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I. Introduction

Mobile robot applications are growing in significance in 
research and daily-life implementations. These robots are 
commonly used in a wide range of fields and applications 
such as in industrial plants, commercial zones, medical sys-
tems, material handling, and the defense industry. The 
major advantage and superiority of mobile robots over leg-
ged counterparts are design and control simplicity, reduced 
manufacturing and maintenance costs, and longevity. The 
legged-robots are also capable of tackling obstacles and 
uneven terrain difficulties.1 However, it is a tedious task to 
maintain the control of a legged-robot due to the complex-
ity of its structure.2 Mobile robots can be mainly configured 
as three-, four-, and six-wheel structures, which are stati-
cally stable systems for ease of control and energy effi-
ciency. Among these the most popular one is the four-wheel 
structure, ensuring stability at high speeds and under cer-
tain disturbances. On the other hand, due to the physical 
characteristics of four wheels, it is dependent on suspen-
sion systems to keep the wheels in contact with the road.

Besides these configurations, there are also two-wheeled 
mobile robots available. Two-wheeled mobile robots are 
basically called “two-wheeled balancing robots” (TWBR) 
due to their unstable dynamical characteristics. Although 
controlling two-wheeled robots is a challenging issue, they 
can be regarded as simpler structured mechanisms than leg-
ged-robots. Their advantages over other configurations are 
high maneuverability capabilities, small footprints, and 
ability to turn around their own axis, but they can be less 

power efficient due to the continuous need to balance. 
However, thanks to this continuous dynamical stabilization, 
the robot can reject disturbances affecting the body and can 
have a wider range of center of gravity (COG) variance. 
This lets the designer place additional payloads and struc-
tures on the system.3 The most common structure of the 
TWBR is two electrical-motor-powered wheels connected 
to the main stationary body. The stationary part of the robot 
is essentially an inverted pendulum whose stability must be 
achieved with the effort of the two actuated wheels.4

Due to structural advantages and being a challenging 
control problem, TWBR is an important problem attracting 
interest in numerous research and application works.4,5–9 
Linear controllers such as proportional integral derivative 
(PID) and linear quadratic Gaussian (LQR) can be designed 
and comprehended easier than complex nonlinear and 
adaptive ones.10 For this purpose, a linear dynamical model 
of the system is derived around predefined equilibrium 
points. For a given linearized model, it is straightforward to 
apply established methods such as pole placement11 and 
LQR12,13 to maintain the stability of the system. Various 
studies also show comparisons among different linear con-
trol schemes.14,15 The performance of the linear controllers 
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is dependent on the selection of the control parameters such 

as Q
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  and R.16 This can be thought of as a tradeoff 

between fast response and robustness. One also finds appli-
cations of LQG control, which combines Kalman filtering 
with LQR.17 These have also been adapted to linear time-
varying systems for reference trajectory tracking.18 2 
design has also been investigated and compared to simpler 
designs (e.g. LQR), where it was seen that the former sus-
tains stability and performance over longer time 
durations.19

Despite the availability of advanced methods, simple 
PID designs still dominate industrial applications due to 
their simple structure and ease of tuning.20,21 Since PID 
controllers are essentially single-input single-output in 
nature, multiple controllers must be designed for the tilt 
angle and position of the vehicle.22 These two modes must 
also be assumed to be decoupled, which may prove to be 
incorrect if the departure from the operating point is large. 
Employing nonlinear control techniques could remedy this 
drawback allowing the designer to work on a wider scale of 
operating conditions.23,24 For instance, the combination of 
PID and backstepping controllers are presented and the 
advantages of each method are depicted in Lee et al.25 
Sliding mode control (SMC) is also possible, a method 
known for its powerful capabilities and robustness against 
system uncertainties and perturbations.26 SMC drives the 
system to a predefined hypersurface and ensures exponen-
tial convergence to origin, while rejecting disturbances and 
perturbations.27 Another possibility is feedback lineariza-
tion (FBL; i.e. dynamic inversion), where the system non-
linearities are cancelled through feedback, after which the 
problem reduces to linear control.28,29 Numerous other non-
linear control approaches were tested on TWBR systems, 
including fuzzy PID with satisfactory results.30

Adaptive control strategies are methods applicable to 
time-varying and uncertain systems for maintaining perfor-
mance criteria and stability. Myriad studies are available 
varying from simple double integrator systems to complex 

chemical processes.31 Different adaptive control strategies 
were successfully implemented on TWBR as well. In 
Degani et al.,32 the center of mass height was tracked by 
checking the deviation from the COG and the system was 
kept stable with adaptive control techniques. Adaptive and 
fuzzy controllers were merged for real-time adjustment of 
the membership functions in Wang et al.33 Other examples 
include neural-adaptive output feedback control of trans-
portation vehicles based on wheeled inverted pendulum 
models34 and two-timescale-tracking control of nonholo-
nomic wheeled mobile robots.35

Model predictive control (MPC) strategy is widely used 
in the process control industry, especially for systems with 
slow dynamics. The MPC performance depends on the 
dynamical model of the process or system. MPC takes the 
current time into account, sustaining optimality while keep-
ing incoming future timeslots. This is an iterative and finite 
time horizon optimization method. MPC achieves predic-
tion of the future states of the linear time-invariant (LTI) 
model of the nonlinear plant linearized around specific 
equilibrium points. Practically, the prediction of MPC is 
sensitive to prediction errors. This is acceptable for lowly 
nonlinear systems. On the other hand, TWBR includes 
highly coupled nonlinear dynamics, limiting the ability of 
MPC control to achieve satisfactory performance and sta-
bility. To resolve this problem, adaptive model predictive 
control (AMPC) can be employed.36 AMPC can handle per-
formance degradation of the MPC controller due to the 
strong nonlinearity. AMPC uses changing operating points 
to update the prediction model. The advantage of using 
AMPC is the convenience of constructing on a predesigned 
MPC structure. Studies on the AMPC control scheme 
applied to different systems are becoming more appealing 
as computing capabilities increase.37,38

In this study, we investigate combining a TWBR base 
with a robot manipulator, in particular controlling its posi-
tion. This generates a type of robotic system valuable for 
industrial and daily-life applications. A robot manipulator 
consists of one or more rigid links connected via fixed or 
actuated joints. Robot manipulators are useful for picking/
placing objects, assembly, and applications hazardous/
inappropriate for humans. Their disadvantage is limited 
workspace due to a fixed base point. Integrating with a 
TWBR could thus remedy this drawback, achieving high 
mobility and maneuverability in diverse environments.39,40 
The benefits of such integration are summarized in Figure 
1. The aim of this study is to prove the usefulness of AMPC 
for such an integrated robot, in the sense that desired track-
ing performance outperforms various standard control 
approaches. Our method builds upon a new linear parame-
ter varying (LPV) modeling approach,41–45 so that mass 
variations corresponding to the robot manipulator’s actions 
are captured. Typical robot manipulators are actuated sys-
tems since the number of degrees of freedom and actuators 
are equal. After merging a TWBR with a robot manipulator 
the system becomes underactuated, and from the control-
ler’s perspective it is similar to an inverted pendulum on a 
cart.46 In this study the setup investigated consists of four 
manipulator links, which are considered as one virtual link. 

Figure 1.  Mobile robot system.
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The use of this equivalence allows simpler dynamical mod-
eling. The control goal is to robustly track position while 
coping with this underactuated structure, nonlinear dynam-
ics, and disturbances from various sources.

The rest of this paper is organized as follows: 
Mathematical modeling of system is presented first, deriv-
ing the equivalent inverted pendulum representation. Once 
the model is obtained, various control approaches are 
developed, consisting of an inner loop for the faster angle 
dynamics, and an outer loop for the slower linear position. 
These approaches considered are PID/PID, LQG/LQG, 
FBL/LQG, and finally AMPC/LQG, where the X/Y nota-
tion denotes X for inner controller and Y for outer control-
ler. Simulations are carried out for all, where a reference 
trajectory is tracked in the presence of mass variations. The 
results are evaluated in terms of various metrics. The paper 
ends with conclusions and future directions.

II. Mathematical Modeling

In order to design and implement controllers, an appropriate 
model of the proposed system was created under MATLAB/
Simulink numerical computing environment. During the 
modeling phase, different toolboxes were employed such as 
SimMechanics and control systems. The system configura-
tion is based on the study of Chen et al.,39 which is illus-
trated in Figure 2. The manipulator consists of four links as 
seen in the figure. The first link, that is, the link connected to 
the wheel, is passive while the others are actuated.

The parameters of the robot are as follows: R is the 
radius of wheels, rX, rY is the robot coordinate frame, wX, wY 
is the world coordinate frame, xcog, ycog is the position of the 
COG, l0 is length of the passive joint, l1,2,3 are the lengths of 
links 1, 2, 3 respectively, θ0 is the angle between the wheels 
and passive joint, and θ1,2,3 are the angles between an active 
link and its predecessor link.

The governing equations describing the motion of the 
mobile robot manipulator are

	 τ θ θ θ θ θ θ= + +Μ ( ) ( , ) ( )  H g � (1)

where τ = [τw, 0, τ1, τ2, τ3] is the input torque, θ = [θw, θ0, θ1, 
θ2, θ3] is the vector of angles, and M, H, q(θ) are, respec-
tively, the inertia, centrifugal force, Coriolis force, and 
gravity matrices. Due to the complex structure of the robot 
manipulator, system modeling requires many equations to 
describe the entire system. Having four links is useful in 
terms of extended physical capabilities, but increases model 
complexity. In order to simplify modeling, the system could 
be considered as a single rod virtual inverted pendulum as 
shown in Figure 3. As depicted in the model, mass and 
inclination of four links are represented by a virtual link 
mass at the COG and its angle with the wheel. These can be 
computed with the following mathematical calculations
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At this point Euler-Lagrange method can be employed 
for derivation of the dynamical model of the inverted pen-
dulum. The dynamical equation of motion of entire system 
can be written as follows

	 τ θ θ θ θ θ θ= + +Μ ( ) ( , ) ( )  H g � (3)

where θ θ θ=[ , ]w cog  and τ τ=[ , ]w 0  are coordinate and 
input torque vectors. From here, the derived systems 
dynamics are as follows

Figure 3.  Virtual inverted pendulum model.
Figure 2.  Mobile manipulator model.
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where M is the mass of the mobile part and m is the mass 
of COG, respectively.

An important aspect of this research is to have a variable 
mass on the robot to carry out various tasks. While han-
dling different tasks, the system acts like a time-variant sys-
tem as the mass of entire body changes at the time frame of 
working, for instance, when the robot picks a load from a 
point and drops off in a different location. If the system is 
not designed with robustness enough to handle the effect of 
mass variance, stability and reference tracking may not be 
sustained, causing violent oscillations or instability. To 
compare the difference, the robot is modeled under two 
conditions, namely, with variance in mass and without 

variance in mass. Pick and place scenarios were applied in 
the simulation studies. Figure 4 shows the three-dimen-
sional (3D) model of the manipulator realized in 
SimMechanics.

The Simulink block diagram is given in Figure 5 and the 
key parameters of the system are depicted in Table 1. In the 
block diagram, the joint between the first link and the main 
body is unactuated while the other joints are actuated by the 
controller. Unlike the other links, the last link was modeled 
adding variable a mass input to the arm representing pick-
ing up or putting down objects. This mass variance effect is 
a key consideration in mathematical modeling and control-
ler design.

III. Control Design

Due to its statically unstable structure, a dynamic controller 
is required to maintain stability of the balancing robot. The 
ultimate objective in control is balancing the COG of the 
virtual link, whose position, angle, and mass will change 
based on the task carried out by the manipulator. Thus, a 
robust control system to suppress the adverse effects of the 
disturbances, perturbations, unmeasured dynamics, and 
variable mass is needed to handle the control task. The 
robot system is underactuated from the perspective of con-
trolling the COG; only the wheels provide the control (see 
Figure 5). There are, however, 2 degrees of freedom, 
namely, the location of the COG and the linear position of 

Figure 4.  Variable mass scenario.

Figure 5.  Robot manipulator modeling via SimMechanics.
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the robot, which have coupled dynamics between each 
other. The challenge is therefore to control a coupled 
dynamics with only one input.

The control systems literature offers a wide range of 
solutions when it comes to controlling underactuated 
dynamical systems. The dynamics of the mobile robot 
manipulator are such that the 2 degrees of freedom can be 
categorized as fast and slow dynamics. The fast dynamics 
are those related to the inner loop of the vehicle, that is, the 
angle of the link. The slow dynamics are those related to the 
outer loop of the vehicle, that is, the linear position of the 
wheels. In control design the major emphasis is placed on 
stabilization of fast dynamics, which plays a significant 
role in the behavior of the vehicle as a whole. The slow 
dynamics, that is, linear position, is then controlled as an 
outer loop by manipulating the angle inside the inner loop 
(Figure 6). Various control design methods are imple-
mented in the succeeding sections and are compared in 
terms of the metrics integral absolute error (IAE), mean 
absolute error (MAE), integral squared error (ISE), and 
integral squared control input (ISCI).

IV. Proportional Integral Derivative 
Control Scheme

PID control is one of the earliest yet most popular control 
schemes due to the ability to perform easy empirical tuning 
for satisfactory performance.40 To design the PID control-
ler, nonlinear dynamics of the vehicle are first linearized 
around the zero equilibrium point (i.e. when the robot is 
stationary in an upright position). Then dynamics of rota-
tional behavior (COG angle) are control by tuning the coef-
ficients of the inner PID controller until satisfactory 

performance. Next, for controlling the linear position the 
coefficients of the outer loop PID are adjusted, fixing the 
inner PID controller. The process is iterated a number of 
times until the angle and position responses are as desired. 
Further fine-tuning is performed to account for the effects 
caused by mass variations. The ultimate values of the inner 
loop coefficients are Kp1 = −77.306, Ki1 = −8.721, and 
Kd1 = −28.862 and those of the outer loop are Kp2 = 0.426, 
Ki2 = 0.02, and Kd2 = 1.319. It is expected that larger control 
coefficients are required for the inner loop PID controller 
because tracking and stabilizing of the fast dynamics need 
more aggressive control effort. The block diagram imple-
mentation of the control system can be seen in Figure 7. 
For realistic simulations, measurement noise is also added 
to the angle and position inputs of the control.

The results of the PID control approach can be observed 
in Figures 8–10. According to the simulation scenario, 
mass of the last link, that is, link 4, is changed from 0.2 to 
0.4 kg at t = 100 s in order to test the robustness of the con-
trolled plant against variances in mass. The initial condi-
tions for the links are, respectively, −10, 10, 10, and 10°. 
The angular control loop exhibits sufficient performance 
and the position controller shows good tracking perfor-
mance until 100 s. With the change of mass of the last link 
at time t = 100 s, the position controller performance 
severely deteriorates and takes a significant time to settle. 
The performance metrics for the PID controller are tabu-
lated in Table 2.

V. Linear Quadratic Gaussian 
Control

LQG is a dynamical controller for the system written in the 
form

	

x Ax B w
y Cx Du v

u= + +
= + + �

(5)

where x is state vector, u is plant input, y is the plant output, 
w is the process noise representing modeling errors, and v is 
the output noise representing measurement errors. A, B, C, D 

Table 1.  Parameters of the system.

Mass of mobile robot (M) 18 kg
Lengths of the links (m0, m1, m2, m3) 1.5, 0.7, 0.4, 0.2 kg
Masses of the links (l0, l1, l2, l3) 0.2, 0.2, 0.2, 0.1 m
Radius of the wheels (R) 0.15 m
Width of the mobile body (W) 0.65 m

Figure 6.  Closed-loop structure of the proposed system.
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are the state-space matrices. LQG is in fact a combination of 
the linear quadratic regulator (LQR), an optimal controller, 
and the Kalman filter, an optimal estimator. The objective of 
the LQR controller is to minimize the cost function J

	

J E x Q x u Ru x Q x dtT T
i
T
i i= + +

→∞ ∫











lim
τ

τ

τ
1

0
� (6)

where E denotes the expected value, xi is integral of the 
reference tracking error of the output signal, and Q, R, Qi 
are, respectively, weighing matrices for states, input, and 
integral error. Due to the lack of measurements from all 
states of the system, a Kalman filter is employed which 

provides optimal estimates for x (denoted xe) by minimiz-
ing the function

	
P E x x x x

t e e
T= − −

→∞ { }lim ( )( )
�

(7)

given the process and measurement noise covariances Qn 
and Rn. During the design phase of the LQG controller, the 
system is again linearized around the zero equilibrium 
point and the design is carried out by selecting the param-
eters as in Table 3. The results for the LQG controller sys-
tem can be seen in Figures 11–13. The figures correspond 
to the COG angle, linear position tracking, variable mass 
change, and control effort, respectively. It can be observed 

Figure 7.  Cascaded PID control structure.

Figure 8.  PID angular and positional tracking with mass change at 100 s.
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Figure 9.  Transient and parameter change responses.

Figure 10.  Control signal under PID control.
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from the figures that both the LQG controllers are capable 
of following and suppressing the effect of the changing 
mass at t = 100 s. After some fluctuation the system settles 
down to steady state within about 20 s. The performance 
metrics for LQG are shown in Table 4. It is seen that the 
ISCI index is lower than PID, that is, less control effort is 
required. All the error metrics (IAE, MAE, ISE) are also 
lower, meaning that the LQG controller has better reference 
tracking and robustness to parameter variations.

VI. Feedback Linearization Control

FBL (also called dynamic inversion) is a nonlinear control 
approach that can produce exact linear representation of the 

plant model. FBL employs transformation of the nonlinear 
system into equivalent linear system by applying appropri-
ate control input (Kim et al., 2010).47 Since no approxima-
tion is made (in contrast to approximate Jacobian 
linearization), FBL is valid over the entire operating enve-
lope and not just within a local neighborhood.

Let the dynamics of a nonlinear system be expressed as

	 x f bun S( ) = + � (8)

where f xf= ( )  and b b x= ( )  are dependent on the states. 
The goal is to utilize a control input

	 u b f v= − +−1( ) � (9)

Table 2.  Performance measures for PID control scheme.

Criterion Position (x) Center of mass angle (θcog) Control input (U)

IAE 70.5 6.533 –
MAE 0.01367 0.0287 –
ISE 64.73 7.444 –
ISCI – – 8.137 × 105

IAE: integral absolute error; MAE: mean absolute error; ISE: integral squared error; ISCI: integral squared control input.

Figure 11.  LQG angular and positional tracking with mass change.
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Figure 12.  Transient and parameter change responses.

Figure 13.  Control signal of LQG.
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so as to make the system exactly linear as

	 x vn( ) = � (10)

after which v  can be designed using linear control theory. 
For our system, the fast dynamics that control the angle of 
the robot have significant importance on the overall perfor-
mance, so we shall focus on that part

	 m l m gl ucog cog cog cog cog cog
2
θ θ= −sin( ) � (11)

where u is input torque to the wheels. This can be arranged 
as

	
θ θcog

cog
cog

cog

g
l ml

u= −sin( ) 1
2 � (12)

which is of the form of equation (8). Utilizing an FBL con-
troller of the form of equation (9)

	

u m l g
l

vcog cog
cog

cog= − +−














2 sin( )θ
�

(13)

yields

	
θcog v=

�
(14)

Let

	
v e kecogd= − −

θ α
�

(15)

where e cog cogd= −θ θ  is the tracking error, θcogd  is the 
reference angle, and α ,k  are the design parameters. 
Substituting into equation (14) results in the tracking error 
dynamics

	  e e ke+ + =α 0 � (16)

which is asymptotically stable for α ,k > 0, achieving 
e→ 0  and thus the desired tracking. Combining equations 
(13) and (15) gives controller explicitly as

	

u m l g
l

e kecog cog
cog

cog cogd= − + − −−














2 sin( )θ θ α



�

(17)

which completes the inner loop controller design via 
FBL. For the outer loop we utilize LQG to control the 
position, making this an FLB/LQG controller overall. 
After numerous iterations the controller parameters giv-
ing the best results are given in Tables 5 and 6. The simu-
lation results with these parameters are plotted in Figures 
14–16. The controller starts out acceptably, albeit with 
some oscillations. The mass change at t = 100 s, how-
ever, degrades tracking considerably, which takes quite a 
while to settle back. The performance metrics are given 
in Table 7. It is seen that the tracking performance is 
quite inferior to LQG. The control effort is somewhat 
lower, but this is of little value in presence of the 
degraded performance. Also, no clear advantage is 
obtained over PID as some metrics are higher, while 
some are lower.

VII. Adaptive MPC Control

Model predictive control (MPC) is a method for process 
control that actively uses the dynamical model of the sys-
tem. The system is optimized within a predefined time slot 
in which MPC estimates the future states and controls of 
system. While this is quite computationally intensive, 
advances in digital computing have increased the feasibility 
of the MPC approach greatly. MPC can be implemented in 
the presence of uncertainties on linear and nonlinear sys-
tems. If the nonlinearity is high, however, MPC perfor-
mance could deteriorate. In this case, one can use an 
adaptive model predictive controller that constantly pre-
dicts the new operating conditions. For instance, AMPC 
can be used on linear time-varying (LPV) systems with 
uncertainties, where the controller parameters are tuned in 
closed loop employing real-time measurements.41,46

The MPC algorithm solves a quadratic optimization prob-
lem at each time interval. The solution of the problem deter-
mines the so-called manipulated variables (MV), which are 
essentially the input variables adjusted dynamically to keep 
the controlled variables (CV) at their set-points. The AMPC 
approach follows the same cost optimization algorithm as 
MPC with the cost function

Table 4.  Performance measures for LQG control scheme.

Criterion Position (x) Center of mass angle (θcog) Control input (U)

IAE 16.82 6.228 –
MAE 6.073 × 10–4 1.584 × 10–4 –
ISE 10.65 3.351 –
ISCI – – 3.513 × 104

IAE: integral absolute error; MAE: mean absolute error; ISE: integral squared error; ISCI: integral squared control input.

Table 3.  Parameters for LQG control scheme.

Parameter Inner loop controller Outer loop controller

Q 0.01 0.1
R 0.00001 0.1
Qi 0.8 0.8
Qn 1 × I5 0.1 × I13
Rn 1 1
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Figure 14.  FBL angular and LQG positional tracking with mass change.

Figure 15.  Transient and parameter change responses.



Önkol and Kasnakoğlu	 49

	

J zy k

w

s
r k i k y k i ki y

y
y

j
y j j

i

p

j

n

( ) , | |= +( ) − +( )( )













==
∑∑
11

2

�

(18)

where k represents the current control interval, p is the predic-
tion horizon (interval number), ny is the number of plant output 
variables, zk is the quadratic problem (QP) selection which is 
depicted as z u k k u k k u k p k kk

T T T T= −[ (  | )  ( +1 | )  ... ( + 1| )   ], 
yj(k + i|k) is the jth CV at the ith prediction horizon step, 
rj(k + i|k) is the ith references variable at the ith prediction 
horizon step, s j

y  is the scale factor for the jth plant output 
variable, and wi j

j
,  is the tuning weight coefficient reflecting 

the relative importance of the plant output variable. Among 
these variables ny, s j

y , p, and wi j
j
,  are determined during the 

controller design and stay constant. Let the prediction model 
be described as follows

Table 5.  FBL controller parameters.

Feedback linearization controller

k 10
α 0.1

Table 6.  LQG controller parameters.

Outer loop controller

Q 0.01
R 0.01
Qi 0.6
Qn 0.1 × I9
Rn 1

Figure 16.  Control signal of FBL.

Table 7.  Performance measures for FBL and LQG control schemes.

Criterion Position (x) Center of mass angle (θcog) Control input (U)

IAE 21.6 11.83 –
MAE   9.495 × 10−3   2.436 × 10−4 –
ISE 12.18   4.432 –
ISCI – – 1.053 × 104

IAE: integral absolute error; MAE: mean absolute error; ISE: integral squared error; ISCI: integral squared control input.
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where vk is the measurement noise and wk = [dk, ek] is the 
process noise. The future trajectories of the dynamical 
model are predicted over the prediction horizon Hp. 
Setting all wk = 0 for all prediction instances the equation 
becomes
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The solution can be summarized for all the Hp predicted 
time intervals as follows
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Regarding the equations mentioned above, the optimi-
zation function can be introduced as
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For the optimization function, the design parameters are 
the Wu, WΔu, and Wy matrices. Designing the MPC control-
ler requires consideration of the constraints depicted as 
follows
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The constraints are on the inputs, input increments, and 
output variables with the slack variable ε ≥ 0. The parameter 
ρε is employed to penalize the constraint violation described 
before designing the controller. The optimization problem 
converted to a general QP is

	
minx T Tx Hx f x1
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obeying the condition of Ax ≤ b. Here xT =[zTε] is the deci-
sion vector, H is the Hessian matrix, A is the linear transi-
tion matrix, b and f are column vectors. The MPC controller 
uses the steady-state Kalman filter algorithm to estimate 
the state of the controller. In static Kalman filter (SKF), the 
L and M gain matrices are constant and they depend on the 
plant parameters, disturbances, and noise characteristics. In 
AMPC control, the controller uses the time-varying Kalman 
filter (TVKF) instead of the static one to provide consistent 
estimation with the updated plant dynamics.20 The TVKF 
approach can be expressed as follows
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In equation (26), Q, R, and N matrices are constant covari-
ance matrices and Ak and Cm, k are matrices depicting the 
state-space description of the system. The Pk|k−1 is the state 
estimate error covariance matrix at k constructed from the 
information from time k−1. Unlike the constant structure of 
the L and M matrices in the SKF, TVKF is constructed to 
update regularly the L and M matrices with the updated 
plant dynamics. Model updating strategy is a core issue in 
designing adaptive MPC controllers. Here, due to the 
parameter varying characteristics of the system, linear 
parameter varying (LPV) update law is selected. LPV sys-
tems are broadly used in various fields and industries rang-
ing from chemical processes to robotics applications.42,43 
An LPV system can be expressed as an array of plant mod-
els at specified operating conditions that can be used with 
adaptive MPC. An LPV system can be depicted in state-
space form as follows
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where x, u, and y are the state, input, and output vectors of 
the system, respectively. Matrices A, B, C, and D are param-
eter varying state matrices of the scheduling signal ρ(t), 
where ρ(t)T = [ρ1,...,ρnp] are time-varying parameters which 
are bounded in a predefined range.44,45 Let the bounds for 
the time-varying parameters be described as
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With the definitions above, the procedure for the design 
of the AMPC system can be broken down into the follow-
ing steps:

Step 1. The control structure of the robot consists of two 
loops. Outer loop controls the linear position and inner 
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loop controls the angle of the COG. Inner loop dynam-
ics are faster and the control mechanism naturally has 
more impact on the stabilization of the entire robot. 
AMPC design is applied to construct the inner control 
loop to stabilize the angle of the COG. The proposed 
system is a nonlinear parameter varying system and 
model predictive control (MPC) scheme requires a lin-
earized model around operating conditions. Thus, an 
LPV system is created that includes three different lin-
ear plant models. Its parameter is ρ = m4, which changes 
with time since the fourth stick of the robot arm acts as 
a gripper picking up or dropping objects within the 
operating workspace.

Figure 17 shows the block diagram of the nonlinear 
robot system for linearization around the operating condi-
tions as parameter mass m4 varies. The linearization 

process outputs three linear plant models which describe 
the local behavior of the system at specified mass values. 
Three linear models behave like LTI systems at 0.2, 0.3, 
and 0.4 kg, respectively, according to the design. LPV sys-
tems are used for updating the internal predictive model of 
the adaptive MPC controller. The block diagram of the 
LPV system obtained can be seen in Figure 18.

Step 2. After the LPV system is obtained, the AMPC 
controller is built. The general controller structure can 
be seen in the MATLAB/Simulink block diagram in 
Figure 19. The design parameters of the adaptive MPC 
controller are shown in Table 8.
Step 3. The stability and performance requirements of 
the angular dynamics are met with the adaptive MPC 
controller. The final step is designing an outer loop con-
troller to create COG angle references to the inner 
AMPC controller based on the desired linear position. 
For that purpose, the LQG control approach is utilized. 

Table 8.  Parameters of adaptive MPC controller.

Adaptive MPC parameters Values

Sampling time 0.01 s
Prediction horizon 10
Control horizon 2
Manipulated variables (MVs) 1
Unmeasured disturbances 1
Measured output 1
States, inputs, outputs 4, 2, 1

MPC: model predictive control.
Figure 17.  Linearization of nonlinear plant including varying 
parameter.

Figure 18.  LPV modeling of mobile robot manipulator.

Figure 19.  The angle control structure (inner loop).
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In principle, one could design another AMPC controller 
for the outer loop but this turns out to be overkill for this 
study. The linear position control in the outer loop is 
much slower and less demanding and hence a simpler 
and more standard LQG design was preferred, making 
this an AMPC/LQG controller overall. In order to design 
the outer loop LQG position controller, the system is lin-
earized from the reference input (ref) of the adaptive 

MPC to position output of the system (x) as shown in the 
block diagram in Figure 20.
Once AMPC was designed following the three steps 

above, simulation studies were carried out under the same 
scenarios as in the PID/PID, LQG/LQG, and FBL/LQG 
cases in the preceding sections. The results are shown in 
Figures 21–23. It can be seen that angular tracking perfor-
mance is better than PID and FBL and similar to LQG, but 

Figure 20.  Entire control system.

Figure 21.  AMPC angular and LQG positional tracking with mass change.
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Figure 22.  Transient and parameter change responses.

Figure 23.  Control signal of AMPC.
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slightly less oscillatory. The linear position tracking perfor-
mance is fast and has no overshoot; as such it seems supe-
rior to PID, LQG, and FBL. Recovery from mass variation 
at t = 100 s is also better than PID, LQG, and FBL. The con-
trol effort is better than PID and similar to (but slightly 

more than) FBL and LQG. The performance metrics shown 
in Table 9 also support these statements. An additional plot 
for AMPC in Figure 24 shows the cost function converging 
quickly to zero, indicating a successful application of the 
method. Figure 25 shows the position tracking performance 

Table 9.  Performance measures for AMPC scheme.

Criterion Position (x) Center of mass angle (θcog) Control input (U)

IAE 12.83 6.07 –
MAE   5.635 × 10−04 0.07377 –
ISE   7.252 3.398 –
ISCI – – 1.232 × 105

IAE: integral absolute error; MAE: mean absolute error; ISE: integral squared error; ISCI: integral squared control input.

Figure 24.  The cost function of AMPC controller.

Figure 25.  Comparison of AMPC and LQG control position tracking.
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of AMPC and LQG on top of each other, for clarification of 
AMPC’s superior response.

VIII. Conclusion and Future Works

This study implements adaptive model predictive control 
(AMPC) for a two-wheeled mobile robot in comparison to 
three standard control approaches, namely, PID, LQR, and 
FBL. A two-loop structure is utilized in all the approaches 
where the inner loops control the angle on the COG and the 
outer loop controls the linear position of the robot. The for-
mer is the faster dynamics and the latter is the slower 
dynamics. Apart from angle and position tracking, the con-
troller is supposed to reject parameter changes due to mass 
variations, representing the manipulator picking up and 
dropping objects. The PID, LQG, and AMPC approaches 
are compared in terms of their reference tracking ability, 
control effort, and the metrics IAE, MAE, ISE, and ISCI. It 
is seen that AMPC shows superior performance in the 
majority of these categories and performs very well in the 
remaining ones, while showing good robustness to mass 
variations.

Investigating nonlinear control approaches for the two-
wheeled robot platform is one of our planned future direc-
tions. We are also investigating the possibility of applying 
AMPC methods to other test platforms developed by our 
research group. These include improving the performance 
of flight stabilizer systems of fixed-wing aircraft48–50 and 
rotorcraft,51 building better software-in-the-loop (SIL) and 
hardware-in-the-loop (HIL) testbeds,52,53 investigating 
novel approaches to provide robustness against parametric 
uncertainties,54 and constructing specialized autopilots for 
control loss scenarios.55,56
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