denote

the activity in position k by Ajkik , meaning that this activity unloads part jk from machine

ik and moves it to machine ik + 1. As a consequence, the robot move sequence and the

associated parts can be represented as σRMS = {Aj1i1 , A
j2
i2
, . . . , A

jn(m+1)

in(m+1)
}. On the other

hand, let the position of the activity that unloads part j from machine i is denoted by

ξ(i, j).

Let v be the iteration counter. The algorithm starts by initializing the counter (v = 0),

all activity starting times, T vk = 0, ∀k, and the cycle time, CT v = 0. Then it steps the

counter up, sets T v1 = 0, and recalculates the starting times and the resulting cycle time

at each iteration using the following recursive equation:

T vk =



0, if k = 1,

2ε+ δ + T vk−1 + |ik − (ik−1 + 1)|δ, if ik = 0,

2ε+ δ + max{T vk−1 + |ik − (ik−1 + 1)|δ, T vξ(ik−1,jk) + pikjk},
if ik 6= 0 and k > ξ(ik − 1, jk),

2ε+ δ + max{T vk−1 + |ik − (ik−1 + 1)|δ, T v−1ξ(ik−1,jk) + pikjk − CT v−1},
if ik 6= 0 and k < ξ(ik − 1, jk).


k = 1, 2, . . . , n(m+1),

(26)
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The cycle time is calculated at the end of iteration v as CT v = T vn(m+1) + 2ε + δ +

(in(m+1)+1)δ. The recursive equation utilizes the fact that the starting time of the activity

at position k (Tk) must be later than the starting time of the activity in position k − 1

(Tk−1) plus the necessary time for the robot to complete that activity and reach machine

ik, (2ε+δ+ |ik− (ik−1 +1)|δ). This is the first part of the equation which is identical in all

three cases. On the other hand, Tk must also be later than the starting time of the same

part in the previous machine (Tξ(ik−1,jk)) plus the necessary time to complete that activity

and load machine ik (2ε+ δ) plus the processing time of the part on this machine (pikjk).

However, if the activity at position k is A0 (ik = 0), then there is no previous machine.

Hence, this second equation diminishes and the first case of the recursive equation arises.

On the other hand, since the robot moves are cyclic, the unloading activity of a part on

Mi can be in a later or in an earlier position than the unloading activity of the same

part on Mi−1. The next two cases of the recursive equation consider these situations,

respectively. The latter one includes CT to correctly represent the relation between the

starting times.

This procedure is stopped as soon as the cell converges to a steady state in which

the starting times of the corresponding activities become identical in different repetitions

of the cycle. That is, the procedure is stopped at the first iteration v∗ in which ∃u =

1, 2 . . . v∗ − 1 such that T v
∗

k = T v
∗−u

k ,∀k. Hall et al. (1997) considered CRM cycles

separately in a 3-machine robotic cell and showed that the cell converges to a steady state

in a number of MPS cycles starting from the empty state in which all machines are empty.

Furthermore, they proved that for some CRM cycles, a single MPS is not satisfactory to

define a steady state, but two MPS’s may be required for this purpose. Let u∗ be the

minimum u value that satisfies the above equality. Therefore, u∗ is the number of MPS’s

that is required to define a steady state. Our computational tests revealed that the cell

converges to a steady state after very few iterations and at most two MPS’s are required to

define a steady state. After the procedure is stopped the resulting cycle time is calculated

as the average cycle time of multiple MPS’s that are required to define a steady state,

CT =
u∗−1∑
l=0

CT v
∗−l/u∗.
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The following example demonstrates this calculation procedure:

Example 2. Let us consider a 2-machine robotic cell in which the MPS contains 3 parts.

Let ε = 1, δ = 2, p11 = 3, p21 = 6, p12 = 5, p22 = 2, p13 = 7, and p23 = 4. Let us cal-

culate the cycle time for σPS = {1, 2, 3} and σRMS = {A1
0, A

3
2, A

1
1, A

2
0, A

1
2, A

2
1, A

2
2, A

3
0, A

3
1}.

According to this the recursive equations can be written as follows:

v = 0 v = 1 v = 2

T v1 = 0 0 0 0

T v2 = 2ε+ δ + max{T v1 + |2− (0 + 1)|δ, T v−19 + p23} 0 6 6

T v3 = 2ε+ δ + max{T v2 + |1− (2 + 1)|δ, T v1 + p11} 0 14 14

T v4 = 2ε+ δ + T v3 + |0− (1 + 1)|δ 0 22 22

T v5 = 2ε+ δ + max{T v4 + |2− (0 + 1)|δ, T v3 + p21} 0 28 28

T v6 = 2ε+ δ + max{T v5 + |1− (2 + 1)|δ, T v4 + p12} 0 36 36

T v7 = 2ε+ δ + max{T v6 + |2− (1 + 1)|δ, T v6 + p22} 0 42 42

T v8 = 2ε+ δ + T v7 + |0− (2 + 1)|δ 0 52 52

T v9 = 2ε+ δ + max{T v8 + |1− (0 + 1)|δ, T v8 + p13} 0 63 63

Since T 1
k = T 2

k , ∀k, the procedure stops with v∗ = 2 and u∗ = 1. The resulting cycle

time is CT = T 2
9 + 2ε+ δ + |1 + 1|δ = 71.

Tabu list: Length of the tabu list is one of the most important parameters of TS used

to balance intensification and diversification of the search. When the search moves to

a neighboring solution, that move is forbidden for several iterations in order to avoid

cycling. The length of the tabu list is selected as λ.n.(m + 1), where 0 ≤ λ ≤ 1 is a

constant. This formula adjusts the length of the tabu list according to the problem size.

λ is determined by computational tests.

Termination condition : TS is terminated after γt non-improving iterations. This

parameter is also determined by computational tests.

3.3. Hybrid Metaheuristic for CRM Cycles

The flowchart of the heuristic given in Figure 4 is identical for the CRM case. All

the mechanisms of the GA and the TS are exactly the same for the CRM case except
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the procedure for finding the initial solution and the neighborhood definition of the TS.

As already defined, a CRM cycle is the repetition of the same 1-unit cycle n times to

produce all the parts in the MPS. Consider a four-machine robotic cell producing three

different parts. The following robot move sequence is a CRM cycle example that repeats

the 1-unit cycle {A0, A3, A4, A2, A1} three times with the part sequence (j1, j2, j3):

σRMS = {Aj10 , A
j2
3 , A

j2
4 , A

j3
2 , A

j1
1 , A

j2
0 , A

j3
3 , A

j3
4 , A

j1
2 , A

j2
1 , A

j3
0 , A

j1
3 , A

j1
4 , A

j2
2 , A

j3
1 }

Starting with the A0 activity, any permutation of the activities Ai, i = 1, 2, . . . ,m

leads to a feasible 1-unit cycle (Crama and van de Klundert, 1997). Hence, there is no

need to check the feasibility conditions. As a consequence, the initial solution is found

by randomly ordering the activities to generate a 1-unit cycle. Then, the same activity

sequence is concatenated n times. Similarly, in order to determine the neighbors of a

given solution, the base 1-unit cycle is considered. The insertion move is similar to the

MPS case in which each activity is removed from its current position and placed to a

different position. There is no need to check the feasibility. The resulting 1-unit cycle

is again concatenated n times and the cycle time is calculated using the same iterative

procedure as explained above.

The parameters used in the GA and the TS are determined separately for the CRM

and MPS cases with a computational study as explained in the following section.

3.4. Parameter Calibration

In this section, we perform computational tests to determine the best values for all

the parameters of the hybrid algorithm. The parameter calibration is performed for the

MPS and the CRM cases separately. Here we explain the MPS case in detail. The same

procedure is repeated for the CRM case also. The heuristic is coded in Microsoft Visual

Studio C++ on a machine with Intel Xeon E5645 2.40 GHz CPU (2×6 cores), 18 GB of

RAM under a 64bit operating system.

For parameter calibration two different test problems are used. The first one is taken

from Carlier (1978) that includes the processing times for m = n = 7 flow shop problem.

The second problem is an m = 5, n = 10 problem in which the processing times are

randomly generated uniformly between (0, 10000). Besides the number of machines and
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the parts, the main difference between these two test problems is the variance of the

processing times. For each test problem ε = 1 is used and two different δ values are

selected with respect to the processing times on the machines. As a result 20 and 50 are

used for 7 × 7 problems and 30 and 75 are used for 5 × 11 problems. As a consequence,

there are four test problems. In order to decide on the best parameter values, two levels

are used for each parameter as listed in Table 5. Each combination is solved for five

times in order to minimize the effect of randomness included in the heuristic. As a result,

4× 26 × 5 = 1280 problems are solved.

Table 5: The levels of parameters

Parameters Levels

β 10 15

θ 0.1 0.2

µ 0.05 0.1

γg 50 75

λ 0.05 0.1

γt 30 50

The performance of each parameter combination is measured in terms of the average

and maximum % errors and the CPU time. % error of a replication is calculated by

comparing its cycle time with the best cycle time attained for the corresponding problem

with any parameter combination. Then, the average and the maximum of the five replica-

tions are calculated. The attained results for each of the 64 parameter combinations are

depicted in Figure 5. Figure 5a depicts the maximum errors with respect to the average

errors and Figure 5b depicts the CPU times with respect to the average errors. We se-

lected the parameter combination that leads to an average error of 3.21% and a maximum

error of 4.70% which are marked in Figures 5a and 5b. This alternative is selected since

it is close to the best in terms of the average and the maximum errors but has a better

solution time (56.18s) than the best possible time. The selected parameter values are

β = 15, θ = 0.2, µ = 0.05, γg = 75, λ = 0.05, and γt = 50.

When the same procedure is repeated for the CRM case, the best parameter combi-

nation is appeared to be β = 10, θ = 0.1, µ = 0.1, γg = 75, λ = 0.05, and γt = 50. The

resulting average error is 1.41% and the maximum error is 2.28% when compared with
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Figure 5: Parameter calibration results for the MPS cycles

the best cycle time attained among the CRM cycles. When compared with the best MPS

cycle, the average and maximum errors are 7.46% and 8.35%, respectively. The CPU time

is 4.34s.

4. Computational Study

The objectives of the computational study are threefold. First, to evaluate the perfor-

mance of the hybrid metaheuristic algorithm by comparing it with the MILP2 solutions.

Second, to assess the benefits of considering MPS cycles instead of CRM cycles. Finally,

to assess the benefits of parallelization of the hybrid metaheuristic algorithm. We de-

note the parallel version of the heuristic for MPS (CRM) cycles with MPS-P (CRM-P),

and the single thread version with MPS-S. All algorithms are coded in C++ and com-

piled with Microsoft Visual Studio on a machine with Intel Xeon E5645 2.40 GHz CPU

(2×6 cores),18 GB of RAM under a 64bit operating system. As already mentioned, the

mathematical models are solved with GAMS CPLEX 12.6.2 solver with a one-hour time

limit.

There are no test problems available in the literature for this problem. Therefore we

used two methods to generate the test problems. First, since we consider a flow shop

type system, we used available test problems for flow shop scheduling problems. These

test problems include the processing times of the parts on the machines. We attached

robot travel times (δ) and machine loading/unloading times (ε) to these problems. We

used the eight test problems from Carlier (1978) for this method. Since the total number
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of loading/unloading operations are identical for each cycle, the magnitude of ε does not

affect the problem complexity. Therefore, we assumed ε = 1 in all problem instances.

On the other hand, since the number of travel moves is different in each cycle, δ has an

effect on the problem complexity. We generated two different δ values for each of the

eight problems. These values are generated such that when δ is small, the second term of

the max function determines the LB in Equation (20) and when δ is large, the first term

determines the LB. 16 test problems are generated by this method.

As a second method, we considered all combination of machines and parts for n ∈

{3, 4, 5, 6} and m ∈ {3, 4, 5} and generated all processing times randomly. Since our initial

tests revealed that the problem complexity increases with the variance of the processing

times, we generated the processing times uniformly from the interval [1, 1000] for these

12 problems. For each of these instances, we then generated two different δ values as

explained above that counts to 24 problems. Together with the former 16 problems, we

have a total of 40 test problems.

All test problems are solved with MPS-P, CRM-P, and MPS-S algorithms and the

MILP2 model. Each problem instance is solved five times with these algorithms in order

to reduce the effect of randomness. The results are summarized in Table 6. MILP2 was

not able to determine the optimal solution in 30 of the test problems in one-hour time

limit. In 22 of these, it was unable to find even an integer feasible solution. In order

to be able to evaluate the performance of the heuristics for these instances, we utilized

the best solution generated by MPS-P, CRM-P, and MPS-S into the MILP2 model as an

initial solution and ran it for an additional one-hour time limit. By this method, we were

able to generate the optimal solutions for two more instances and we could calculate the

relative percent gap in the remaining 22 instances. We could improve the gap value in a

total of 26 instances. Improved gap values are labeled with a “∗” in Table 6.

We compared the heuristic results with the optimal or the best integer values provided

by MILP2. Since five replications are taken with the heuristics we calculated two different

percent error terms, E1 and E2 as follows:

E1 = 100× (Average of 5 replications− Best Integer)/Best Integer

E2 = 100× (Minimum of 5 replications− Best Integer)/Best Integer
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Table 6: Summary of the results

MPS-P MPS-S CRM-P MILP2

E1 E2 CPU CPU E1 E2 CPU Gap CPU
(n,m, δ) (%) (%) (s) (s) (%) (%) (s) (%) (s)

(3,3,50) 0.0 0.0 0.4 1.0 0.0 0.0 0.2 0.0 1.9
(3,3,100) 0.0 0.0 0.5 1.4 1.9 1.9 0.2 0.0 1.7
(4,3,50) 0.0 0.0 0.7 2.1 4.3 4.3 0.3 0.0 31.2
(4,3,100) 0.0 0.0 0.9 2.7 2.3 2.3 0.3 0.0 22.7
(5,3,30) 0.2 0.0 1.2 3.9 3.3 3.3 0.4 0.0 536.9
(5,3,75) 0.5 0.0 1.3 4.1 11.3 11.3 0.4 0.0 481.8
(6,3,50) 2.3 0.0 1.6 5.4 4.3 4.2 0.4 8.7 TL
(6,3,100) 0.0 0.0 1.6 5.6 3.7 3.7 0.4 7.0 TL
(3,4,30) 1.2 0.0 0.8 2.1 3.4 1.5 0.4 0.0 58.5
(3,4,60) 0.0 0.0 1.0 2.7 0.3 0.3 0.4 0.0 65.8
(4,4,30) 0.6 0.0 1.2 4.8 10.0 2.8 0.6 0.0∗ TL
(4,4,60) 0.0 0.0 1.5 4.8 11.9 11.9 0.5 9.6 TL
(5,4,50) 0.0 0.0 1.8 7.0 10.1 0.0 0.7 0.0∗ TL
(5,4,100) 0.4 0.0 3.1 10.5 5.7 5.7 0.8 11.6 TL
(6,4,40) 1.3 0.0 2.8 14.9 11.0 5.8 1.0 26.7∗ TL
(6,4,80) 1.5 0.0 3.5 16.8 7.7 7.7 0.8 8.2∗ TL
(3,5,30) 5.2 3.1 1.2 3.9 15.1 5.7 0.9 0.0 1900
(3,5,60) 2.0 0.0 1.2 4.4 10.7 5.4 0.7 0.0 1500
(4,5,40) 2.5 0.0 1.9 9.6 12.0 11.3 1.1 17.8∗ TL
(4,5,80) 0.6 0.0 2.8 13.5 7.6 7.6 0.9 11.0∗ TL
(5,5,40) 4.2 0.0 4.0 22.7 16.8 6.6 1.3 18.0∗ TL
(5,5,75) 1.1 0.0 5.1 21.6 11.8 11.4 1.4 8.3∗ TL
(6,5,40) 1.9 0.0 9.0 46.0 14.3 14 1.4 6.0∗ TL
(6,5,75) 0.6 0.0 8.7 43.2 4.7 4.7 1.4 7.3∗ TL
(11,5,30) 2.6 0.0 48.5 271.9 17.7 8.3 6.2 13.7∗ TL
(11,5,75) 1.7 0.0 80.3 373.0 12.7 10.2 2.9 8.0∗ TL
(13,4,30) 3.0 0.0 38.1 272.2 15.6 7.2 2.3 12.1∗ TL
(13,4,100) 1.0 0.0 49.1 355.7 8.5 7.8 2.4 7.8∗ TL
(12,5,25) 2.0 0.0 42.4 381.9 15.8 6.2 4.6 24.0∗ TL
(12,5,75) 1.0 0.0 70.1 461.3 13.2 7.9 4.0 10.7∗ TL
(14,4,30) 2.0 0.0 63.7 298.7 15.7 8.4 3.1 17.7∗ TL
(14,4,75) 0.9 0.0 50.9 345.8 10.3 6.4 2.7 9.4∗ TL
(10,6,25) 1.7 0.0 101.3 468.2 21.2 17 4.5 23.2∗ TL
(10,6,60) 2.0 0.0 65.2 424.1 14.7 13.5 6.1 10.5∗ TL
(8,9,20) 3.8 0.0 147.9 690.7 10.9 5.3 24.7 40.6∗ TL
(8,9,50) 2.0 0.0 127.5 863.3 6.5 6.1 24.5 14.9∗ TL
(7,7,20) 1.6 0.0 29.5 161.1 17.3 8.1 5.6 34.1∗ TL
(7,7,50) 0.7 0.0 48.0 172.6 9.9 4.4 8.4 18.0∗ TL
(8,8,20) 5.1 0.0 90.6 513.4 19.1 16.8 13.0 26.2∗ TL
(8,8,50) 0.5 0.0 124.4 477.8 9.0 8.0 11.6 16.6∗ TL

Avg 1.4 0.1 10.1 6.9
Max 5.2 3.1 21.2 17

* : Improved gap values TL: Time Limit

Since, MPS-P and MPS-S are the same algorithms running in parallel and single

thread modes, only the solution times for the MPS-S are reported in Table 6. As it can
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be seen in this table, MPS-P provides high-quality solutions with average and maximum

E1 values of 1.4% and 5.2%. The average error is higher when the δ values are smaller

(2.1% vs. 0.8%). In all instances except one, the best of MPS-P is equal to the best

integer provided by MILP2.

In 30 of the instances, MILP2 hit the one-hour time limit. The average gap of MILP2

is 13.46% when δ is small and 7.94% when it is large. On the other hand, the CPU time

of MPS-P is less than 10 seconds when n ≤ 6 and m ≤ 5 and it is reasonable in all other

instances for such a complex problem. When MPS-P and MPS-S are compared with each

other, we can conclude that parallelization has a great impact on the solution time. Our

tests revealed that the solution time can be reduced to one-quarter of its original value

by parallelization. This result depends on the number of CPU cores of the computer.

It is observed that the cycle times of the MPS cycles are approximately 9% smaller

than the corresponding CRM cycles on the average. The maximum benefit is close to 20%.

The benefits are greater when the δ values are smaller (9.6% vs. 7.3%). On the other

hand, the average CPU time of MPS-P is approximately 7 times larger than CRM-P.

5. Conclusion

In this study, we considered the scheduling of the parts and robot moves in an m-

machine robotic cell. We developed a mixed integer linear programming formulation that

determines the optimal part sequence and the MPS cycle simultaneously. By utilizing

several valid inequalities and reformulations, we improved this formulation. However,

since the problem complexity increases with respect to the number of machines and the

number of parts in the MPS, we developed a hybrid metaheuristic algorithm that combines

genetic algorithms with tabu search. The algorithm is modified in order to be able to solve

the problems with the CRM cycles as well. In order to improve the performance of the

heuristic we utilized thread parallelization. The parameters of the heuristic is calibrated

through experimental tests. An extensive computational study revealed that the parallel

hybrid metaheuristic provides high quality solutions in reasonable CPU times. It is also

shown that parallelization has a significant impact on solution time of the heuristic. In our

case, it reduced the solution time to one quarter of its original value. Another important

output of this study is the quantification of the benefits of considering MPS cycles instead
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of the CRM cycles. The CRM cycles are simple, practical, and easy to control and

implement. However, our results show that the MPS cycles can increase the throughput

rate up to 20% depending on the problem parameters. The improvement is approximately

9% on the average.

This study can be extended by considering robots with different technological prop-

erties and capabilities such as dual arm robots (Geismar et al., 2012) or robots with a

self buffer (Gundogdu and Gultekin, 2016). However, in both cases the number of feasi-

ble robot move cycles increases drastically which increases the problem complexity even

further. Developing MILP formulations and heuristic algorithms will contribute to the

literature. The problem can also be handled with other widely used scheduling objectives

such as total completion time and tardiness. The problem can also be considered with

multiple objectives.
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