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a b s t r a c t

In this work, we study the statistical approximation properties of the double-complex
Picard integral operators. We also show that our statistical approach is more applicable
than the classical one.
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1. Introduction

The method of statistical approximation was first considered in the approximation theory by Gadjiev and Orhan [1] for
positive linear operators. Later, this method was improved in approximation by more general linear operators (see [2–5]).
The main purpose of the present work is to obtain some statistical approximation results for the bivariate complex Picard
integral operators. The organization of this work is as follows. In the first section we recall some definitions and set the
main notation used in the work, while, in the second section, we construct our complex Picard operators in two complex
variables and investigate their geometric properties. In the last section, after giving an estimation via the concept of the
second modulus of smoothness, we obtain a statistical approximation theorem for our operators.
In order to obtain some statistical approximation theorems we use the concept of A-statistical convergence, where

A := [ajn], j, n = 1, 2, . . . , is any non-negative regular summabilitymatrix. Recall that amatrixA is regular if limj→∞(Ax)j =
L whenever limn→∞ xn = L, where the sequence Ax = ((Ax)j)j∈N is called the A-transform of x and defined to be
(Ax)j :=

∑
∞

n=1 ajnxn provided that the series is convergent for each n ∈ N (see, e.g., [6]). Now, a sequence x = (xn)n∈N is said
to be A-statistically convergent to L if, for every ε > 0, limj→∞

∑
n:|xn−L|≥ε anj = 0, which is denoted by stA − limn xn = L

(see [7]). If A = C1 = [cjn], the Cesáro matrix of order 1 is defined to be cjn = 1/j if 1 ≤ n ≤ j, and cjn = 0 otherwise; then
C1-statistical convergence coincides with the concept of statistical convergence, which was first introduced by Fast [8]. In
this case, we use the notation st- lim instead of stC1- lim (see the last section for this situation). Notice that every convergent
sequence is A-statistically convergent to the same value for any non-negative regular matrix A; however, the converse is not
always true. Not all properties of convergent sequences hold true for A-statistical convergence (or statistical convergence).
For instance, although it is well-known that a subsequence of a convergent sequence is convergent, this is not always true
for A-statistical convergence. Another example is that every convergent sequence must be bounded; however it does not
need to be bounded for an A-statistically convergent sequence.

2. Construction of the operators

In this section, we mainly use the ideas as in the papers [9,10]. Let
D2 := D× D =

{
(z, w) ∈ C2 : |z| < 1 and |w| < 1

}
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and

D̄2 := D̄× D̄ =
{
(z, w) ∈ C2 : |z| ≤ 1 and |w| ≤ 1

}
.

Assume that f : D̄2 → C is a complex function in two complex variables. If the univariate complex functions f (·, w) and
f (z, ·) (for each fixed z andw ∈ D, respectively) are analytic on D, then we say that the function f (·, ·) is analytic on D2 (see,
e.g., [11,12]). If a function f is analytic on D2, then f has the following Taylor expansion:

f (z, w) =
∞∑

k,m=0

ak,m(f )zkwm, (z, w) ∈ D2, (2.1)

having the coefficients ak,m(f ) given by

ak,m(f ) := −
1
4π2

∫
T

f (p, q)
pk+1qm+1

dpdq, k,m ∈ N0, (2.2)

where T :=
{
(p, q) ∈ C2 : |p| = r and |q| = ρ

}
with 0 < r, ρ < 1.

Now consider the following space:

A
(
D̄2
)
:=
{
f : D̄2 → C; f is analytic on D2, continuous on D̄2 with f (0, 0) = 0

}
. (2.3)

In this case, A
(
D̄2
)
is a Banach space with the sup-norm given by

‖f ‖ = sup
{
|f (z, w)| : (z, w) ∈ D̄2

}
for f ∈ A

(
D̄2
)
.

We now define the double-complex Picard-type singular operators as follows:

Pn(f ; z, w) =
1
2πξ 2n

∫
∞

−∞

∫
∞

−∞

f
(
zeis, weit

)
e−
√
s2+t2/ξndsdt, (2.4)

where (z, w) ∈ D̄2, n ∈ N, f ∈ A(D̄2), and also (ξn)n∈N is a bounded sequence of positive real numbers.
It is not hard to see that if f is a constant function on D̄2, say f (z, w) ≡ C , then we have, for every n ∈ N that

Pn(C; z, w) = C . Hence, the operators Pn preserve the constant functions.
In order to get some geometric properties of the operators Pn in (2.4) we first need the following concepts.
Let us have f ∈ C(D̄2), the space of all continuous functions on D̄2. Then, the first modulus of continuity of f on D̄2,

denoted by ω1(f , δ)D̄2 , δ > 0, is defined to be

ω1(f ; δ)D̄2 := sup
{
|f (z, w)− f (p, q)| :

√
|z − p|2 + |w − q|2 ≤ δ, (z, w), (p, q) ∈ D̄2

}
and the second modulus of smoothness of f on ∂(D2), denoted by ω2(f ;α)∂(D2), α > 0, is defined to be

ω2(f ;α)∂(D2) := sup
{
f
(
ei(x+s), ei(y+t)

)
− 2f

(
eix, eiy

)
+ f

(
ei(x−s), ei(y−t)

)
: (x, y) ∈ R2 and

√
s2 + t2 ≤ α

}
.

Then, by the maximummodulus principle for complex functions of several variables (see, e.g., [11,12]), if
√
s2 + t2 ≤ α, we

observe that∣∣f (zeis, weit)− 2f (z, w)+ f (ze−is, we−it)∣∣ ≤ sup
(z,w)∈D̄2

∣∣f (zeis, weit)− 2f (z, w)+ f (ze−is, we−it)∣∣
= sup

(z,w)∈∂(D2)

∣∣f (zeis, weit)− 2f (z, w)+ f (ze−is, we−it)∣∣
= sup

(x,y)∈R2

∣∣f (ei(x+s), ei(y+t))− 2f (eix, eiy)+ f (ei(x−s), ei(y−t))∣∣ .
Thus, we easily get that∣∣f (zeis, weit)− 2f (z, w)+ f (ze−is, we−it)∣∣ ≤ ω2 (f ;√s2 + t2)

∂(D2)
. (2.5)

Now let f ∈ C
(
D̄2
)
and α > 0. Using the function ϕf : R2 → C defined by ϕf (x, y) = f

(
eix, eiy

)
, we see that

ω2(f ;α)∂(D2) ≡ ω2(ϕf ;α)∂(D2). (2.6)

Therefore, the equivalence in (2.6) enables us to write

ω2(f ; cα)∂(D2) ≤ (1+ c)
2ω2(f ;α)∂(D2). (2.7)

We obtain the following result.

Theorem 2.1. For each fixed n ∈ N, Pn
(
A
(
D̄2
))
⊂ A

(
D̄2
)
.
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Proof. Let n ∈ N and f ∈ A
(
D̄2
)
be fixed. Since f (0, 0) = 0, we easily see that

Pn(f ; 0, 0) =
1
2πξ 2n

∫
∞

−∞

∫
∞

−∞

f (0, 0) e−
√
s2+t2/ξndsdt = 0.

Now we show that Pn(f ) is continuous on D̄2. To see this assume that (p, q), (zm, wm) ∈ D̄2 and that limm(zm, wm) =
(p, q). Hence, we get from the definition of ω1 that

|Pn(f ; zm, wm)− Pn(f ; p, q)| ≤
1
2πξ 2n

∫
∞

−∞

∫
∞

−∞

∣∣f (zmeis, wmeit)− f (peis, qeit)∣∣ e−√s2+t2/ξndsdt
≤

ω1

(
f ,
√
|zm − p|2 + |wm − q|2

)
D̄2

2πξ 2n

∫
∞

−∞

∫
∞

−∞

e−
√
s2+t2/ξndsdt

= ω1

(
f ,
√
|zm − p|2 + |wm − q|2

)
D̄2
.

Since limm(zm, wm) = (p, q), we may write that

lim
m

√
|zm − p|2 + |wm − q|2 = 0,

which implies that

lim
m
ω1

(
f ,
√
|zm − p|2 + |wm − q|2

)
D̄2
= 0

due to the right continuity of ω1 (f , ·) at zero. Hence, we get

lim
m
Pn(f ; zm, wm) = Pn(f ; p, q),

which gives the continuity of Pn(f ) at the point (p, q) ∈ D̄2.
Finally, since f ∈ A

(
D̄2
)
, the function f has the Taylor expansion in (2.1) with the coefficients ak,m(f ) in (2.2). Then, for

(z, w) ∈ D2, we get

f (zeis, weit) =
∞∑

k,m=0

ak,m(f )zkwmei(sk+tm). (2.8)

Since
∣∣ak,m(f )ei(sk+tm)∣∣ = ∣∣ak,m(f )∣∣ for every (s, t) ∈ R2, the series in (2.8) is uniformly convergentwith respect to (s, t) ∈ R2.

Hence, we conclude that

Pn(f ; z, w) =
1
2πξ 2n

∫
∞

−∞

∫
∞

−∞

(
∞∑

k,m=0

ak,m(f )zkwmei(sk+tm)
)
e−
√
s2+t2/ξndsdt

=
1
2πξ 2n

∞∑
k,m=0

ak,m(f )zkwm
(∫

∞

−∞

∫
∞

−∞

ei(sk+tm)e−
√
s2+t2/ξndsdt

)

=
1
2πξ 2n

∞∑
k,m=0

ak,m(f )zkwm
(∫

∞

−∞

∫
∞

−∞

cos (sk+ tm) e−
√
s2+t2/ξndsdt

)

=
2
πξ 2n

∞∑
k,m=0

ak,m(f )zkwm
(∫

∞

0

∫
∞

0
cos (sk+ tm) e−

√
s2+t2/ξndsdt

)

=

∞∑
k,m=0

ak,m(f )`n(k,m)zkwm,

where, for k,m ∈ N0,

`n(k,m) :=
2
πξ 2n

∫
∞

0

∫
∞

0
cos (sk+ tm) e−

√
s2+t2/ξndsdt

=
2
πξ 2n

∫ π/2

0

∫
∞

0
cos [ρ (k cos θ +m sin θ)] e−ρ/ξnρdρdθ

=
2
π

∫ π/2

0

∫
∞

0
cos [uξn (k cos θ +m sin θ)] e−ududθ. (2.9)
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We should remark that

|`n(k,m)| ≤ 1 for every n ∈ N and k,m ∈ N0.

Therefore, for each n ∈ N and f ∈ A
(
D̄2
)
, the function Pn(f ) has a Taylor series expansion whose Taylor coefficients are

given by

ak,m(Pn(f )) := ak,m(f )`n(k,m), k,m ∈ N0. (2.10)

Combining the above facts we obtain the desired result. �

Now consider the following space:

B
(
D̄2
)
:=
{
f : D̄2 → C; f is analytic on D2, f (0, 0) = 1 and Re [ f (z, w)] > 0 for every (z, w) ∈ D2

}
.

Then we have the next result.

Theorem 2.2. For each fixed n ∈ N, Pn
(
B
(
D̄2
))
⊂ B

(
D̄2
)
.

Proof. Let n ∈ N and f ∈ B
(
D̄2
)
be fixed. As in the proof of Theorem2.1,we see that Pn (f ) is analytic onD2. Since f (0, 0) = 1,

we easily get that

Pn(f ; 0, 0) =
1
2πξ 2n

∫
∞

−∞

∫
∞

−∞

f (0, 0) e−
√
s2+t2/ξndsdt = 1.

Finally, we may write that, for every (z, w) ∈ D2,

Re [Pn(f ; z, w)] =
1
2πξ 2n

∫
∞

−∞

∫
∞

−∞

Re
[
f
(
zeis, weit

)]
e−
√
s2+t2/ξndsdt > 0

since Re [f (z, w)] > 0. Thus, the proof is completed. �

Using the definition of ω1(f ; δ)D̄2 for f ∈ C
(
D̄2
)
and δ > 0, we obtain the following theorem.

Theorem 2.3. For each fixed n ∈ N and f ∈ C
(
D̄2
)
, we have

ω1(Pn(f ); δ)D̄2 ≤ ω1(f ; δ)D̄2 .

Proof. Let δ > 0, n ∈ N and f ∈ C
(
D̄2
)
be given. Assume that (z, w), (p, q) ∈ D̄2 and

√
|z − p|2 + |w − q|2 ≤ δ. Then, we

have

|Pn (f ; z, w)− Pn (f ; p, q)| ≤
1
2πξ 2n

∫
∞

−∞

∫
∞

−∞

∣∣f (zeis, weit)− f (peis, qeit)∣∣ e−√s2+t2/ξndsdt
≤ ω1

(
f ;
√
|z − p|2 + |w − q|2

)
D̄2

≤ ω1 (f ; δ)D̄2 .

Then, taking the supremum over
√
|z − p|2 + |w − q|2 ≤ δ, we conclude that

ω1(Pn(f ); δ)D̄2 ≤ ω1(f ; δ)D̄2 ,

whence the result. �

3. Statistical approximation by the operators Pn

We first obtain the following estimate for the operators Pn defined by (2.4).

Theorem 3.1. For every f ∈ A
(
D̄2
)
, we have

‖Pn(f )− f ‖ ≤ Mω2 (f , ξn)∂(D2)

for some (finite) positive constant M.
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Proof. Let (z, w) ∈ D̄2 and f ∈ A
(
D̄2
)
be fixed. We first observe that

Pn(f ; z, w)− f (z, w) =
1
2πξ 2n

∫
∞

−∞

∫
∞

−∞

{
f
(
zeis, weit

)
− f (z, w)

}
e−
√
s2+t2/ξndsdt

=
1
2πξ 2n

∫
∞

0

∫
∞

0

{
f
(
zeis, weit

)
− f (z, w)

}
e−
√
s2+t2/ξndsdt

+
1
2πξ 2n

∫ 0

−∞

∫ 0

−∞

{
f
(
zeis, weit

)
− f (z, w)

}
e−
√
s2+t2/ξndsdt

+
1
2πξ 2n

∫ 0

−∞

∫
∞

0

{
f
(
zeis, weit

)
− f (z, w)

}
e−
√
s2+t2/ξndsdt

+
1
2πξ 2n

∫
∞

0

∫ 0

−∞

{
f
(
zeis, weit

)
− f (z, w)

}
e−
√
s2+t2/ξndsdt.

After some simple calculations, we have

Pn(f ; z, w)− f (z, w) =
1
2πξ 2n

∫
∞

0

∫
∞

0

{
f
(
zeis, weit

)
− 2f (z, w)+ f

(
ze−is, we−it

)}
e−
√
s2+t2/ξndsdt

+
1
2πξ 2n

∫ 0

−∞

∫
∞

0

{
f
(
zeis, weit

)
− 2f (z, w)+ f

(
ze−is, we−it

)}
e−
√
s2+t2/ξndsdt.

It follows from the property (2.5) that, for all (z, w) ∈ D̄2,

|Pn(f ; z, w)− f (z, w)| ≤
1
2πξ 2n

∫
∞

0

∫
∞

0
ω2

(
f ,
√
s2 + t2

)
∂(D2)

e−
√
s2+t2/ξndsdt

+
1
2πξ 2n

∫ 0

−∞

∫
∞

0
ω2

(
f ,
√
s2 + t2

)
∂(D2)

e−
√
s2+t2/ξndsdt

=
1
πξ 2n

∫
∞

0

∫
∞

0
ω2

(
f ,
√
s2 + t2

)
∂(D2)

e−
√
s2+t2/ξndsdt

=
1
πξ 2n

∫
∞

0

∫
∞

0
ω2

(
f ,

√
s2 + t2

ξn
ξn

)
∂(D2)

e−
√
s2+t2/ξndsdt.

If we also consider the property (2.7), then we see that

|Pn(f ; z, w)− f (z, w)| ≤
ω2 (f , ξn)∂(D2)

πξ 2n

∫
∞

0

∫
∞

0

(
1+

√
s2 + t2

ξn

)2
e−
√
s2+t2/ξndsdt

=
ω2 (f , ξn)∂(D2)

πξ 2n

∫ π/2

0

∫
∞

0

(
1+

ρ

ξn

)2
ρe−ρ/ξndρdθ

=
ω2 (f , ξn)∂(D2)

2

∫
∞

0
(1+ u)2 ue−udu

= Mω2 (f , ξn)∂(D2) ,

where

M =
1
2

∫
∞

0
(1+ u)2 ue−udu <∞.

Taking the supremum over (z, w) ∈ D̄2 for the last inequality, the proof is completed. �

In order to get a statistical approximation by the operators Pn we need the following lemma.

Lemma 3.2. Let A := [ajn], j, n = 1, 2, . . . , be a non-negative regular summability matrix. If a bounded sequence (ξn)n∈N
in (2.4) satisfies the condition

stA − lim ξn = 0, (3.1)

then we have, for all f ∈ C
(
D̄2
)
, that

stA − lim
n
ω2(f ; ξn)∂(D2) = 0.

Proof. Let f ∈ C
(
D̄2
)
. Then, the proof immediately follows from (3.1) and the right continuity of ω2(f ; ·)∂(D2) at zero. �
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Now we are ready to give our statistical approximation result.

Theorem 3.3. Let A := [ajn], j, n = 1, 2, . . . , be a non-negative regular summability matrix. Assume that the sequence (ξn)n∈N

is the same as in Lemma 3.2. Then, for every f ∈ A
(
D̄2
)
, we have

stA − lim
n
‖Pn(f )− f ‖ = 0.

Proof. Let f ∈ A
(
D̄2
)
. Then, for a given ε > 0, we may write from Theorem 3.1 that

U := {n ∈ N : ‖Pn(f )− f ‖ ≥ ε} ⊆
{
n ∈ N : ω2(f ; ξn)∂(D2) ≥

ε

M

}
=: V ,

whereM is the positive constant as in Theorem 3.1. Thus, for every j ∈ N, we get∑
n∈U

ajn ≤
∑
n∈V

ajn.

Now taking the limit as j→∞ in both sides of the last inequality and also considering Lemma 3.2 we obtain that

lim
j

∑
n∈U

ajn = 0,

which gives

stA − lim
n
‖Pn(f )− f ‖ = 0.

The proof is completed. �

Taking A = C1, the Cesáro matrix of order 1, in Theorem 3.3 we immediately get the following result.

Corollary 3.4. Let (ξn)n∈N be a bounded sequence of positive real numbers for which

st- lim
n
ξn = 0

holds. Then, for every f ∈ A
(
D̄2
)
, we have

st- lim
n
‖Pn(f )− f ‖ = 0.

Of course, if we choose A = I , the identity matrix, in Theorem 3.3, then we get the following uniform approximation
result.

Corollary 3.5. Let (ξn)n∈N be a null sequence of positive real numbers. Then, for every f ∈ A
(
D̄2
)
, the sequence {Pn(f )}n∈N is

uniformly convergent to f on D̄2.

Finally, define the sequence (ξn)n∈N as follows:

ξn :=

1, if n = k2, k = 1, 2, . . .
1
n
, otherwise.

(3.2)

Then, observe that st- limn ξn = 0. In this case, by Corollary 3.4 (i.e., Theorem 3.3 for A = C1) we obtain that

st- lim
n
‖Pn(f )− f ‖ = 0

for every f ∈ A
(
D̄2
)
. However, since the sequence (ξn)n∈N given by (3.2) is non-convergent, uniform approximation to a

function f by the operators Pn(f ) is impossible.
Notice that our statistical results are still valid when lim ξn = 0 because every convergent sequence is A-statistically

convergent, and so statistically convergent. But, as in the above example, our theorems still work although (ξn)n∈N is non-
convergent. Therefore, we can say that our approach presented in this work is more applicable than the classical approach.
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