Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/aml)

Applied Mathematics Letters

Statistical approximation by double complex Gauss–Weierstrass integral operators

George A. Anastassiou ª.*, Oktay Duman ^{[b](#page-0-2)}

^a *Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA* b *TOBB Economics and Technology University, Faculty of Arts and Sciences, Department of Mathematics, Söğütözü TR-06530, Ankara, Turkey*

a r t i c l e i n f o

Article history: Received 27 July 2010 Accepted 15 October 2010

Keywords: A-statistical convergence Statistical approximation Complex Gauss–Weierstrass integral operators

a b s t r a c t

In this paper, we introduce the complex Gauss–Weierstrass integral operators defined on a space of analytic functions in two variables on the Cartesian product of two unit disks. Then, we study the geometric properties and statistical approximation process of our operators. © 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The statistical approximation process of positive linear operators was first studied by Gadjiev and Orhan [\[1\]](#page-5-0). Recently, in the same process, the ''positivity'' condition of the operators has been relaxed in some sense (see [\[2\]](#page-5-1)). Also, in recent years, in obtaining some approximation results, the concept of *k*-positivity for complex-valued operators (see, e.g., [\[3–5\]](#page-5-2)) and the fuzzy positivity of fuzzy-valued operators (see [\[6\]](#page-5-3)) have been used instead of the classical positivity of the operators. In this paper, we first introduce a sequence of double complex Gauss–Weierstrass singular integral operators and then investigate their statistical approximation properties without any type of the positivity conditions mentioned above. At the end of this paper, we also explain why we use the statistical approximation process rather than the classical one. We should note that, in a very recent paper (see [\[7\]](#page-5-4)), we study a similar problem for the double complex Picard operators.

We first recall some concepts used in this paper. Consider the following sets:

$$
D^2 := D \times D = \left\{ (z, w) \in \mathbb{C}^2 : |z| < 1 \text{ and } |w| < 1 \right\},
$$
\n
$$
\bar{D}^2 := \bar{D} \times \bar{D} = \left\{ (z, w) \in \mathbb{C}^2 : |z| \le 1 \text{ and } |w| \le 1 \right\}.
$$

For a complex-valued function $f : \bar{D}^2 \to \mathbb{C}$, if the univariate complex functions $f(\cdot, w)$ and $f(z, \cdot)$ (for each fixed *z* and w \in *D*, respectively) are analytic on *D*, then we say that the function $f(\cdot, \cdot)$ in two variables is analytic on D^2 (see, e.g., [\[8,](#page-5-5)[9\]](#page-5-6)). It is well-known that if a function f is analytic on D^2 , then f has the following Taylor expansion:

$$
f(z, w) = \sum_{k,m=0}^{\infty} a_{k,m}(f) z^k w^m, \quad (z, w) \in D^2,
$$
\n(1.1)

Corresponding author.

E-mail addresses: [ganastss@memphis.edu,](mailto:ganastss@memphis.edu) ganastss@gmail.com (G.A. Anastassiou), oduman@etu.edu.tr (O. Duman).

^{0893-9659/\$ –} see front matter © 2010 Elsevier Ltd. All rights reserved. [doi:10.1016/j.aml.2010.10.035](http://dx.doi.org/10.1016/j.aml.2010.10.035)

where the coefficients $a_{k,m}(f)$ are given by

$$
a_{k,m}(f) := -\frac{1}{4\pi^2} \int_T \frac{f(p,q)}{p^{k+1}q^{m+1}} dp dq, \quad k, m \in \mathbb{N}_0,
$$
\n(1.2)

with $T := \{(p, q) \in \mathbb{C}^2 : |p| = r \text{ and } |q| = \rho\}$ with $0 < r, \rho < 1$.

As usual, by $C(\bar D^2)$ we denote the space of all continuous functions on $\bar D^2.$ Now consider also the following space:

$$
A(\overline{D}^2) := \{f \in C(\overline{D}^2) : f \text{ is analytic on } D^2 \text{ with } f(0,0) = 0\}.
$$

In this case, $C(\bar{D}^2)$ and $A(\bar{D}^2)$ are Banach spaces with the usual sup-norm given by $\|f\|=\sup\big\{|f(z,w)|:(z,w)\in \bar{D}^2\big\}$. Assume now that $(\xi_n)_{n\in\mathbb{N}}$ is a sequence of positive real numbers. Defining the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ by

$$
\lambda_n := \frac{1}{\pi \left(1 - e^{-\pi^2/\xi_n^2} \right)},\tag{1.3}
$$

and also using the set D given by

$$
\mathbb{D} := \left\{ (s, t) \in \mathbb{R}^2 : s^2 + t^2 \leq \pi^2 \right\},\
$$

we define the double complex Gauss–Weierstrass singular integral operators as follows:

$$
W_n(f; z, w) = \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}} f\left(ze^{is}, we^{it}\right) e^{-(s^2+t^2)/\xi_n^2} ds dt,
$$
\n(1.4)

where $(z, w) \in \bar{D}^2$, $n \in \mathbb{N}$, $f \in A(\bar{D}^2)$, and $(\lambda_n)_{n \in \mathbb{N}}$ is given by [\(1.3\).](#page-1-0) Then, one can easily obtain that the operators W_n preserve the constant functions.

In order to get some geometric properties of the operators W_n in [\(1.4\)](#page-1-1) we first need the following concepts. Let $f\in C(\bar D^2)$. Then, the first modulus of continuity of *f* on \bar{D}^2 denoted by $\omega_1(f, \delta)_{\bar{D}^2}, \delta > 0$, is defined to be

$$
\omega_1(f; \delta)_{\bar{D}^2} := \sup \left\{ |f(z, w) - f(p, q)| : \sqrt{|z - p|^2 + |w - q|^2} \le \delta, (z, w), (p, q) \in \bar{D}^2 \right\}
$$

and the second modulus of smoothness of *f* on $\partial(D^2)$ denoted by $\omega_2(f; \alpha)_{\partial(D^2)}$, $\alpha > 0$, is defined to be

$$
\omega_2(f; \alpha)_{\partial(D^2)} := \sup \left\{ |f(e^{i(x+s)}, e^{i(y+t)}) - 2f(e^{ix}, e^{iy}) + f(e^{i(x-s)}, e^{i(y-t)})| : (x, y) \in \mathbb{R}^2 \text{ and } \sqrt{s^2 + t^2} \le \alpha \right\}.
$$

Then, if $\sqrt{s^2+t^2}\leq\alpha$, we may write that (see [\[7\]](#page-5-4))

$$
\left|f\left(ze^{is}, we^{it}\right) - 2f(z, w) + f\left(ze^{-is}, we^{-it}\right)\right| \le \omega_2(f; \sqrt{s^2 + t^2})_{\partial(D^2)}.
$$
\n(1.5)

We also get, for any $c, \alpha > 0$, that

$$
\omega_2(f; c\alpha)_{\partial(D^2)} \le (1+c)^2 \omega_2(f; \alpha)_{\partial(D^2)}.
$$
\n(1.6)

2. Geometric properties of the operators *Wⁿ*

In this section, we mainly use the idea used in [\[10,](#page-5-7)[11\]](#page-5-8). Now let

$$
B(\bar{D}^2) := \{f : \bar{D}^2 \to \mathbb{C}; f \text{ is analytic on } D^2, f(0,0) = 1 \text{ and } \text{Re}[f(z,w)] > 0 \text{ for every } (z,w) \in D^2\}.
$$

Then, we obtain the following main result.

Theorem 2.1. *For each fixed* $n \in \mathbb{N}$ *, we have*

 $(W_n(A(\bar{D}^2)) \subset A(\bar{D}^2),$

(ii) $W_n(B(\bar{D}^2)) \subset B(\bar{D}^2)$,

(iii) $\omega_1(W_n(f); \delta)_{\bar{D}^2} \leq \omega_1(f; \delta)_{\bar{D}^2}$ for any $\delta > 0$ and for every $f \in C(\bar{D}^2)$.

Proof. (i) Let $f \in A(\bar{D}^2)$. Then, we get $f(0, 0) = 0$, and so $W_n(f; 0, 0) = 0$. Now we claim that $W_n(f)$ is continuous on \bar{D}^2 . Indeed, if (p, q) , $(z_m, w_m) \in \overline{D}^2$ and $\lim_m(z_m, w_m) = (p, q)$, then we get

$$
|W_n(f; z_m, w_m) - W_n(f; p, q)| \le \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}} |f(z_m e^{is}, w_m e^{it}) - f(p e^{is}, q e^{it})| e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

$$
\le \frac{\lambda_n \omega_1 (f, \sqrt{|z_m - p|^2 + |w_m - q|^2})}{\xi_n^2} \iint_{\mathbb{D}} e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

$$
= \omega_1 (f, \sqrt{|z_m - p|^2 + |w_m - q|^2})_{\bar{D}^2}.
$$

Since lim_{*m*}(z_m , w_m) = (p , q), we may write that lim_{*m*} $\sqrt{|z_m-p|^2+|w_m-q|^2}=0$, which implies that

$$
\lim_{m} \omega_1 \left(f, \sqrt{|z_m - p|^2 + |w_m - q|^2} \right)_{\bar{D}^2} = 0
$$

due to the right continuity of $\omega_1(f, \cdot)$ at zero. Hence, we get $\lim_m W_n(f; z_m, w_m) = W_n(f; p, q)$, which gives the continuity of $W_n(f)$ at the point $(p, q) \in D^2$. Since $f \in A(D^2)$, the function *f* has the Taylor expansion in [\(1.1\)](#page-0-3) with the coefficients $a_{k,m}(f)$ in [\(1.2\).](#page-1-2) Then, for $(z, w) \in D^2$, we get

$$
f(ze^{is}, we^{it}) = \sum_{k,m=0}^{\infty} a_{k,m}(f) z^k w^m e^{i(sk+tm)}.
$$
\n(2.1)

Since $|a_{k,m}(f)e^{i(k+tm)}| = |a_{k,m}(f)|$ for every $(s, t) \in \mathbb{R}^2$, the series in (2.1) is uniformly convergent with respect to $(s, t) \in \mathbb{R}^2$. Hence, we conclude that

$$
W_n(f; z, w) = \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}} \left(\sum_{k,m=0}^{\infty} a_{k,m}(f) z^k w^m e^{i(sk+tm)} \right) e^{-(s^2+t^2)/\xi_n^2} ds dt
$$

\n
$$
= \frac{\lambda_n}{\xi_n^2} \sum_{k,m=0}^{\infty} a_{k,m}(f) z^k w^m \left(\iint_{\mathbb{D}} e^{i(sk+tm)} e^{-(s^2+t^2)/\xi_n^2} ds dt \right)
$$

\n
$$
= \frac{\lambda_n}{\xi_n^2} \sum_{k,m=0}^{\infty} a_{k,m}(f) z^k w^m \left(\iint_{\mathbb{D}} \cos (sk+tm) e^{-(s^2+t^2)/\xi_n^2} ds dt \right)
$$

\n
$$
= : \sum_{k,m=0}^{\infty} a_{k,m}(f) \ell_n(k,m) z^k w^m,
$$

where, for *k*, $m \in \mathbb{N}_0$,

$$
\ell_n(k,m) := \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}} \cos (sk + tm) e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

=
$$
\frac{\lambda_n}{\xi_n^2} \int_0^{2\pi} \int_0^{\pi} \cos [\rho (k \cos \theta + m \sin \theta)] e^{-\rho^2/\xi_n^2} \rho d\rho d\theta.
$$
 (2.2)

We should remark that

$$
|\ell_n(k, m)| \le 1
$$
 for every $n \in \mathbb{N}$ and $k, m \in \mathbb{N}_0$.

Therefore, for each $n \in \mathbb{N}$ and $f \in A(\bar{D}^2)$, the function $W_n(f)$ has a Taylor series expansion whose Taylor coefficients are given by

$$
a_{k,m}(W_n(f)) := a_{k,m}(f)\ell_n(k,m), \quad k, m \in \mathbb{N}_0,
$$

where $\ell_n(k,m)$ is given by [\(2.2\).](#page-2-1) Combining the above facts we obtain that $W_n(f) \in A(\bar{D}^2)$. Since $f \in A(\bar{D}^2)$ was arbitrary, we immediately get that $W_n(A(\overline{D}^2)) \subset A(\overline{D}^2)$.

(ii) Now let $f \in B(\overline{D}^2)$ be fixed. As in the proof of (i), we see that $W_n(f)$ is analytic on D^2 . Since $f(0, 0) = 1$, we see that

 $W_n(f; 0, 0) = 1$. Also, since Re[$f(z, w)$] > 0 for every $(z, w) \in D^2$, we obtain that

$$
Re[W_n(f; z, w)] = \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}} Re[f(ze^{is}, we^{it})]e^{-(s^2+t^2)/\xi_n^2} dsdt > 0.
$$

(iii) Let $\delta > 0$ and $f \in C(\overline{D}^2)$. Assume that (z, w) , $(p, q) \in \overline{D}^2$ and

$$
\sqrt{|z-p|^2+|w-q|^2}\leq \delta.
$$

Then, we have

$$
|W_n(f; z, w) - W_n(f; p, q)| \le \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}} |f(ze^{is}, we^{it}) - f(pe^{is}, qe^{it})| e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

$$
\le \omega_1 (f; \sqrt{|z - p|^2 + |w - q|^2})_{\bar{D}^2}
$$

$$
\le \omega_1 (f; \delta)_{\bar{D}^2},
$$

which yields that

 $\omega_1(W_n(f);\delta)_{\bar{D}^2} \leq \omega_1(f;\delta)_{\bar{D}^2}$. The proof is completed. \square

3. Statistical approximation by the operators *Wⁿ*

In order to obtain some statistical approximation theorems we use the concept of *A*-statistical convergence, where $A := [a_{in}], j, n = 1, 2, \ldots$, is any nonnegative regular summability matrix.

Recall that a matrix *A* is regular if $\lim_{i\to\infty} (Ax)_i = L$ whenever $\lim_{n\to\infty} x_n = L$, where the sequence $Ax = ((Ax)_i)_{i\in\mathbb{N}}$ is called the *A*-transform of *x* and defined to be

$$
(Ax)_j := \sum_{n=1}^{\infty} a_{jn} x_n
$$

provided that the series is convergent for each $n \in \mathbb{N}$ (see, e.g., [\[12\]](#page-5-9)). Now, a sequence $x = (x_n)_{n \in \mathbb{N}}$ is said to be *A*-statistically convergent to *L* if, for every $\varepsilon > 0$,

$$
\lim_{j\to\infty}\sum_{n:|x_n-L|\geq \varepsilon}a_{jn}=0,
$$

which is denoted by $st_A - \lim_n x_n = L$ (see [\[13\]](#page-5-10)). If $A = C_1 = [c_{in}]$, the Cesáro matrix of order one defined to be $c_{in} = 1/j$ if $1 \le n \le j$, and $c_{in} = 0$ otherwise, then C_1 -statistical convergence coincides with the concept of statistical convergence, which was first introduced by Fast [\[14\]](#page-5-11). In this case, we use the notation *st* − lim instead of *st*_{*C*1} − lim (see the last section for this situation). Notice that every convergent sequence is *A*-statistically convergent to the same value for any non-negative regular matrix *A*, however, its converse is not always true. Not all properties of convergent sequences hold true for *A*-statistical convergence (or statistical convergence). For instance, although it is well-known that a subsequence of a convergent sequence is convergent, this is not always true for *A*-statistical convergence. Another example is that every convergent sequence must be bounded, however it does not need to be bounded of an *A*-statistically convergent sequence. These important facts explain why we use the statistical convergence method rather than the usual convergence for the approximation process of our operators *Wn*.

In this section, we obtain the following main result.

Theorem 3.1. *Let* $A := [a_{in}]$, j , $n = 1, 2, \ldots$, be a nonnegative regular summability matrix. If $(\xi_n)_{n \in \mathbb{N}}$ is a sequence of positive *real numbers satisfying*

$$
st_A - \lim_n \xi_n = 0, \tag{3.1}
$$

then, for every $f \in A(\bar{D}^2)$ *, we have*

$$
st_A-\lim_n\|W_n(f)-f\|=0.
$$

If we take $A = C_1$ in [Theorem 3.1,](#page-3-0) then we easily get the following statistical approximation result.

Corollary 3.2. Let $(\xi_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers satisfying st $-\lim_n \xi_n = 0$, then, for every $f \in A(\bar{D}^2)$, we have *st* − \lim_{n} $\|W_n(f) - f\|$ = 0*.*

Of course, if we choose $A = I$, the identity matrix, in [Theorem 3.1,](#page-3-0) then we get the next uniform approximation result.

Corollary 3.3. Let $(\xi_n)_{n\in\mathbb{N}}$ be a null sequence of positive real numbers. Then, for every $f \in A(\bar{D}^2)$, the sequence $\{W_n(f)\}_{n\in\mathbb{N}}$ is uniformly convergent to f on \bar{D}^2 .

For proving [Theorem 3.1,](#page-3-0) we need the following two lemmas.

Lemma 3.4. *For every* $f \in A(\bar{D}^2)$, we have

$$
||W_n(f)-f|| \leq \frac{M}{1-e^{-\pi^2/\xi_n^2}} \omega_2(f,\xi_n)_{\partial(D^2)}
$$

for some (finite) positive constant M independent from n.

Proof. Let $(z, w) \in \overline{D}^2$ and $f \in A(\overline{D}^2)$ be fixed. Consider the following subsets of the set \mathbb{D} :

$$
\mathbb{D}_1 := \{ (s, t) \in \mathbb{D} : s \ge 0, t \ge 0 \},
$$

\n
$$
\mathbb{D}_2 := \{ (s, t) \in \mathbb{D} : s \le 0, t \le 0 \},
$$

\n
$$
\mathbb{D}_3 := \{ (s, t) \in \mathbb{D} : s \le 0, t \ge 0 \},
$$

\n
$$
\mathbb{D}_4 := \{ (s, t) \in \mathbb{D} : s \ge 0, t \le 0 \}.
$$

Then, we observe that

$$
W_n(f; z, w) - f(z, w) = \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}} \left\{ f\left(ze^{is}, we^{it}\right) - f(z, w) \right\} e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

\n
$$
= \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_1} \left\{ f\left(ze^{is}, we^{it}\right) - f(z, w) \right\} e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

\n
$$
+ \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_2} \left\{ f\left(ze^{is}, we^{it}\right) - f(z, w) \right\} e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

\n
$$
+ \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_3} \left\{ f\left(ze^{is}, we^{it}\right) - f(z, w) \right\} e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

\n
$$
+ \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_4} \left\{ f\left(ze^{is}, we^{it}\right) - f(z, w) \right\} e^{-(s^2 + t^2)/\xi_n^2} ds dt.
$$

Thus, we have

$$
W_n(f; z, w) - f(z, w) = \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_1} \left\{ f\left(ze^{is}, we^{it}\right) - 2f(z, w) + f\left(ze^{-is}, we^{-it}\right) \right\} e^{-(s^2 + t^2)/\xi_n^2} ds dt + \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_3} \left\{ f\left(ze^{is}, we^{it}\right) - 2f(z, w) + f\left(ze^{-is}, we^{-it}\right) \right\} e^{-(s^2 + t^2)/\xi_n^2} ds dt.
$$

The property [\(1.5\)](#page-1-3) implies that

$$
|W_n(f; z, w) - f(z, w)| \leq \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_1} \omega_2 \left(f, \sqrt{s^2 + t^2} \right)_{\partial(D^2)} e^{-(s^2 + t^2)/\xi_n^2} ds dt + \frac{\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_3} \omega_2 \left(f, \sqrt{s^2 + t^2} \right)_{\partial(D^2)} e^{-(s^2 + t^2)/\xi_n^2} ds dt = \frac{2\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_1} \omega_2 \left(f, \sqrt{s^2 + t^2} \right)_{\partial(D^2)} e^{-(s^2 + t^2)/\xi_n^2} ds dt = \frac{2\lambda_n}{\xi_n^2} \iint_{\mathbb{D}_1} \omega_2 \left(f, \frac{\sqrt{s^2 + t^2}}{\xi_n} \xi_n \right)_{\partial(D^2)} e^{-(s^2 + t^2)/\xi_n^2} ds dt.
$$

Also using [\(1.6\),](#page-1-4) then we obtain that

$$
|W_n(f; z, w) - f(z, w)| \le \frac{2\lambda_n \omega_2(f, \xi_n)_{\partial(D^2)}}{\xi_n^2} \iint_{\mathbb{D}_1} \left(1 + \frac{\sqrt{s^2 + t^2}}{\xi_n}\right)^2 e^{-(s^2 + t^2)/\xi_n^2} ds dt
$$

$$
= \frac{2\lambda_n \omega_2(f, \xi_n)_{\partial(D^2)}}{\xi_n^2} \int_0^{\pi/2} \int_0^{\pi} \left(1 + \frac{\rho}{\xi_n}\right)^2 \rho e^{-\rho^2/\xi_n^2} d\rho d\theta
$$

$$
= \pi \lambda_n \omega_2(f, \xi_n)_{\partial(D^2)} \int_0^{\pi} (1 + u)^2 u e^{-u^2} du
$$

$$
= \frac{M}{1 - e^{-\pi^2/\xi_n^2}} \omega_2(f, \xi_n)_{\partial(D^2)},
$$

where

$$
M=\int_0^\pi (1+u)^2 u e^{-u^2} du < \infty.
$$

Taking supremum over $(z, w) \in \overline{D}^2$ on the last inequality, the proof is completed. \Box

Lemma 3.5 (*See [\[7\]](#page-5-4)*). *Let A* := $[a_{in}]$, *j*, $n = 1, 2, \ldots$, *be a nonnegative regular summability matrix. If* $(\xi_n)_{n \in \mathbb{N}}$ *is a sequence of positive real numbers satisfying* [\(3.1\)](#page-3-1), then we have, for all $f \in C(\bar{\bar{D}}^2)$, that

$$
st_A-\lim_n\omega_2(f;\xi_n)_{\partial(D^2)}=0.
$$

Now we are ready to prove our [Theorem 3.1.](#page-3-0)

Proof of Theorem 3.1. Let $f \in A(\bar{D}^2)$. By [\(3.1\),](#page-3-1) we easily see that

$$
st_A - \lim_n \frac{1}{1 - e^{-\pi^2/\xi_n^2}} = 0.
$$

Then, we may write from [Lemma 3.5](#page-4-0) that

$$
st_A - \lim_{n} \frac{\omega_2(f; \xi_n)_{\partial(D^2)}}{1 - e^{-\pi^2/\xi_n^2}} = 0.
$$
\n(3.2)

Hence, for a given $\varepsilon > 0$, it follows from [Lemma 3.4](#page-3-2) that

$$
U:=\{n\in\mathbb{N}:\|W_n(f)-f\|\geq \varepsilon\}\subseteq\left\{n\in\mathbb{N}:\frac{\omega_2(f;\xi_n)_{\partial(D^2)}}{1-e^{-\pi^2/\xi_n^2}}\geq \frac{\varepsilon}{M}\right\}=:V,
$$

where *M* is the positive constant as in the proof of [Lemma 3.4.](#page-3-2) The last inclusion gives, for every $j \in \mathbb{N}$, that

$$
\sum_{n\in U}a_{jn}\leq \sum_{n\in V}a_{jn}.
$$

Now letting $j \to \infty$ and then using [\(3.2\)](#page-5-12) we obtain that

$$
\lim_j \sum_{n\in U} a_{jn}=0,
$$

which implies

$$
st_A - \lim_n ||W_n(f) - f|| = 0.
$$

The proof is completed. \square

Finally, as in [\[7\]](#page-5-4), if we take $A = C_1$, the Cesáro matrix of order one, and define the sequence $(\xi_n)_{n \in \mathbb{N}}$ by

$$
\xi_n := \begin{cases} 1, & \text{if } n = k^2, \ k = 1, 2, \dots \\ \frac{1}{n}, & \text{otherwise,} \end{cases} \tag{3.3}
$$

then, our statistical approximation result in [Corollary 3.2](#page-3-3) (or, [Theorem 3.1\)](#page-3-0) works for the operators *Wⁿ* constructed with the sequence $(\xi_n)_{n\in\mathbb{N}}$ in [\(3.3\),](#page-5-13) however the uniform approximation to a function $f \in A(\bar{D}^2)$ are impossible since $(\xi_n)_{n\in\mathbb{N}}$ is a non-convergent sequence in the usual sense. Therefore, the last example shows that our statistical approximation process used in this paper is more applicable than the classical one.

References

- [1] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002) 129–138.
- [2] G.A. Anastassiou, O. Duman, On relaxing the positivity condition of linear operators in statistical Korovkin-type approximations, J. Comput. Anal. Appl. 11 (2009) 7–19.
- [3] O. Duman, Statistical approximation theorems by *k*-positive linear operators, Arch. Math. (Basel) 86 (2006) 569–576.
- [4] A.D. Gadjiev, Linear *k*-positive operators in a space of regular functions and theorems of P.P. Korovkin type, Izv. Akad. Nauk Azerb. SSR Ser. Fiz.- Tekh. Mat. Nauk 5 (1974) 49–53. (in Russian).
- [5] N. İspir, Convergence of sequences of *k*-positive linear operators in subspaces of the space of analytic functions, Hacet. Bull. Nat. Sci. Eng. Ser. B 28 (1999) 47–53.
- [6] G.A. Anastassiou, O. Duman, Statistical fuzzy approximation by fuzzy positive linear operators, Comput. Math. Appl. 55 (2008) 573–580.
- [7] G.A. Anastassiou, O. Duman, Statistical convergence of double complex Picard integral operators, Appl. Math. Lett. 23 (2010) 852–858.
- [8] H. Grauert, K. Fritzsche, Several Complex Variables, in: Graduate Texts in Mathematics, vol. 38, Springer-Verlag, New York, Heidelberg, 1976, (Translated from the German).
- [9] S.G. Krantz, Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, RI, 2001, (Reprint of the 1992 edition).
- [10] G.A. Anastassiou, S.G. Gal, Geometric and approximation properties of some singular integrals in the unit disk, J. Inequal. Appl. (2006) 19 pp. Art. ID 17231.
- [11] S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser Boston, Inc., Boston, MA, 2008.
- [12] G.H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.
- [13] A.R. Freedman, J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981) 293–305.
- [14] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.