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Abstract

Motivated by our earlier work on the statistical approximation of locally integrable functions by positive linear operators, we
study rates of A-statistical convergence of a sequence of positive linear operators acting on the space of locally integrable functions.
In particular, we obtain rates of ordinary convergence of the sequence of these operators.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work, we are concerned with rates of A-statistical convergence of a sequence of positive linear operators
defined on the space of locally integrable functions. The first section of the work introduces some basic ideas related
to statistical convergence and the space of locally integrable functions while the second section describes the rates of
A-statistical convergence of a sequence of positive linear operators acting on the space of locally integrable functions.
The final section addresses the ordinary rates of convergence.

Let A be a nonnegative regular summability matrix [1], and let K be a subset of N, the set of all natural numbers.
The A-density of K is defined by δA(K ) := lim j

∑
∞

n=1 a jnχK (n) provided the limit exists, where χK is the
characteristic function of K . Then the sequence x := (xn) is said to be A-statistically convergent to the number
L if, for every ε > 0, δA{n ∈ N : |xn − L| ≥ ε} = 0; or equivalently lim j

∑
n:|xn−L|≥ε a jn = 0. We denote this limit

by stA − lim x = L [2–4]. If we take A = C1, the Cesáro matrix, then C1-statistical convergence reduces to statistical
convergence [5,6].

Now let R denote the set of real numbers. Throughout the work we will use the weight function q defined by
q(x) = 1 + x2 (x ∈ R). Then, by L p,q(loc), we denote the space of all locally integrable functions, that is the space

of all measurable functions f for which ( 1
2h

∫ x+h
x−h | f (t)|pdt)

1
p ≤ M f q(x), x ∈ R, where M f is a positive constant
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depending on f and p ≥ 1. It is known [7] that L p,q(loc) is a linear normed space with the norm

‖ f ‖p,q :=

sup
x∈R

(
1

2h

∫ x+h
x−h | f (t)|pdt

) 1
p

q(x)
,

where ‖ f ‖p,q may also depend on h > 0. For any real numbers a, b, (a < b), we write
∥∥ f ; L p(a, b)

∥∥ = ( 1
b−a

∫ b
a

| f (t)|p dt)
1
p and

∥∥ f ; L p,q(a, b)
∥∥ = supa≤x≤b

‖ f ;L p(x−h,x+h)‖
q(x)

. With this notation the norm in L p,q(loc) may be

written in the form ‖ f ‖p,q = supx∈R
‖ f ;L p(x−h,x+h)‖

q(x)
. As usual, if T is a positive linear operator from L p,q(loc) into

L p,q(loc), then the operator norm ‖T ‖ is given by ‖T ‖ := sup f 6=0 ‖T f ‖p,q / ‖ f ‖p,q .
In [8], using the functional analytic technique the authors have proved some Korovkin type approximation theorems

via A-statistical convergence (see also [9–11]).
The main goal of the present work is to study rates of A-statistical convergence of the sequence of operators studied

in Lemma 1 and Theorem 3 of [8] by means of the modulus of continuity. To achieve this we use the concepts of rates
of A-statistical convergence introduced in [9] (see also [11]). Note that the classical Korovkin type approximation
theory may be found in [12,13].

2. Rates of A-statistical convergence

In the classical summability setting, rates of summation have been introduced in several ways (see, e.g., [14,15]).
The concept of statistical rates of convergence, for two nonvanishing null sequences, is studied in [16]. Unfortunately
no single definition seems to have become the “standard” for the comparison of rates of summability transforms. For
this reason various ways of defining rates of convergence in the A-statistical sense were first introduced in [9]. We
should recall that those definitions may also be found in [11].

Also, we consider the following weighted modulus of continuity:

wq( f, δ) = sup
|x−y|≤δ

| f (y) − f (x)|

q(x)
,

where δ is a positive constant and f ∈ L p,q(loc). It is easy to see that, for any c > 0 and all f ∈ L p,q(loc),

wq( f, cδ) ≤ (1 + [c])wq( f, δ), (1)

where [c] is defined to be the greatest integer less than or equal to c.
To obtain our main results we first need the following lemma.

Lemma 2.1. Let {Tn} be a sequence of positive linear operators acting from L p,q(loc) into L p,q(loc). Then for each
n ∈ N and δ > 0, and for every function f that is continuous and bounded on the whole real axis, we have∥∥Tn f − f ; L p,q(a, b)

∥∥ ≤ C1wq( f, δ) ‖Tn f0 − f0‖p,q + C1wq( f, δ)

+
C1

δ2 wq( f, δ) ‖Tnϕx‖p,q + C2‖Tn f0 − f0‖p,q ,

where f0(t) := 1, ϕx (t) := (t − x)2, C1 := supa≤x≤b q(x), and C2 := supa≤x≤b | f (x)|.

Proof. Let f be any continuous and bounded function on the whole real axis, and let x ∈ [a, b] be fixed. Using
linearity and monotonicity of Tn , for all n ∈ N and for any δ > 0, by (1), we get

|Tn( f, x) − f (x)| ≤ q(x)Tn

(
wq

(
f,

|t − x |

δ
δ

)
, x

)
+ | f (x)| |Tn( f0, x) − f0(x)|

≤ q(x)wq( f, δ) |Tn( f0, x) − f0(x)| + q(x)wq( f, δ)

+
q(x)wq( f, δ)

δ2 Tn(ϕx , x) + | f (x)| |Tn( f0, x) − f0(x)|.
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Now let C1 := supa≤x≤b q(x) and C2 := supa≤x≤b | f (x)|. Then we have∥∥Tn f − f ; L p,q(a, b)
∥∥ ≤ C1wq( f, δ) ‖Tn f0 − f0‖p,q + C1wq( f, δ)

+
C1

δ2 wq( f, δ) ‖Tnϕx‖p,q + C2‖Tn f0 − f0‖p,q ,

which yields the result. �

Theorem 2.2. Let A = (a jn) be a nonnegative regular summability matrix, and let (an) and (bn) be positive
nonincreasing sequences. Let {Tn} be a sequence of positive linear operators from L p,q(loc) into L p,q(loc). Assume
that, for each continuous and bounded function f on the real line, the following conditions hold:
(i) ‖Tn f0 − f0‖p,q = stA − o(an), as n → ∞;

(ii) wq( f, αn) = stA − o(bn), as n → ∞ with αn =
√

‖Tnϕx‖p,q .

Then we have
∥∥Tn f − f ; L p,q(a, b)

∥∥ = stA − o(cn), as n → ∞, where cn := max{an, bn}. Similar results hold
when little “o” is replaced by big “O”.

Proof. Choosing δ = αn =
√

‖Tnϕx‖p,q in Lemma 2.1 we immediately get, for every n ∈ N, that∥∥Tn f − f ; L p,q(a, b)
∥∥ ≤ C1wq( f, αn) ‖Tn f0 − f0‖p,q + 2C1wq( f, αn) + C2‖Tn f0 − f0‖p,q . (2)

Given ε > 0 define the following sets: D =
{
n ∈ N :

∥∥Tn f − f ; L p,q(a, b)
∥∥ ≥ ε

}
,

D1 =

{
n ∈ N : wq( f, αn) ‖Tn f0 − f0‖p,q ≥

ε

3C1

}
,

D2 =

{
n ∈ N : wq( f, αn) ≥

ε

6C1

}
, D3 =

{
n ∈ N : ‖Tn f0 − f0‖p,q ≥

ε

3C2

}
.

It follows from (2) that D ⊆ D1 ∪ D2 ∪ D3. Also define the sets

D′

1 =

{
n ∈ N : wq( f, αn) ≥

√
ε

3C1

}
, D′′

1 =

{
n ∈ N : ‖Tn f0 − f0‖p,q ≥

√
ε

3C1

}
.

Then observe that D1 ⊆ D′

1 ∪ D′′

1 . So we have D ⊆ D′

1 ∪ D′′

1 ∪ D2 ∪ D3. Now, since c j = max{a j , b j }, we get, for
every j ∈ N, that

1
c j

∑
n∈D

a jn ≤
1
b j

∑
n∈D′

1

a jn +
1
a j

∑
n∈D′′

1

a jn +
1
b j

∑
n∈D2

a jn +
1
a j

∑
n∈D3

a jn . (3)

Letting j → ∞ in (3), and using (i) and (ii), we have lim j
1
c j

∑
n∈D a jn = 0. This means that ‖Tn f − f ;

L p,q(a, b)‖ = stA − o(cn), as n → ∞, whence the result. �

The above proof can easily be modified to prove the following analog.

Theorem 2.3. Let A = (a jn), (an), (bn), (αn) and {Tn} be the same as in Theorem 2.2. Assume that, for each
continuous and bounded function f on the real line, the conditions ‖Tn f0 − f0‖p,q = stA − oµ(an) and wq( f, αn)

= stA − oµ(bn) (as n → ∞) hold. Then we have
∥∥Tn f − f ; L p,q(a, b)

∥∥ = stA − oµ(dn), as n → ∞, where
dn := max{an, bn, anbn}. Similar results hold when little “oµ” is replaced by big “Oµ”.

We now study the rates of A-statistical convergence in the space of locally integrable functions.

Theorem 2.4. Let A = (a jn), (an), (bn), (cn), (αn) and {Tn} be the same as in Theorem 2.2. Assume that the operator
norm sequence {‖Tn‖} is A-statistically bounded, i.e., δA(E) = 1 with E := {n ∈ N : ‖Tn‖ ≤ H} = 1 for some
H > 0. Assume further that, for each function f ∈ L p,q(loc), the following conditions hold:
(i) ‖Tn f0 − f0‖p,q = stA − o(an), as n → ∞;

(ii) wq( f, αn) = stA − o(bn), as n → ∞.

Then we get, for any h > 0, that supx∈R(
‖Tn f − f ;L p(x−h,x+h)‖

q∗(x)
) = stA − o(cn), as n → ∞, where q∗ is a weight

function such that lim|x |→∞
q(x)
q∗(x)

= 0. Similar conclusions are satisfied when little “o” is replaced by big “O”.
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Proof. By hypothesis, given ε > 0, there exists x0 such that for all x with |x | ≥ x0 we have q(x)
q∗(x)

< ε. Let
f ∈ L p,q(loc). Then by Lusin’s theorem we can find a continuous function ξ on [−x0 − h, x0 + h] such that∥∥ f − ξ ; L p(−x0 − h, x0 + h)

∥∥ < ε. Now let un := supx∈R(
‖Tn f − f ;L p(x−h,x+h)‖

q∗(x)
). Then it is shown in the proof of

Theorem 3 of [8], for every n ∈ E , that

un ≤ K ε + q(x0 + 1)‖TnG − G; L p,q(−x0, x0)‖, (4)

where K = (H + 1)q(x0 + 1) + H , and the function G is given by

G(x) :=

ξ(−x0 − h), if x ≤ −x0 − h
ξ(x), if |x | ≤ x0 + h
ξ(x0 + h), if x ≥ x0 + h.

Observe that G is continuous and bounded on the whole real axis. Hence, replacing f by G and taking δ = αn
=

√
‖Tnϕx‖p,q in Lemma 2.1, it follows from (4), for every n ∈ E , that

un ≤ K ε + C ′

1q(x0 + 1)wq( f, αn) ‖Tn f0 − f0‖p,q

+ 2C ′

1q(x0 + 1)wq( f, αn) + C ′

2q(x0 + 1)‖Tn f0 − f0‖p,q , (5)

where C ′

1 := sup−x0≤x≤x0
q(x) and C ′

2 := sup−x0≤x≤x0
| f (x)|. Now given r > 0, choose ε > 0 such that K ε < r .

Then, as in the proof of Theorem 2.2, define the following sets: U = {n ∈ E : un ≥ ε},

U1 =

{
n ∈ E : wq( f, αn) ‖Tn f0 − f0‖p,q ≥

r − K ε

3C ′

1q(x0 + 1)wq( f, αn)

}
,

U2 =

{
n ∈ E : wq( f, αn) ≥

r − K ε

6C ′

1q(x0 + 1)

}
,

U3 =

{
n ∈ E : ‖Tn f0 − f0‖p,q ≥

r − K ε

3C ′

2q(x0 + 1)

}
.

By (5) we have U ⊆ U1 ∪ U2 ∪ U3. Also defining

U ′

1 =

{
n ∈ E : wq( f, αn) ≥

√
r − K ε

3C ′

1q(x0 + 1)wq( f, αn)

}
,

U ′′

1 =

{
n ∈ E : ‖Tn f0 − f0‖p,q ≥

√
r − K ε

3C ′

1q(x0 + 1)wq( f, αn)

}

it is clear that U1 ⊆ U ′

1 ∪ U ′′

1 . So we get U ⊆ U ′

1 ∪ U ′′

1 ∪ U2 ∪ U3. Since c j = max{a j , b j }, we obtain, for every
j ∈ N, that

1
c j

∑
n∈U

a jn ≤
1
b j

∑
n∈U ′

1

a jn +
1
a j

∑
n∈U ′′

1

a jn +
1
b j

∑
n∈U2

a jn +
1
a j

∑
n∈U3

a jn . (6)

Taking the limit as j → ∞ in (6), and using hypotheses (i) and (ii), we see that lim j
1
c j

∑
n∈D a jn = 0, which

completes the proof. �

Replacing “o” by “oµ” one can get the following result immediately.

Theorem 2.5. Let A = (a jn), (an), (bn), (αn), q∗ and {Tn} be the same as in Theorem 2.4. Assume that, for each
function f ∈ L p,q(loc), the following conditions: ‖Tn f0 − f0‖p,q = stA − oµ(an) and wq( f, αn) = stA − oµ(bn)

(as n → ∞) hold. Then we get, for any h > 0, that supx∈R(
‖Tn f − f ;L p(x−h,x+h)‖

q∗(x)
) = stA − o(dn), as n → ∞, where

dn := max{an, bn, anbn}. Furthermore, similar conclusions hold when little “oµ” is replaced by big “Oµ”.
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3. Concluding remarks

We first note that if we choose an = 1 and bn = 1 for each n ∈ N, then Lemma 1 in [8] may be deduced from
Theorem 2.2 or from Theorem 2.3. Similarly, Theorem 3 in [8] may also be deduced from Theorem 2.4 or from
Theorem 2.5. So our theorems in Section 2 give us the rate of A-statistical convergence of the sequence of operators
studied in [8]. Furthermore, if we replace the matrix A = (a jn) by the identity matrix, then Theorem 2.2, Theorem 2.3
and Theorem 2.4, Theorem 2.5 immediately give the following ordinary rates of convergence, respectively.

Corollary 3.1. Let {Tn} be a sequence of positive linear operators from L p,q(loc) into L p,q(loc). If, for each
continuous and bounded function f on the real line, the conditions limn ‖Tn f0 − f0‖p,q = 0 and limn wq( f, αn) = 0
hold, then we have limn ‖Tn f − f ; L p,q(a, b)‖ = 0.

Corollary 3.2. Let {Tn} be a sequence of positive linear operators from L p,q(loc) into L p,q(loc) such that {‖Tn‖} is
bounded. If, for each function f ∈ L p,q(loc), the conditions limn ‖Tn f0 − f0‖p,q = 0 and limn wq( f, αn) = 0 hold,

then we get, for any h > 0, that limn{supx∈R(
‖Tn f − f ;L p(x−h,x+h)‖

q∗(x)
)} = 0 where q∗ is the weight function defined as

in Theorem 2.4.

We note that, in [8], an example of a sequence of positive linear operators has been provided so that our results
hold but the classical ones do not.

In the end, we should remark that our primary focus in this work was on dealing with positive linear operators.
However, it is still an open question how useful the A-statistical summability concept is in convergence of a sequence
of nonlinear operators.
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