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In order to improve their bacterial antifouling property, silicone surfaces were functionalized through the plasma
polymerization (PP) technique using diethyl phosphite as the precursor. The functionalized surfaces were
characterized using contact angle measurements, contact angle titration, Fourier transform infrared–attenuated total
reflection spectroscopy and in vitro cytotoxicity assay. The amount of non-specific protein adsorption and the
conformational changes of surface-adsorbed proteins were investigated. Antifouling properties of the surfaces were
evaluated in vitro and in vivo. PP functionalization generated a hydrophilic and amphoteric surface with a very good
protein and bacterial antifouling property and caused less conformational changes on the secondary structure of
surface-adsorbed proteins. In in vivo conditions, no slime layer was formed around bacteria that adhered on the PP-
functionalized surface. It is concluded that the amphoteric nature of the PP-functionalized surface is the reason for
the good antifouling property.
1. Introduction
Despite the advancements in surgical techniques and biomaterial
design, implant-related infection is still one of the most frequent
and severe complications associated with the use of biomaterials.1

Preventing the initial bacterial colonization on biomaterial surfaces
is the key to reducing the prevalence of biomaterial-related
infections. Amphotericity is known to play an important role in
reducing non-specific bacterial adhesion and is usually generated
by functionalizing the surface of a given biomaterial with desired
bulk properties using polyampholytes (PAs), a method that can
yield excellent non-fouling properties.2–4 PAs are synthesized
through free-radical polymerization, anionic polymerization or
group transfer polymerization and are incorporated into the
surfaces by ‘graft-from’ or ‘graft-to’ methods.5–7 However, the
synthesis and incorporation of PAs can be expensive and
relatively complex, requiring intensive wet chemistry.

In this study, the use of the plasma polymerization (PP) method
to generate amphoteric surfaces as a novel, feasible and
straightforward surface functionalization approach has been
investigated. The efficacy of the functionalized surfaces in
reducing protein adsorption and bacterial adhesion was evaluated.
Generation of amphoteric surfaces through the PP technique is
seldom reported in the literature, and their performance as
functional biomaterials has not been defined so far. Sardella et al.8

successfully generated amphoteric coatings by using a two-
monomer system with acrylic acid and allylamine. Bryjak et al.9

showed that plasma treatment of polysulfone membranes with
nitrogen (N2) yielded amphoteric surfaces due to the many
different groups created on the surface caused by the oxidative
effect of the PP process. In a previous study, the authors showed
that a phosphorus-containing precursor can be used to yield
amphoteric surface properties by generating phosphorus acid and
phosphine groups (–PH3) on the surfaces.10 Most studies on
protein adsorption and bacterial colonization on phosphated
surfaces were conducted using bulk polymers containing
phosphate as side groups, and most of these polymers had low
mechanical strength in hydrated forms.

In this study, diethyl phosphite (DP) was used as the precursor to
functionalize the surface of medical-grade silicone samples.
Medical-grade silicone was chosen as the substrate because it is
one of the most commonly used and most thoroughly tested
materials in medical devices in the form of catheters, drains,
shunts, small joint implants and aesthetic implants,11,12 and
despite its relative inertness, it is still susceptible to bacterial
fouling13,14 and can benefit from such surface functionalization.
Functionalized materials were characterized in terms of surface
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hydrophilicity, surface amphotericity, surface chemistry and in
vitro cytotoxicity. The extent of non-specific protein adsorption
and the conformational changes of surface-adsorbed proteins were
determined. Bacterial antifouling properties were evaluated in
both in vitro and in vivo conditions.
2. Experimental section

2.1 Plasma polymerization
Small fragments of medical-grade silicone (Integra Life Sciences,
USA) were cleaned sequentially by ultrasonication (J.P. Selecta,
Abrera, Barcelona, Spain) in acetone, methanol (Merck,
Darmstadt, Germany) and deionized water for 5 min and dried in
a vacuum oven (Shel Lab, Oregon, USA) at 80°C for 1 h.
Silicone surfaces were modified in a radio-frequency (RF)
(13·56MHz) PP system (Diener Electronic, Nagold, Germany).
Samples were placed in the plasma chamber, and the air in the
chamber had been evacuated to reach 0·10 mbar pressure. The
precursor, DP (98%, Aldrich, Steinheim, Germany), was degassed
by repeated freezing and thawing under vacuum four times using
liquid nitrogen.15,16 Following degassing, the precursor was fed to
the chamber; vapor was allowed to fill the reactor until the
pressure in the reactor reached a level of 0·30 mbar. RF power
was adjusted to 100W, and the substrates were exposed to glow
discharge for 5 min. At the end of the process, the system was fed
with argon gas for 20 min to deactivate free radicals. The
optimization of plasma conditions is reported elsewhere.17

2.2 Contact angle titration
The surface acid–base properties were determined using the
contact angle (CA) titration method.9 Briefly, different
concentrations of hydrochloric acid (HCl) and sodium hydroxide
(NaOH) solutions were prepared in the pH range 1–14 in
deionized water. The pH values of the solutions were recorded
before use. Solution droplets of about 3 µl volumes were dropped
onto the surfaces and recorded using a charge-coupled device
(CCD) camera at 20°C. At least five measurements at different
points were taken for each surface. CAs were calculated using the
computer software Wettability Pro Classic (version 2.0.0, Czech
Republic). Surface apparent acidities (AAs) and surface apparent
basicities (ABs) were calculated according to the method
described by Bryjak et al.9 For the calculations, a flat, smooth
polymer surface was considered and the roughness or chemical
heterogeneity was neglected. Even if those assumptions were
invalid, CA titration depends on the gradient of CA against the
probe molecule concentration on the surface, and thus, adsorption
is the dominant parameter.18

2.3 CA measurements and surface energy calculations
The CA measurements were performed using the sessile drop
technique.19 CAs of deionized water and n-octane on bare and
PP-functionalized surfaces have been measured by dropping
droplets of about 5 µl in volume on the surfaces and recording the
CAs using a CCD camera at 20°C. CAs were calculated using the
computer software Wettability Pro Classic. At least five
 [] on [25/03/19]. Copyright © ICE Publishing, all rights reserved.
measurements at different points were taken for each surface.
Surface free energy (SFE) calculations were performed using the
harmonic mean equation.20

2.4 Fourier transform infrared–attenuated total
reflection spectroscopy

Fourier transform infrared (FTIR) analyses were performed using
a PerkinElmer Spectrum 100 FTIR spectrophotometer equipped
with an attenuated total reflectance (ATR) apparatus and a
diamond crystal using a liquid-nitrogen-cooled mercury cadmium
telluride detector at a resolution of 4 cm−1. For each sample, 512
scans were performed. The spectrum of the PP-treated surface
was further processed by subtracting the bare silicone’s spectrum
from the spectrum of the modified surface.

2.5 Scanning electron microscopy (SEM) imaging
Environmental SEM (ESEM; Quanta 200 FEG model
ESEM, FEI, USA) was used for the visualization of bacterial
adhesion. Bacteria were fixed in a sterile glutaraldehyde (50%;
AppliChem, Germany) solution containing 0·5% (v/v) phosphate-
buffered saline (PBS) for 15 min at ambient temperature. All
samples were coated with a thin layer of gold (about 20 nm) prior
to imaging.

2.6 Protein adhesion and conformation
The effects of surface functionalization on the non-specific protein
adsorption and on the secondary structure of surface-adsorbed
proteins were evaluated. Bovine serum albumin (BSA) was
chosen as the model protein since its secondary structure is
widely investigated in the literature and it is very well
established.21–23 Briefly, substrates were placed in a 10 ml beaker
containing BSA (lyophilized powder ≥98%, Sigma-Aldrich,
Germany) solution at 1 mg/ml concentration in PBS (pH 7·4) and
were incubated in a shaking water bath (N-Biotek Inc., USA) at
37°C for 24 h. The amount of BSA in the solution after 24 h
was determined using an ultraviolet–visible spectrophotometer
(PerkinElmer Lambda 25 spectrophotometer, USA) at 280 nm.

The changes in the secondary structure of surface-adsorbed
proteins were evaluated using FTIR-ATR spectroscopy. For this
purpose, second-derivative and curve-fitting (CF) procedures were
performed. In the fitting procedure, the amide I band was treated
to give a linear baseline between 1720 and 1580 cm−1. Fitting was
performed assuming Gaussian band profiles. Peak positions were
not fixed during fitting.24–27

2.7 In vitro cytotoxicity
A method adapted from the ISO 10993-5 indirect cytotoxicity
standard (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay) was implemented using L929 mouse
fibroblast cells.28 L929 cells were cultured as a monolayer in
Dulbecco’s modified Eagle’s medium (Sigma-Aldrich, USA)
supplemented with 10% fetal bovine serum (Biochrom, Germany)
and 1% L-glutamine (Invitrogen, USA), together with 100 units/ml
penicillin (Invitrogen, USA) and 100 g/ml streptomycin
123
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(Invitrogen, USA). The medium was replaced once in every 3 d,
and the cultures were maintained at 37°C in an air atmosphere
containing 5% carbon dioxide (CO2). When the cells reached 80%
confluence, they were trypsinized with 0·25% trypsin containing
1mM ethylenediaminetetraacetic acid (Invitrogen, USA) and
counted by using a hemocytometer (Hausser Scientific, USA) prior
to use.29 Samples were prewashed with 70% ethanol for 1 h and
sterile PBS buffer and with the culture medium sequentially. After
washing steps, samples were then incubated at 37°C in fresh cell
culture medium for 72 h for the preparation of the extraction media
(n = 8). The extraction ratio was 0·2 g sample/ml cell culture
medium. L929 cells were seeded in empty wells of a 96-well
tissue-culture polystyrene (PS) plate (Corning, USA) at 7 × 103

cells/ml and incubated overnight. The medium was then replaced
with the extraction medium for each type of the specimens, and the
cells were further incubated. After 24 h, the extraction medium was
removed. One hundred microliters of fresh medium and 13 ml
of MTT solution (5 mg/ml, diluted with Roswell Park Memorial
Institute 1640 medium without phenol red) were pipetted to
the each well. Incubation was allowed for another 4 h in the
dark at 37°C. Media were removed, and 100 ml/well
isopropanol–hydrochloric acid (absolute isopropanol containing
0·04M hydrochloric acid) solution was added to dissolve formazan
crystals. The wells were read at 570 nm on Asys Expert Plus
enzyme-linked immunosorbent assay reader, and the percentage of
cell viability was calculated. The viability of the cells cultured with
fresh serum-free medium was used as the control. Cell viability was
defined as 100℅ for the MTT assay control.

2.8 In vitro bacterial adhesion
In vitro bacterial adhesion tests were conducted using a slime-
forming Staphylococcus epidermidis strain (American Type
Culture Collection 35983), which is known to be one of the major
causes of postsurgery biomaterial-associated infections.30 Samples
(n = 5) were incubated in brain heart infusion broth (Lab M, UK)
with suspension of 108 colony-forming units (CFU)/ml
S. epidermidis, after which they were removed from the broth
culture, rinsed with 9 ml sterile 0·85% (w/v) saline solution two
times to remove loosely attached bacteria. Samples were then
placed in 0·85% (w/v) saline solution containing 0·1% (v/v)
Tween 80 and vortexed for 2 min. One milliliter of the suspension
was inoculated onto brain heart infusion agar, diluted as necessary
and incubated at 37°C for 24 h. The resulting colonies were
counted and reported.31

2.9 In vivo bacterial adhesion
The following procedures were applied after receiving
permission/approval from the Animal Ethical Committee of
Hacettepe University, Ankara, Turkey (approval number:
B.30.2.HAC.0.001.00.05/5; approval date: 3 March 2010). Bare and
PP-functionalized samples were preseeded with 108 CFU/ml
S. epidermidis before operation. After 2 h of incubation at 37°C,
samples were washed with sterile physiological saline solution.
Twelve-month-old Sprague–Dawley rats (n = 10, 419 ± 12 g) were
maintained in plastic cages at the laboratory under clean
124
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conventional conditions and fed standard rat chow and water ad
libitum. The animals were allowed to acclimatize to the laboratory
conditions for 1 week prior to the operation and were allowed to
move freely before and after the operation. General anesthesia was
continued by injecting 45mg/kg of ketamine hydrochloride and
5mg/kg of xylazine intramuscularly. Abdominal regions of rats were
shaved and cleaned with iodine solution. Two-centimeter-deep
pockets were opened on their abdominal region through 1 cm
incisions. Preseeded samples were inserted into these pockets, and
the incisions were sutured. At least one sample from each group was
implanted into each rat. After the operation, rats were maintained in
separate cages. After 72 h, rats were scarified with a high dose of
anesthetics (ether) and implanted samples were removed and
transferred into sterile physiological saline solution containing 0·1%
Tween 80 and were cultured immediately. A 72 h of implantation
time was chosen because the critical time for bacterial colonization
leading to biofilm formation occurs in the first 72 h.32

2.10 Statistical analysis
Statistical analysis was performed using one-way analysis of
variance (Anova) with SPSS 13.0 software (SPSS, USA).
p values of less than 0·05 (p £ 0·05) were considered statistically
significant. For bacterial adhesion tests, the results were evaluated
using both one-way Anova and Tukey’s test.
3. Results and discussion

3.1 CA measurements, surface energy calculations and
CA titration

Water CA values of bare silicone and PP-functionalized surfaces
were 98·0 ± 3·0 and 37·1 ± 5·2°, respectively. The SFE values of
bare and PP-functionalized samples were calculated as 27·0 ± 1·2
and 59·8 ± 3·1 mJ/m2, respectively. The SFE value of bare
silicone was close to the SFE values previously reported in the
literature as being between 20 and 33 mJ/m2. An increase in the
SFE after PP functionalization has been observed.

The surface acid/base properties of the materials have been
determined using the CA titration method developed by Bryjak
et al.9 based on the work of Fowkes et al.18 CA titration curves
of bare and PP-functionalized silicone surfaces are given in
Figures 1(a) and 1(b). The surface AA and AB values of the
surfaces were calculated using the corresponding CA titration
curves (Table 1). The surface of bare silicone was slightly basic
with a surface AB of 0·12 µmol/m2. On the other hand, the PP-
functionalized silicone surface showed an amphoteric property
with surface AA and AB values of 1·52 and 1·70 µmol/m2,
respectively (Figures 1(a) and 1(b)). CA titration data suggest that
after plasma modification, both acidic and basic groups (proton
donor and acceptor groups) were present on the surface. The basic
property of bare silicone cannot be solely responsible for the
surface basicity of functionalized samples because the amount of
the surface AB increased from 0·12 to 1·70 µmol/m2 after
functionalization. Functionalization with DP resulted in an
amphoteric and hydrophilic (q < 90°) surface.
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3.2 FTIR-ATR spectroscopy
The FTIR-ATR spectrum of the PP-functionalized surface is given
in Figure 2. The broad peak observed at around 3250 cm−1 is
attributed to the stretching vibrations of Si–OH groups that were
possibly formed due to the oxidation effect of the PP process.33

Peaks observed at around 2958, 2935, 2873 and 1703 cm−1 were
attributed to the C–H stretching vibrations.22,34,35 Peaks observed
between 2700 and 2100 cm−1 were attributed to the acidic
phosphorus acid O–H stretching vibrations. P–H stretching
vibrations of basic phosphine groups were observed at 2028 and
807 cm−1.35 Peaks observed at 1975 and 667 cm−1 were attributed
to C–H bending vibrations, while the peak around 1500 cm−1 was
attributed to the C–O stretching vibration. P=O stretching
vibrations were observed around 1380 and 1234 cm−1, while the
P–O–C stretching vibration was observed at 1054 cm−1.22,34,35

Although the phosphorus acid O–H and P–H groups were not
present in the DP monomer, they were present on the surface after
plasma functionalization, which is probably due to the random
breaking down and reformation of new bonds during the plasma
process. FTIR data also indicate that after plasma modification,
both acidic and basic groups (proton donor and acceptor groups)
were present on the surface. The surface acidic moieties were
possibly formed by the surface phosphorus acid –OH groups. The
surface basicity is believed to be caused by the phosphine groups
(–PH3).

36
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The surface chemistry after plasma modification is highly
dependent on plasma conditions, substrate properties and the
precursor.37 For example, Siow et al.38 used triisopropyl
phosphite and DP to coat the surfaces of silicon wafers and
fluorinated ethylene propylene using a custom-made plasma
reactor. Although both this report and the work of Siow et al.38

showed monomer fragmentation leading to subsequent variety in
the surface composition, their plasma conditions allowed them to
generate phosphate and polyphosphate groups on the surfaces,
while the conditions reported in this paper lead to the formation
of phosphine and phosphorus acid groups.

3.3 Protein adhesion and conformational changes
The amounts of BSA adsorbed on bare silicone and PP-
functionalized silicone were 494·0 ± 12·0 and 36·0 ± 3·0 µg/cm2,
respectively. The amount of BSA adsorption was reduced by
92·7% after surface functionalization.

When surface-adsorbed proteins undergo conformational changes,
the adhesion becomes irreversible and the adhered layer of
proteins induces more adsorption of organic matter from the
environment that surrounds the material. Thus, it is also important
to determine the extent of conformational changes occurring on a
protein’s structure upon its adsorption. The conformational
changes of BSA adsorbed on bare and PP-functionalized silicone
surfaces were investigated using FTIR-ATR. The amide I/II
intensity ratios and components of the amide I band of surface-
adsorbed BSA are given in Figures 3 and 4.

The amide I band (1700–1600 cm−1) represents about 80% of the
C=O stretching vibration of the amide group. The exact wave
number of this vibration depends on the nature of hydrogen
bonding and the particular secondary structure of the protein
being considered, and this structure consists of a number of
Table 1. Inflection points and surface AAs and ABs of bare and
PP-functionalized silicone surfaces
Surface
 pH region
 Inflection point

AA or AB:
µmol/m2
Bare silicone
 <7·0
 pH 4·84
 0·12

PP-functionalized
silicone
<7·0
 pH 4·53
 1·52

>7·0
 pOH 10·50
 1·70
pH
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Figure 1. CA titration of (a) bare silicone surface and (b) PP-functionalized surface. Y, surface tension; q, contact angle of the probe on
the surface
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overlapping component bands such as helices, b-structures, turns
and random structures. The percentage of these components can
be determined using CF procedures with the assumption that the
effective absorptivities of all components are equal.22,34,39,40 In
Figure 3, peaks observed between 1695 and 1670 and 1625 and
1610 cm−1 are assigned to the intermolecular b-structure; between
1690 and 1680 and 1640 and 1630 cm−1, to the intramolecular
b-structure; between 1666 and 1659 cm−1, to the ‘three-turn’
126
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helix; between 1657 and 1648 cm−1, to the a-helix; and between
1645 and 1640 cm−1 to the random coil structure.22

The amide II band (1600–1500 cm−1) consists of N–H bending,
with some C–N stretching, and its exact wave number also
depends on the nature of hydrogen bonding and the particular
secondary structure of the protein being considered. The amide II
band is less sensitive to the conformational changes in the protein
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Figure 2. FTIR-ATR spectrum of PP-functionalized surface
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Figure 3. Amide I band fitted with component peaks of BSA adsorbed on (a) bare silicone surface and (b) PP-functionalized surface
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structure; however, the amide I/II intensity ratio can be used to
identify orientation changes in the protein structure.22,35 Amide I
and amide II maxima, amide I/II ratios and the a-helix content of
BSA adsorbed on surfaces are given in Table 1. The amide I
maximum of bare silicone surface shifted from 1650 ± 2 to 1658
± 2 cm−1 for the PP-functionalized surface. The maxima of the
amide I bands indicate a higher a-helix content for BSA that is
adsorbed on the PP-functionalized surface. The a-helix content of
BSA adsorbed on the surfaces was calculated as the ratio of the
a-helix peak area to the total amide I peak area. The a-helix
contents of BSA adsorbed on bare and PP-functionalized silicone
surfaces were found to be 33·0 ± 5·0 and 45·0 ± 3·0%,
respectively. It should be noted that BSA in solution has an
a-helix content of about 55% and only a small amount of
b-sheets.24,40 The a-helix content of 45·3% upon adsorption on
the PP-functionalized surface suggests that BSA is keeping its
structure much closer to its original level of 55%.

The amide II maximum for BSA adsorbed on the bare silicone
surface was 1538 ± 2 cm−1, while that for BSA adsorbed on the
PP-functionalized surface was 1549 ± 3 cm−1. The amide I/II
intensity ratio, which was 1·33 ± 0·01 for the bare silicone
surface, increased to 1·45 ± 0·01 for the PP-functionalized
surface. In its native form, BSA in solution has an amide I/II ratio
of 1·82 and is reported to decrease to about 1·07 after heat
denaturation.41,42 The decrease in the amide I/II ratio indicates
loss in the a-helix content, which is more pronounced for BSA
adsorbed on the bare silicone surface than that adsorbed on the
PP-functionalized surface, suggesting that the secondary structure
of BSA adsorbed on the bare silicone surface changes to a greater
extent. There is also a significant shift in the position of amide I
maxima depending on the amide I/II ratio. As the amide I/II ratio
decreases for the BSA adsorbed on the silicone surface, the
amide I maximum shifts to 1650 cm−1, and as this ratio decreases
 [] on [25/03/19]. Copyright © ICE Publishing, all rights reserved.
for PP-functionalized surfaces, the amide I maximum shifts to
around 1658 cm−1, again indicating changes in the helix
content.40,42 These results are also consistent with the a-helix
percentages calculated from the amide I band.

The amount of BSA adsorbed on the surface of PP-functionalized
samples were 92·7% less than BSA adsorbed on the bare silicone
surface. In addition, BSA adsorbed on the PP-functionalized
surface maintained its secondary structure at a greater extent
compared to BSA adsorbed on the bare silicone surface.

3.4 In vitro cytotoxicity
The cytotoxicity of silicone after surface functionalization has
been investigated before proceeding with the in vitro tests. It is
known that medical-grade silicone is a biocompatible, non-
cytotoxic material.43 Results showed that there is no significant
difference between the viability of cells exposed to the extraction
medium of PP-functionalized silicone (100·78% ± 0·03%) and
control group (100%) (p > 0·05) (Figure 5). Cells exposed to the
extraction medium of bare silicone had a slightly lower viability
(93·72% ± 0·04%) than the control group (p £ 0·05).

3.5 In vitro bacterial adhesion
It is widely recognized that protein adsorption is an initiating
factor for bacterial adhesion since bacterial receptors recognize
surface-adhered proteins, and it is usually assumed that bacterial
adhesion can be reduced by preventing protein adsorption.
Although this assumption is partly correct, these two aspects
should be evaluated separately.44,45 First, bacteria can adhere to
organic-matter-conditioning surfaces other than proteins. Second,
bacteria can synthesize surface-conditioning extracellular matrix
components (slime) such as enzymes, lipopolysaccharides,
biosurfactants and peptidoglycans to promote adhesion.45–49 In
order to include the effect of both parameters, a slime-forming
(a)
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Figure 4. Amide I and amide II bands of BSA adsorbed on (a) bare silicone surface and (b) PP-functionalized surface
127



Surface Innovations
Volume 7 Issue SI2

In vitro and in vivo bacterial antifouling
properties of phosphite plasma-treated
silicone
Akdogan, Demirbilek, Sen et al.

Download
species of S. epidermidis was used and the adhesion experiments
were carried out in a culture medium that is rich in various
organic matter. The numbers of S. epidermidis that adhered
onto the surface of bare and PP-functionalized silicone were
2·64 × 104 and 3·43 × 102 CFU/cm2, respectively. Surface
functionalization caused 98·70% reduction in bacterial adhesion
(p < 0·05). SEM images (Figure 6) show a high bacterial load
on the bare silicone surface and a lower bacterial load on the
PP-functionalized surfaces. Deformation observed on some
bacterial cells is probably due to the charging of cell walls in the
ESEM environment.

When compared with the results of in vitro adhesion studies
reported in the literature, the 98·70% reduction in the in vitro
128
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adhesion of S. epidermidis reported in this paper can be regarded
as a promising result. Various methods have been developed in
order to prevent bacterial adhesion on biomaterial surfaces such as
antibiotic incorporation in the form of impregnation or surface
attachment,50–54 generation of bacterial antifouling or bacteria-
repelling surfaces,55–59 the use of quorum-sensing antagonists60–62

and incorporation of silver.63–65 The efficacies of these methods
have been extensively investigated in in vitro conditions with the
reduction in surface bacterial adhesion reported as being between
60 and 99%.62,66–74 For example, the adhesion of S. epidermidis
on a titanium surface with bioactive water-soluble copolymers
bearing sulfonate functions has been reported to be reduced by
68% compared to that for the untreated surface,66 while
modification of PS with hyaluronic acid and alginic acid yielded
over 99% reduction in the adhesion of S. epidermidis compared to
that for the untreated surface.75 The use of zwitterions and PAs
for the reduction of bacterial adhesion is a relatively new strategy,
and there are fewer reports on their efficacy.76,77 Mi et al.77

reported that the number of S. epidermidis that adhered onto a
mixed-charge copolymer surface composed of positively charged
quaternary amine and negatively charged carboxylic acid
monomers can be significantly reduced and the adhered bacteria
could be easily removed by changing the environmental pH
conditions. Cheng et al.73 reported that long-chain zwitterionic
poly(sulfobetaine methacrylate) (polySBMA) surfaces grafted
through atom transfer radical polymerization can reduce the
adhesion of S. epidermidis by 92% relative to that for a bare glass
surface. Good antifouling performance (<5% coverage of
Escherichia coli and Staphylococcus aureus) of thin polymeric
films composed of polySBMA brushes controlled through
copolymerizing SBMA and methacryloyloxyethyltrimethyl
ammonium chloride was reported by Guo et al.70 Smith et al.78
(a)
10 µm

(b)
10 µm

Figure 6. SEM images of S. epidermidis on (a) bare silicone surface and (b) PP-functionalized surface
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investigated the effect of polysulfobetaine (polySB) surface
modification of peripherally inserted central catheters (PICCs),
and they reported 97 and 99·9% reduction in the adhesion of
E. coli and S. aureus compared to unmodified PICCs.

3.6 In vivo bacterial adhesion
The numbers of S. epidermidis found on the surface of the
samples removed from rats were 112·71 and 10·33 CFU/cm2 for
bare and PP-functionalized samples, respectively. The number of
adhered S. epidermidis was reduced by 90·83% for the PP-
functionalized sample (p < 0·05). The reduction of in vivo
bacterial adhesion for various surface modification strategies is
reported to be between 70 and 99%.50,78–82 For example, Smith
et al.78 used a rabbit model to investigate the effect of zwitterionic
polySB surface modification of PICCs, and they reported 97%
fewer bacteria isolated from polySB-modified samples compared
to unmodified samples. The in vivo antimicrobial activity of
covalently coupled quaternary ammonium silane (QAS) coatings
on silicone rubber in albino Oxford rats was reported.80

Preoperative seeding with S. aureus resulted in infection of seven
out of eight bare silicone implants compared to one out of eight
QAS-coated implants. Postoperative seeding with S. aureus
resulted in similar infection incidences on both implant types,
while the number of adhering bacteria was reduced by 70% on
QAS-coated silicone rubber.80 Dacron grafts coated with RNAIII-
inhibiting peptide were reported to reduce the adhesion of
S. epidermidis up to 99%.79 Although surfaces that prevent
biofilm formation at early stages are desirable in clinical settings,
in vivo efficacy of many of the attempts of creating such surfaces
is difficult to achieve due to the complex interactions between
surfaces, bacteria and host.83 The results reported in this paper
 [] on [25/03/19]. Copyright © ICE Publishing, all rights reserved.
can be concluded as being efficient in comparison to the results
reported in the literature.50,78–82

SEM images of sample surfaces removed from rats show biofilm
formation on bare silicone surface (Figure 7). A mucosal structure
was formed around bacterial cells, and some cells were buried
into the biofilm structure. On the surface of PP-functionalized
samples, bacterial cells were less frequent and no slime formation
was observed. The crystalline-like structure is thought to be salt
crystals condensed on the surface, probably due to the plasma
process. A similar observation was reported by Kockro et al.50

where SEM images of silicone catheters removed from animals
showed S. epidermidis colonies seeming to be embedded in a
smooth slime matrix. Since slime formation directly leads to
biofilm formation, the ability of PP-functionalized surfaces to
prevent slime formation is very important to prevent biofilm
formation further.

Surface modifications can limit both the amount of non-
specific protein adsorption and the changes in conformation
of surface-adsorbed proteins by altering surface properties
such as hydrophilicity/hydrophobicity and surface charge
density.7,24,39,40,84,85 The non-fouling properties of PP-
functionalized surface are attributed to its amphotericity. The SFE
of PP-functionalized surface was calculated as 59·8 ± 3·1 mJ/m2.
According to the Baier curve which shows the correlation
between SFE and antibiofouling properties, an SFE between
20 and 30 mJ/m2 is regarded as antibiofouling.56,86 The PP-
functionalized surface has an SFE value out of this interval yet
showed better antifouling property than the silicone surface with
an SFE value of 27·0 ± 1·2 mJ/m2. The amphotericity of the
(a)

20 µm

(b)

40 µm

Figure 7. SEM images of S. epidermidis on (a) bare silicone surface removed from rats and (b) PP-functionalized surface removed from
rats
129



Surface Innovations
Volume 7 Issue SI2

In vitro and in vivo bacterial antifouling
properties of phosphite plasma-treated
silicone
Akdogan, Demirbilek, Sen et al.

Download
surface could be a possible explanation for the reduced bacterial
adhesion. Zwitterionic surfaces with good antifouling properties
are shown to have a surface energy around 70 mJ/m2, a value
which is very close to that of water.70 The higher surface energy
reported for the zwitterionic materials when compared to the
surface energy of polyethylene glycol (43–46 mJ/m2) points to the
effect of a higher hydrophilicity of zwitterions.87 In the presence
of low-molecular-weight salts, PAs in their isoelectric state
undergo swelling and result in high water incorporation.88 This
swollen state is assumed to prevent undesired conformational
changes in surface-adhered proteins. The hydrophobic interactions
between protein molecules and cell membranes are also prevented
by shielding the hydrophobic cores produced upon the
perturbation of the native state of biomolecules by way of
hydrophilic shells, thus hampering further conformational
transitions.88 When the ratio between positive and negative
charges is optimized to be around 1:1, which was around 0·9 for
the PP-functionalized surface, PAs show excellent non-fouling
properties due to the nanometer-scale homogeneous mixture of
different charged groups.6 However, more investigations should
be performed on the interfacial free energies, surface charge
distribution and water incorporation to gain insights on the
complex interaction between the functionalized surface and
bacterial cells.

4. Conclusion
In the presented study, a medical-grade silicone surface was
modified using the PP technique to yield an amphoteric surface
using a single precursor, DP. The functionalized surface showed
very good bacterial and protein antifouling properties. PP
functionalization caused less conformational changes in the
secondary structure of BSA adsorbed its surface. The amount of
proteins adsorbed on functionalized surfaces was reduced by
92·7%. In vitro cytotoxicity results showed that PP-functionalized
silicone was non-toxic to L929 cells. Functionalization with DP
caused a 98·70% reduction in S. epidermidis adhesion in vitro
and 90·83% reduction in vivo. It can be concluded that PP DP
functionalization can be a promising method for the generation of
biomaterials with bacterial antifouling properties. The effect of
plasma-generated amphoteric surface property on bacterial
adhesion and conformational transitions of surface-adsorbed
proteins are also reported for the first time. In vivo testing is one
of the most crucial steps in the research and development of
biomaterials; often, new materials cannot be further tested or
marketed without proving their efficacy and safety in animal
models. The challenge is in the establishment of reliable
correlations between the results of in vitro and in vivo studies.89

Although there are many reports on the in vitro evaluation of
bacterial antifouling surfaces, there are a limited number of
reports that assess their in vivo efficacy. Most of the antimicrobial
coating approaches reported in the literature either fail in testing
or cannot reach the status of in vivo animal (preclinical)
experiments and the subsequent in vivo human (clinical) testing
phase.89 Thus, findings related to the in vivo performance of a
new material are believed to contribute to the research efforts in
130
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the field. Hence, the authors believe that this study can further
contribute to the research on non-fouling biomaterials.
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