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Abstract

Background: Drug repositioning is the process of identifying new targets for known drugs. It can be used to
overcome problems associated with traditional drug discovery by adapting existing drugs to treat new discovered
diseases. Thus, it may reduce associated risk, cost and time required to identify and verify new drugs. Nowadays, drug
repositioning has received more attention from industry and academia. To tackle this problem, researchers have
applied many different computational methods and have used various features of drugs and diseases.

Results: In this study, we contribute to the ongoing research efforts by combining multiple features, namely
chemical structures, protein interactions and side-effects to predict new indications of target drugs. To achieve our
target, we realize drug repositioning as a recommendation process and this leads to a new perspective in tackling the
problem. The utilized recommendation method is based on Pareto dominance and collaborative filtering. It can also
integrate multiple data-sources and multiple features. For the computation part, we applied several settings and we
compared their performance. Evaluation results show that the proposed method can achieve more concentrated
predictions with high precision, where nearly half of the predictions are true.

Conclusions: Compared to other state of the art methods described in the literature, the proposed method is better
at making right predictions by having higher precision. The reported results demonstrate the applicability and
effectiveness of recommendation methods for drug repositioning.

Keywords: Drug repositioning, Multiple data sources, Multiple features, Pareto dominance, Collaborative filtering,

Recommendation systems

Background

Traditional drug discovery approaches are characterized
by high cost and high risk [22]. In 2010, some researchers,
e.g., [9], stated that bringing a new drug to the market
takes about 15 years and costs between $800 million to
$1 billion. A recent study, published in 2014 [7], revealed
that developing a new medicine and getting its market
approval takes more than 10 years and costs more than
$2.5 billion. In response to these costs, drug reposition-
ing has recently received considerable attention as a good
alternative which could reduce both time and cost asso-
ciated with seeking new drugs for emerging diseases.
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Instead, existing drugs may be adapted as less risky alter-
natives.

Drug repositioning can be defined as the process of
identifying new targets for known drugs [22]. It does not
aim to replace traditional drug discovery research, but
aims to complement them ([31, 35]). Researchers stated
in [9] that time required to develop a new drug can
be reduced by 30-60% by adapting drug repositioning.
Having knowledge of unknown but more probable drug-
disease relations may help researchers in drug industry to
conduct more targeted laboratory experiments and find
out new targets for known drugs. Another advantage of
drug repositioning compared to new drug development
is that drug repositioning reduces risk because it deals
with drugs which have already passed toxicity and other
tests, and hence have been approved [37]. Some example
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drug repositioning cases are presented in [9]. For instance,
Minoxidil was originally tested for hypertension and then
was found useful for hair loss, Viagra was originally tested
for angina and then was found useful for erectile dysfunc-
tion and pulmonary hypertension, Avastin was originally
developed for metastatic colon cancer and non-small-cell
lung cancer and then it was found useful for metastatic
breast cancer. As a result of the above-mentioned advan-
tages, drug repositioning has received more attention
from industry and academia [9].

Nowadays, with the advancement in technology,
researchers are more capable of reaching different types
of biological data and complex networks which are com-
posed of different types of interactions among biological
components [10]. Using these data sources, many different
computational methodologies may be used to predict pos-
sible new use-cases (repositions) for drugs. As described
in the literature, most researchers tackled the problem
by applying methods from data mining and machine
learning. These methods use a single feature or combina-
tion of features to model drugs. Some example features
used in the process are chemical structures of drugs,
protein targets, side-effect profiles and gene expression
profiles [41].

In this study, we adapted a method from the recommen-
dation systems literature to handle the drug repositioning
problem. The utilized method has already been applied
to produce successful recommendation systems in var-
ious domains, including location recommendation [29]
and bioinformatics for predicting the structure of gene
regulatory networks (GRNs) [30]. The recommendation
method employed in this study is based on Pareto dom-
inance and collaborative filtering. It is also capable of
integrating multiple data-sources and multiple features.
Inspiring from a state-of-the-art method for drug reposi-
tioning [41], we used three types of information; namely
chemical properties, protein targets and side-effect pro-
files. For the calculations, we applied several different
settings and we compared their performance results. The
conducted experiments revealed some promising results
which demonstrate the applicability and effectiveness of
the proposed approach.

As described in the literature, identifying new targets
for known drugs, namely drug repositioning, has recently
received more attention from industry and academia.
The work described in [9] classifies computational drug
repositioning methods into two categories: namely drug-
based and disease-based approaches. Drug-based reposi-
tioning methods initiate their analysis from chemical or
pharmaceutical features of drugs. Disease-based reposi-
tioning methods initiate the analysis from symptomatol-
ogy or pathology features of diseases. Drug repositioning
methods use various features for the computations [41],
e.g., Chemical structure of drugs, proteins and targets
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interaction networks, side-effect of drugs, gene expression
levels and textual features.

There are many drug repositioning methods described
in the literature. However, they mostly use only one fea-
ture: structural and chemical properties of a drug in
relation to diseases it affects. Drugs with high chemi-
cal similarity can be used for drug repositioning [9]. The
works described in [19, 27] are example methods that
use chemical similarity for drug repositioning. Authors of
the work described in [5] stated that common segments
in protein-protein interaction and protein-targets interac-
tion networks can reveal cross-reactions and can be used
for drug repositioning. The works described in [20, 23] use
protein-targets interaction networks. Side effects form
physiological consequences of drugs’ biological activity;
they can provide information on underlying pathways
or physiological systems to which drugs are related [9].
Side-effect similarity between drugs may indicate physio-
logical relatedness between them. The works described in
[1, 40] use side-effect similarity of drugs for drug repo-
sitioning. Similarities at molecular level can also be used
for drug repositioning [9]. For this purpose, the works
described in [12, 13, 34] use gene expressions and molec-
ular activity signatures. Some of the works described in
the literature rely on text mining tools to connect drugs
and diseases [32]. One such method is described in [2].
It applies text mining methods to associate query and
matching terms related to diseases, genes, drugs, muta-
tions and metabolites. It also ranks related sentences and
abstracts.

Recent drug-repositioning methods combined multiple
features to achieve better performance. For instance, the
work described in [22] combined chemical and molecu-
lar features to find out similar drugs. The authors applied
a bipartite graph based method to predict novel indi-
cations of drugs. Luo et al. [26] used drug-drug and
disease-disease similarities to create a graph. Then they
employed random-walk on this graph to extract new
drug-disease relations. Lim et al. [24] used chemical and
protein similarities to create a network of drug-disease
relations. Then they used matrix factorization to decide
on drugs which can be repurposed. They showed that
their proposed method is highly scalable. Gottlieb et al.
[11] used chemical structures, side effects and drug tar-
gets to calculate pairwise similarity of drugs. They used
the calculated similarities as input features for a machine
learning method, namely logistic regression. They pre-
dicted new drug-disease relations. Zhang et al. [41] used
chemical, biological and phenotypical features to calcu-
late drug-drug similarities which are used to find out
k-nearest-neighbors. Then known targets of neighbors are
used for drug repositioning. Qabaja et al. [32] combined
information collected from gene expression profiling and
text mining. They applied logistic regression to predict
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associations between drugs and diseases. Ozgur et al.
[28] used text mining techniques to create a parse tree
which was then used to create a protein-protein net-
work. They also applied some social network analysis
techniques (e.g., degree centrality, closeness) to prioritize
genes’ effect on diseases. Rastegar-Mojarad et al. [33] also
used text mining techniques to repurpose drugs. They col-
lected user comments on drugs and diseases from social
media; they applied a combination of machine learning
and rule based approaches to extract candidates for drug
repurposing. Recent research on big-data in bioinformat-
ics can also reveal new ways to find new indications of
known drugs. The work described in [15, 16] proposed
new methods to identify damages and DNA breaks which
are important for disease investigations and drug design.
The work described in [18] focused on cancer disease and
applied several different machine learning methods for
data reduction and coding area selection, which is consid-
ered as key area for discovering the desired medicine. The
research described in [14, 17] can be used for extracting
drug-disease relations, which aim to predict the primary,
secondary and tertiary protein structure and to handle
large volume biological datasets.

Compared to the works described in the literature, in
this paper we investigate the problem of drug reposi-
tioning from a different perspective which enriches the
current literature related to this field and additionally
confirms the results reported. In particular, we realize
drug repositioning as a recommendation process. In other
words, we argue that it is possible to recommend existing
drugs for treating emerging diseases based on character-
istics of new diseases as compared to characteristics of
existing diseases in relationship with associated effective
drugs. Thus, we apply a method from recommendation
systems domain to tackle the drug repositioning prob-
lem. The employed method is able to integrate multiple
data-sources and multiple features. Similar to the work
of Zhang et al. [41], the proposed method first identifies
drugs most similar to the target drug. Then, it uses known
relations of neighbor drugs to predict new indications
of the target drug. Unlike the work of Zhang et al. [41],
we use a Pareto dominance and collaborative filtering
based method, which has been already used as part of
adapting recommendation systems to other domains,
like venue recommendation and in bio-informatics to
predict the structure of gene regulatory networks. Also,
we have applied several settings for the calculation
and we have compared the performance of the two
methods.

The rest of this paper is organized as follows: “Methods”
section, presents the proposed drug repositioning
method. “Results and discussion” section, includes the
evaluation process and the results. “Conclusions” section
is conclusions and future work.
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Methods

The aim of this work is to predict new uses of known drugs
by analyzing multiple features and multiple data sources.
For this purpose, we adapted a recommendation system
based method which has been successfully applied in
other domains. Fortunately, the results reported from this
study clearly demonstrate the effectiveness and applica-
bility of recommendation methods for drug repositioning.
In other words, the process could be easily mapped to
recommending an existing drug for handling a new dis-
ease by studying characteristics of new diseases in link to
already known diseases and their associated drugs. Zhang
et al. [41] stated that similar drugs are indicators for simi-
lar diseases. Accordingly, in their work they inspired from
similar diseases to reposition target drugs. Realizing the
fact that this approach is similar to collaborative filtering
in the recommendation systems domain, we adapted for
drug repositioning a method that we previously proposed
for classical recommendation purposes [29]. In the fol-
lowing subsections, we first present the proposed method
in general, and then we describe steps of the method in
details.

Pareto dominance and collaborative filtering based
prediction
The utilized recommendation method uses Pareto dom-
inance and collaborative filtering approaches to predict
future venue preferences (i.e, check-in locations) of tar-
get users. Its idea is based on the observation that similar
users tend to visit similar venues. Accordingly, it would
be acceptable to recommend to a target user venues that
have been visited by similar users. As described in [30],
we applied the same concept in the bioinformatics domain
for predicting structure of gene regulatory networks. In
the latter work, target genes are used instead of target
users and accordingly regulated genes are predicted. The
achieved results confirmed promising aspects of adapting
a recommendation system to discover gene regulations.
The success achieved in studying gene regulatory net-
works motivated us to investigate the applicability of rec-
ommendation systems for drug repositioning. The overall
design of the proposed method for drug repositioning is
shown in Fig. 1, where the modules and their interac-
tions are presented. The proposed method is composed
of three main steps, namely similarity calculation, neigh-
bor selection and item (disease) selection. In the similarity
calculation step, each feature is used to determine simi-
larity between drugs. Then, similarities are used to find
most similar drugs, namely neighbors, by a Pareto dom-
inance based method. Then known connections among
neighbor drugs and indicated diseases are used for pre-
diction. Reported at the end is a prediction list of target
drugs and predicted diseases which could be treated by
target drugs.
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Fig. 1 Design of the proposed method
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Details of the proposed method

For the calculations performed in the process, we used
three main features: namely chemical properties of drugs,
protein targets, and side-effect profiles. In this section,
we explain details of the various steps of the proposed
method and how the above-mentioned features are used.

Similarity calculation

In this step, similarity between drugs is calculated for each
type of features. We used several similarity measures in
the calculation, namely Cosine similarity, Jaccard simi-
larity and a similarity score based on Smith-Waterman
sequence alignment. In this section, we present how
these similarity measures are calculated. In the evaluation
section, we present how these similarity measures have
been used and combined , as well as their corresponding
performance results.

Cosine similarity is calculated as depicted in Eq. 1,
where A and B denote drugs. Drugs may be represented
as vectors, where a vector contains one value per feature
to reflect how a drug is related to the specific feature. Sub-
script j in Eq. 1 refers to individual values of a feature
vector. For instance, for the “chemical properties” feature,
a drug may be represented as a binary vector where val-
ues represent the existence/non-existence of a chemical
structure. Similarity between two drugs can be calculated
based on common chemical structures and the length of
the feature vector.

n
Z Aj X Bj
j=1

n n
YA x [ B
j=1 j=1

Jaccard similarity is calculated by invoking Eq. 2, where
|A| represents length of the drug feature vector and
|AB| represents size of common elements in the feature

sim(A,B) = (1)

vector. This similarity measure is also called Tanimoto
index/similarity when the feature vector is binary.
, |AB|
sim(A,B) = —————— 2)
|A| + |B| — |AB]

In the work of Zhang et al. [41], a similarity score
based on Smith-Waterman sequence alignment is used.
In this study, we also applied the same similarity mea-
sure when possible. As explained previously, drugs may
be represented as a feature vector. Entries/elements of
a vector themselves can be represented as sequences.
For instance, a drug can be represented as a vector of
proteins. Proteins themselves may be represented as a
sequence of smaller biological elements. Similarity of
these sequences, e.g., protein sequences, can be calculated
by Smith-Waterman sequence alignment method. After
having Smith-Waterman sequence alignment score, simi-
larity among drugs can be calculated by the formula given
in Eq. 31.

In Eq. 3, V(A) represents the feature vector of drug A4,
and each vector element is composed of a sequence of
smaller elements, where these elements are represented as
Vi(A). Smith-Waterman sequence alignment score com-
puted by Eq. 3 is denoted sims W (V;(A), V;(B)).

VAIHVB)I
Y simsW(Vi(A), V;(B))
i=1 j=1
sim(A,B) = —/ (3)
[V(A)| x [V(B)]
Neighbor selection

In this step, drugs most similar to the target drug (i.e., its
neighbors) are selected. Neighbors are decided using the
similarities calculated in the previous step and by applying
a Pareto dominance based method. In this method, drugs
not dominated by other drugs are selected as neighbors.
Dominance relation among drugs is decided by Eq. 4,
where d; and dj represent drugs and f indicates features.
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According to this equation, if drug d; has at least one
higher similarity value than drug d; and no lower similar-
ity values than drug dj, then drug d; dominates drug dj.

1.0 VYfdi(f) = di(f) and
I di(f) > d;() )

0.0 otherwise

dom(di, d,’) =

An example input and non-dominated solutions are
given in Fig. 2, where the data-set is composed of eight
drugs and the target drug is identified as drug dy. Similar-
ities between drugs for each feature f; are also listed. First,
based on these similarities dominance matrix is created
using Eq. 4. Then non-dominated drugs (i.e., drugs with
zero column total in the dominance matrix) are selected
as neighbors. In this example, ds, dg and d7 are selected as
the drugs most similar to the target drug.

As explained in [29], the application of Pareto domi-
nance based approach on a single iteration may provide
less than the predefined number of neighbors. In order to
collect as many neighbors as predefined, an iterative pro-
cess can be applied. In each iteration, first, non-dominated
neighbors are found and are removed from the first set
of candidates. Then iterations are executed until the pre-
defined number of neighbors are collected. At the end, if
the collected number of neighbors is more than the pre-
defined number (i.e., non-dominated drugs found in the
last iteration are more than expected), neighbors can be
pruned into exact number of neighbors or neighbors list
may remain as it is. These preferences are identified in
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[30]; they are called Multi-Objective Optimization Type
(MOT) setting which could be explained as follows.

¢ Only_Dominates (OD): Execute single iteration to
find non-dominated neighbors. Number of
non-dominated drugs is not set, and it depends
directly on similarity values.

e N_Dominates (ND): Execute multiple iterations to
find non-dominated neighbors. Number of
non-dominated drugs is set exactly to N, i.e., pruning
is applied when necessary.

e At _Least_N_Dominates (AND): Execute multiple
iterations to find non-dominated neighbors. Number
of non-dominated drugs is set to at least N, i.e.,
pruning is not applied.

Item selection

In this step, items to be recommended are selected. For
the problem investigated in this study, selected items are
diseases for which the target drug could be re-positioned.
First candidates are identified by collecting items which
have related neighbors, i.e., some diseases are listed as
indicators for neighbor drugs. For each candidate item
(disease), a score is calculated by Eq. 5, where the score
is denoted score(c,t), candidate item (disease) is denoted c,
the target is denoted ¢, and the neighbor is denoted ». Sim-
ilarity between the target and neighbor drugs is given as
sim(t, n). The function f(n, ¢) represents neighbor drug-
candidate disease relationship score given in the input
data. It is possible to have this score different from zero
and one, but our data-set is represented as binary vectors

Target Drug fi f> f3
drug: dO ﬂ ﬂ ﬂ. ﬂ
di, <0.7, 0.4, 0.1>
d2, <04, 0.5, 0.1>
ds;, <0.2, 0.3, 0.2>
ds, <0.3, 0.7, 0.2>
Input - ds, <0.8, 0.5, 0.3>
similarities
ds, <0.7, 0.8, 0.3>
d7, <0.9, 0.0, 0.4>
N ds, <0.8, 0.5, 0.3>
on-
dominated ds, <0.7, 0.8, 0.3>
drugs d7, <0.9, 0.0, 0.4>
Fig. 2 Example input and non-dominated solutions

¢

d; [0.0 0.0 0.0 0.0 0.0 0.0 0.0
d> 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d; 0.0 0.0 0.0 0.0 0.0 0.0 0.0

di d dz ds ds de g7

|:> ds 0.0 0.0 1.0 0.0 0.0 0.0 0.0

ds 1.0 1.0 1.0 0.0 0.0 0.0 0.0
ds 1.0 1.0 1.0 1.0 0.0 0.0 0.0
d; /0.0 0.0 0.0 0.0 0.0 0.0 0.0

Dominance Matrix:

Vfdi(f) = d;(f)
Afdi(f) > d;(f)

ﬂ

Non-dominated solutions:
Have a zero in the column total in
dominance matrix

and
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to indicate whether a drug has a relation with a disease or
not, and the values of f(n,c) is either one or zero. Higher
item selection score means the target drug has a more
promising relation with the candidate disease.

score(c,t) = Z sim(t,n) x f(n,c) (5)

neNghb

For computing the score, two different settings can be
used. They are called Item Selection Type (IST) settings,
and they are described as follows:

e Sum (SUM): Without considering similarities
between the target and neighbor drugs, votes
(summation of f(n, ¢) values) are calculated for each
candidate. Items (disease) which have highest
number of votes are presented in the output list. This
settings has been already described in [30].

e Weighted Sum (WSUM): For the summation,
sim(t, n) value is also included, where more similar
drugs have more weight in the prediction. Items
(diseases) which have highest scores are included in
the output list.

Results and discussion

For the evaluation, we used the same data-set used
by Zhang et al. [41], which they have shared in their
website (see http://astro.temple.edu/ tua87106/drugreposi
tion.html). In the following subsections, we explain the
data-set, evaluation metrics and evaluation results.

Data set

As the golden data-set, we used the same drug-disease
data provided by Zhang et al. [41]; the dataset was also
used by Li et al. [22]. The dataset integrates three data
sources, namely chemical data, protein data and side-
effects data.

e Chemical data contains 122,022 links between 1007
drugs and 881 PubChem [36] chemical substructures.
Each drug is represented as a binary vector, where
each entry indicates presence or absence of related
chemical substructure. Sparsity of the data-set is
about 86.25%.

e Protein data contains 3152 associations between 1007
drugs and 775 UniProt target proteins. Target drugs
are generated using DrugBank [38]. Sparsity of this
data is 99.60%.

e Side-effects data contains 61,102 connections
between 888 drugs and 1385 side-effects. Sparsity
ratio is 95.03%. Information related to this data has
been generated from SIDER database [21].

Each data source contains information about a single
feature, and features are represented as a binary vector.
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Drugs listed in each data source are not necessarily the
same. Based on this, the overall data-set (combination of
all three data-sources) contains more than 1007 drugs.
Since drugs in each data source may be different, drugs
may have missing information about one or more features.

In this work, after obtaining the dataset of Zhang et al.
[41], we applied a preprocessing step to collect a list of
drug names and for the mapping to drug names in chem-
ical, protein and side-effects data sources. During this
process, we noticed that some drugs may have different
names (synonyms). For example, we found that one drugis
referred to as Ursodiol in chemical data, while it is referred
to as Ursodeoxycholic acid in both protein and side-effect
data. We looked up synonyms from DrugBank website [8].
As a result of the preprocessing step, we obtained 1224
different drugs with the mappings of their names?.

The golden dataset, which is also provided by Zhang
et al. [41], contains associations between 799 drugs and
719 diseases, with 3250 treatment relations (edges). How-
ever, not all drugs listed in this dataset are listed in
the input data sources (chemical, protein and side-effect
data). Since it is nearly impossible to predict targets of a
drug without any prior information, we did not consider
those drugs in the process. The resulting golden dataset
contains 781 drugs, 719 diseases and 3179 associations3.
Here, it is worth mentioning that this dataset may lack
information on recent drug-disease relations which were
not available at the time it was created by Zhang et al. [41].

The overall structure of the dataset is shown in Fig. 3.
Drug-drug relations are created based on their simi-
larities to each other using the above-mentioned data
sources, namely, protein interactions, chemical structures
and side-effects. These data sources are represented as
binary matrices, where rows represent drugs and columns
represent proteins, chemical compounds or side-effects,
depending on the information in the data source. In the
binary matrix, 1 and O are used to indicate whether a rela-
tionship (like causing a certain side-effect) exists or not,
respectively. Drug-disease relations are also represented
as binary matrix, where drugs are listed as rows and dis-
eases are listed as columns. If a drug in a row is known
to be used for the treatment of a disease in a column,
the intersection cell is set to 1; otherwise the cell is set
to 0. In all the data, drugs and diseases have been repre-
sented using their names as text; no other identifier has
been used.

Evaluation metrics

For the evaluation, precision@k, recall@k and F1-measure
metrics are used. The formulas for computing these met-
rics are given in Eqs. 6, 7 and 8, where k indicates out-
put list length, tp denotes true positives, i.e., predicted
and actually indicated diseases, fp denotes false positives,
i.e., predicted but actually not indicated diseases, and fn
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For the evaluation, we used the leave-one-out strategy,
i.e., we removed the target drug and its relations from
the dataset and used the rest in the calculation (Fig. 4).
For example, for target drug Irbesartan we removed drug-
disease relations that already exist in the input dataset.
These diseases are known to be cured by Irbesartan, and
hence they have been used for validation. The output of
our methodology, i.e., predictions of diseases which can be
cured by “Irbesartan” are compared to this validation set.
For each target drug, we computed the metrics explained
above and we reported the average results. Also, noticing
the fact that recent drug-disease relationships don't exist
in the input dataset (since those relations were not known

at the time when the dataset was generated), we addition-
ally compared our predictions to the novel clinical tests,
using ClinicalTrials.gov website.

Evaluation results

We first calculated upper bounds of the performance met-
rics. Figure 5 shows the upper bounds of precision, recall
and F1l-measure for different k values. As expected, pre-
cision is inversely proportional to the value of , i.e., best
precision is achieved for smaller k values, and it decreases
as k increases. Recall has reverse behavior compared to
precision, i.e., it increases as k increases. F1-measure,
which is the harmonic mean of precision and recall,
reaches its best value when k is equal to 4. We stopped
the evaluation when k 20, since recall has already
reached 0.9966.

Setting the output list size to exactly k has one drawback
because not all drugs in the golden dataset have associ-
ation with k-many diseases. If output list size is set to
exactly k, then some predictions will always be wrong. For
example, assume that & is set to 10, and for target drug dj,
disease associations in the golden set is 5. Then, preci-
sion will be at most 0.5. However, if k is set to 10 in a
loosely way to allow the methods to predict at most 10
items, precision may become 1.0. The proposed method
has the ability to predict at most k associations and does
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drugs
[

relations
[

[

Target drug: Drug1

I

Diseases

\/

Fig. 4 Leave-one-out strategy
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not make any random guesses. We argue that making
random guesses for drug-repositioning is not an appropri-
ate idea. It will reduce the benefits of computational drug
repositioning compared to traditional methods.

Figure 6 shows upper bounds of precision, recall and F1-
measure when random guess is not allowed. In this figure,
precision is always 1.0, as expected. The recall increases
as k increases, and this leads to increase in F1-measure. In

our method, we used the value of k in a loosely way, such
that the method can’t produce more than k predictions.
However, it is possible that the proposed method predicts
less than k drug-disease relations per target drug. Here it
is worth noting that the process of making at most k pre-
dictions (without guesses) is more challenging, since the
method should decide on the best output list size for each
target, in addition to making the best prediction.
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© F1-measure
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10 N
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k

Fig. 6 Upper bounds of recall, precision and F1 measures when random guess is not allowed
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We conducted experiments using several settings. We
used different similarity metrics, namely Multi-Objective
Optimization Type (MOT), and Item Selection Type
(IST). For similarity type settings, we concentrated on
four different settings that use Cosine similarity, Jaccard
similarity or Smith-Waterman sequence alignment based
similarity scores for various features, namely chemical,
protein and side-effect features. In the first setting (CCC),
Cosine similarity is used for all features. In the second set-
ting (JJ)), Jaccard similarity is used for all features. In the
third setting (JJC), Jaccard similarity is used for chemical
and side-effect features and Cosine similarity is used for
protein feature. For the last setting (J]S), Jaccard similarity
is used for chemical and side-effect features and Smith-
Waterman sequence alignment based similarity is used for
protein feature.

In the experiments, we need to set two variables, namely
neighbors count (N) and output list size (k). We set maxi-
mum neighbor count and output list size to 20. Instead of
testing with a single value, during the experiments we set
N and kto 1,4, 8,12, 16 or 20 and conducted experiments
using the combination of N and k values. Figures 7, 8 and 9
present the best performance of the proposed method
with different settings. The presented results are calcu-
lated for each N x k combinations, but only results of best
performing values for the related setting are used. The set-
tings are presented on the x-axis and each line reflects a
similarity type (e.g., CCC), MOT (e.g., ND) and IST (e.g.,
SUM), respectively.

Figures 7 and 8 reveal that using weighted summa-
tion for item selection (WSUM) performs equally well
or better than summation (SUM). ND and AND set-
tings as MOT type perform equally well; they perform
better than OD which has the limitation of choosing
non-dominated neighbors on a single iteration and lead
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to selection of few neighbors. ND and AND have abil-
ity to choose more neighbors and performance results
show that choosing more neighbors is more informa-
tive. Using different similarity measures during the
calculations don't effect the performance much. Using
Smith-Waterman sequence alignment based similarity
score for protein feature similarity (JJS) performs slightly
better than others in terms of precision. Figure 9 shows
that the performance of all settings are nearly equal
Considering all figures, observing the performance on
F1-measure indicates that methods which perform good
on precision do not perform good on recall, and methods
which perform good on recall do not perform good on
precision.

Table 1 reports best performance of the settings which
use different similarity metrics in more detail. Perfor-
mance results of each setting are grouped together. In
each group, we report the approach which produced
best precision, best recall and best F1-measure scores.
As expected, precision performed better when there
are fewer predictions and recall performed better when
there are many predictions. While listing only one dis-
ease for a target drug produced better precision, listing
many (20) diseases in prediction produced the best
recall. We observed that using ND or AND method as
Multi-Objective Optimization Type (MOT) performed
better compared to OD. During the experiments, we
observed that OD (Only dominates) type usually finds
few neighbors. We further observed that having more
neighbors is more useful for making better prediction.
When we look at Item Selection Type (IST), we observe
that using weighted sum (WSUM) performs better than
using sum (SUM). This indicates that it is more informa-
tive to integrate similarity between a target drug and its
neighbors. Also comparing the results in Table 1 to the
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upper-bounds in Fig. 6) reveals that the proposed method
is able to achieve around 33% performance.

We observed that several studies described in the drug
repositioning literature prefer to present AUC-ROC (Area
Under Curve - Receiver Operator Characteristic) results.
However, for highly skewed data, it is stated in [6] that
using precision-recall is more informative than using ROC
curves. Prediction based on data which has fewer positive
relations and many negative relations is commonly con-
sidered in the information retrieval literature as “searching
for a needle in haystack! The golden data we used has
similar characteristics, since there are only 3179 posi-
tive relations and 558,360 negative relations. Based on
this observation, we also included AUC-PR scores while
presenting the performance of the proposed method and
settings.

Table 2 reports the calculated AUC-PR scores of the
proposed method and settings. To compute AUC-PR val-
ues of the proposed methods we used code from https://
github.com/andybega/auc-pr/blob/master/auc-pr.r. The
results show that using Jaccard and Smith-Waterman
sequence alignment based similarity scores can lead to
better performance compared to other methods, espe-
cially when the output list size is limited to few predictions
(eg., k=1).

We also compared our proposed method to the meth-
ods described in the literature; the results are reported
in Table 3. Actually, we compared our method to the
state of the art methods which were evaluated using the
same dataset we used in this study, namely Li and Lu
[22], Chiang and Butte [3], and Zhang et al. [41]. For
the proposed method, we presented two settings which

Performance Result (F1-Measure)
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Table 1 The best results when different similarity metrics are used
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SimType N k MOT IST Prec. Recall F1
CCC-Prec. 20 1 ND WSUM 04723 0.0884 0.1489
CCC-Recall 20 20 AND WSUM 0.1894 0.4017 0.2575
CCCF1 4 20 ND WSUM 0.2636 03762 0.3100
JJJ-Prec. 12 1 AND WSUM 04716 0.0862 0.1457
JJJ-Recall 20 20 ND WSUM 0.1891 0.3888 0.2544
JJ-F1 4 20 ND WSUM 0.2621 0.3649 0.3051
JJC-Prec. 12 1 AND WSUM 04723 0.0859 0.1453
JJC-Recall 20 20 ND WSUM 0.1889 0.3885 0.2542
JIC-F1 4 20 ND WSUM 0.2629 0.3652 0.3057
JJS-Prec. 12 1 AND WSUM 0.4864 0.0846 0.1442
JJS-Recall 20 20 ND WSUM 0.2036 0.3671 0.2619
JIS-F1 4 20 ND WSUM 0.2753 0.3473 0.3071

produce best precision and best recall. In the table, we
have included precision, recall and F1-measure results.
We have not included AUC-PR results since the methods
described in the literature usually use ROC and AUC-
ROC results. To be able to compare results from the pro-
posed methods to results from other methods described
in the literature, we have decided to include in the table
sensitivity (recall), specificity and AUC-ROC measures as
well. The importance of using AUC-PR in scale-free net-
works, like biological networks, is also underlined in the
works conducted by Wu et al. [39] and Lotfi et al. [25].
They stated that PR curves are more informative when the
distribution of relations are skewed.

Sensitivity (recall) and specificity are used to create
ROC. Equation 9 shows how specificity (SPC) is calcu-
lated. In the equation t# refers to true negatives, i.e, not
predicted and actually not indicated diseases, and fp rep-
resents false positives, i.e., predicted but actually not indi-
cated diseases. Specificity (SPC) measures performance of
the methods on negative links (i.e., no indication for a dis-
ease). Finally, AUC-ROC values of the proposed method
have been derived using ROCR library in R.

c tn )
o tn+fp

The results reported in Table 3 show that the proposed
method with JJS setting performs better than other meth-
ods in terms of precision and specificity. This indicates
that this method is able to make true predictions for pos-
itive and negative relations; i.e,. its tp and ¢n values are
high. However, it has low recall, indicating that it can-
not predict all true drug-disease relations. This result is
expected, since in this setting number of predictions is set
to 1 (k = 1). Actually, the upper-bound of recall when
k = 1 is around 0.25 (Fig. 6) and the proposed method

is able to achieve 33% of recall performance. Other meth-
ods have lower precision and higher recall and AUC-ROC
values. This reflects that those methods were able to pre-
dict many drug-disease relations (i.e., k has higher value in
their settings), but they also listed many false relations.

The golden data we use is very skewed and has 99.44%
sparsity; i.e., there are many diseases that are irrelevant
to a target drug. We would argue that precision is more
important than recall for this dataset and for the drug
repositioning problem in general, i.e., making the right
prediction for drug-disease relations is more important
than finding all relations. Comparing our method to other
state of the art methods from the literature shows that the
proposed method can achieve higher precision, e.g., when
it predicts a drug-disease relation, nearly half of those
predictions are true.

Table 2 AUC-PR results when different similarity metrics are used

SimType N k MOT IST AUC-PR
CCC-Prec. 20 1 ND WSUM 0.2178
CCC-Recall 20 20 AND WSUM 0.0584
CCC-F1 4 20 ND WSUM 0.0839
JJJ-Prec. 12 1 AND WSUM 0.2181
JJJ-Recall 20 20 ND WSUM 0.0595
JJJ-F1 4 20 ND WSUM 0.0850
JJC-Prec. 12 1 AND WSUM 0.2184
JJC-Recall 20 20 ND WSUM 0.0595
JIC-F1 4 20 ND WSUM 0.0852
JJS-Prec. 12 1 AND WSUM 0.2252
JJS-Recall 20 20 ND WSUM 0.0662
JJS-F1 4 20 ND WSUM 0.0917
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Table 3 Comparison of the proposed method to other state of the art methods from the literature

Type Prec. Recall F1 SPC AUC-ROC
Liand Lu [22] - 0.7700 0.9200 0.8880
Chiang and Butte [3] - 0.7400 0.8500 -

Zhang et al. [41] 0.3452 0.6505 0.4510 - 0.8949
Proposed Method - JJS 0.4864 0.0846 0.1442 0.9995 0.5421
Proposed Method - CCC 0.1894 04017 0.2575 0.9902 0.6960

Lastly, we compared our predictions to novel clinical
tests, using ClinicalTrials.gov website, which collects and
presents information on publicly and privately supported
clinical studies of human participants around the world.
From the website, we looked up a drug and disease rela-
tions predicted by the proposed method with highest
precision value, i.e., Proposed Method - JJS and output
list size (k) is 1. Comparing predictions to golden dataset
reveals that the proposed method predicted 269 true pos-
itives (predicted and actually true relation) and 284 false
positives (predicted, but not actually true relation). When
we use ClinicalTrials.gov for comparison to novel clinical
tests, we realized that 98 of the false positives, nearly 1/3
of the false positives, were actually clinically tested after
the golden dataset was produced. This indicates that these
predictions are actually true. For example, the relation
between drug Amifostine and disease Xerostomia does
not exist in the golden dataset. However, our proposed
method is able to predict this relation. ClinicalTrials.gov
website revealed that there is actually a relation between
drug Amifostine and disease Xerostomia. In Table 4, we
present an example set of predictions made by the combi-
nation Proposed Method - JJS with output list size (k) set
to 1, together with whether these predictions are actually
clinically tested or not*.

Conclusions

Drug repositioning is an essential process for linking
emerging diseases to existing known and well tested drugs
as opposed to seeking the development of new drugs for
such diseases. The latter process is associated with sev-
eral risks and costs which may not be easily affordable.
Thus, repositioning has received considerable attention
in industry and academia. In this paper, we described a
new approach for drug repositioning which performs well
compared to state of the art other approaches described in
the literature. The originality of our approach is realizing
the whole drug repositioning process as a recommen-
dation process where drugs are recommended based on
similarity and overlap between symptoms of diseases and
effectiveness of drugs. This approach opens a new dimen-
sion in the drug repositioning literature by demonstrating
how it is possible to reposition existing computation tech-
niques developed to handle a specific domain and map

them to become effective solutions for other emerging
domains. We illustrated how various computing tech-
niques may contribute to ongoing efforts for drug reposi-
tioning, and hence may help in reducing associated risks,
cost and time required to identify new drugs.

One attraction of our approach is the set of features
used in the process. The approaches described in the lit-
erature employ a variety of computational methods and
various features of drugs and diseases to identify drug-
disease coupling. The most common features used in the
literature are chemical structure of drugs, protein targets
interaction networks, side-effects of drugs, gene expres-
sions and textual features. Computational drug reposi-
tioning methods use a single feature or combine multiple
of them. On the other hand, our recommendation system

Table 4 An example set of predictions (Proposed Method - JJS

and k=1)

Drug Predicted disease Clinical test
Amifostine Xerostomia TRUE
Amprenavir Corneal Ulcer FALSE
Arformoterol Hypertension TRUE
Bimatoprost Asthma FALSE
Buclizine Urticaria FALSE
Clofazimine Vertigo FALSE
Dexamethasone Inflammation TRUE
Fenoldopam Parkinson Disease FALSE
Irbesartan Heart Failure TRUE
Levodopa Asthma TRUE
Mazindol Depressive Disorder FALSE
Mephobarbital Epilepsy FALSE
Nitrofurantoin Diarrhea TRUE
Oxymetazoline Hypotension TRUE
Oxytetracycline Inappropriate ADH Syndrome FALSE
Pemirolast Motion Sickness FALSE
Procarbazine Osteoarthritis FALSE
Temozolomide Hypertension TRUE
Yohimbine Postpartum Hemorrhage FALSE
Zolpidem Heart Failure TRUE
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based method is able to integrate multiple data-sources
and multiple features. The method is based on Pareto
dominance and collaborative filtering to identify drugs
most similar to a target drug, and neighbor drugs are then
used to predict new indication of the target drug. Also,
we applied and compared the performance of several dif-
ferent settings that affect the computation. Experimental
results show that the proposed method is able to achieve
high precision, such that nearly half of the predictions
are true. Comparison to the other methods described in
the literature show that the proposed method is better at
making concentrated predictions with higher true posi-
tive ratio. Having concentrated (fewer and to-the-target)
predictions helps researchers in biology and chemistry
who will use the output drug-disease relation predictions
in their laboratory experiments. In general, the results
show that it is highly promising to use a recommenda-
tion method to tack drug repositioning. In order to further
our research, we intend to use a more up-to-date drug-
disease relations dataset and apply the proposed method
on this new dataset. We plan to use a recent database
which integrates multiple data sources and presents more
recent drug-disease relations [4]. We also want to inte-
grate other known recommendation methods in handling
the drug repositioning problem and to apply these meth-
ods on other (larger) datasets to observe and analyze their
performance in depth. Lastly, we are aware of the fact that
drug-disease relations can be organized in different ways
rather than a flat structure. For example, diseases may
have hierarchical relations or drugs’ features (e.g., drug-
protein relations) may have multiple levels. Future studies
should examine the effects of different structural repre-
sentations of drug-disease relations. Another idea that
future studies may focus on is the representation of drugs
and diseases in the input dataset, where identifiers may be
preferred to using names.

Endnotes

1We used Uniprot to collect protein sequence informa-
tion and ClustalX2 for protein sequence alignment.

2We plan to share the mappings of names on our
website.

3We will share the golden set on our website.

4We will present on our website all predictions made by
all combinations of the proposed method and similarity
metrics with output list size (k) values.

Abbreviations
AND: At_Least_N_Dominates; ND: N_Dominates; OD: Only_Dominates ROC:
Receiver operator characteristic; SUM: Sum; WSUM: Weighted sum

Acknowledgements
Not applicable.

Funding
This research is supported by TUBITAK-BIDEB 2214/A program.

Page 13 of 14

Availability of data and materials
Data and programs will be shared in case the paper will be accepted.

Authors’ contributions

All authors developed the methodology. MGO conducted the experiments
and wrote the manuscript. All authors proofread the manuscript and validated
the results. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
None of the authors have any competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

! Department of Computer Engineering, Middle East Technical University,
Ankara, Turkey. 2Department of Computer Engineering, TOBB University,
Ankara, Turkey. >Department of Computer Science, University of Calgary,
Calgary, AB, Canada.

Received: 14 September 2017 Accepted: 27 March 2018
Published online: 12 April 2018

References

1. Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P. Drug target
identification using side-effect similarity. Science. 2008;321(5886):263-6.

2. ChengD, Knox C, Young N, Stothard P, Damaraju S, Wishart DS.
Polysearch: a web-based text mining system for extracting relationships
between human diseases, genes, mutations, drugs and metabolites.
Nucleic Acids Res. 2008;36(suppl 2):W399-W405.

3. Chiang AP, Butte AJ. Systematic evaluation of drug-disease relationships
to identify leads for novel drug uses. Clin Pharmacol Ther. 2009;86(5):507.

4. Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE,
Johnston SE, Vrcic A, Wong B, Khan M, et al. The drug repurposing hub:
a next-generation drug library and information resource. Nat Med.
2017;23(4):405-8.

5. Csermely P, Korcsmaros T, Kiss HJ, London G, Nussinov R. Structure and
dynamics of molecular networks: a novel paradigm of drug discovery: a
comprehensive review. Pharmacol Ther. 2013;138(3):333-408.

6. Davis J, Goadrich M. The relationship between precision-recall and roc
curves. In: Proceedings of the 23rd international conference on Machine
learning. USA: ACM; 2006. p. 233-40.

7. DiMasi JA. 2014. Cost of developing a new drug. Available: http://csdd.
tufts.edu/news/complete_story/pr_tufts_csdd_2014_cost_study.
Accessed Apr 2016.

8. DrugBank. 2016. Drugbank. Available: http://www.drugbank.ca/.
Accessed Apr 2018.

9. Dudley J, Deshpande T, Butte AJ. Exploiting drug-disease relationships for
computational drug repositioning. Brief Bioinforma. 2011;12(4):303-11.

10. Gligorijevi¢ V, Przulj N. Methods for biological data integration:
perspectives and challenges. J R Soc Interface. 2015;12(112).

11. Gottlieb A, Stein GY, Ruppin E, Sharan R. Predict: a method for inferring
novel drug indications with application to personalized medicine. Mol
Syst Biol. 2011;7(1):496.

12. Hu G, Agarwal P. Human disease-drug network based on genomic
expression profiles. PLoS ONE. 2009;4(8):e6536.

13. lorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R,
Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, et al. Discovery of drug
mode of action and drug repositioning from transcriptional responses.
Proc Natl Acad Sci. 2010;107(33):14621-6.

14. Kamal MS, Chowdhury L, Khan MI, Ashour AS, Tavares JMR, Dey N.
Hidden markov model and chapman kolmogrov for protein structures
prediction from images. Comput Biol Chem. 2017,68:231-44.


http://csdd.tufts.edu/news/complete_story/pr_tufts_csdd_2014_cost_study
http://csdd.tufts.edu/news/complete_story/pr_tufts_csdd_2014_cost_study
http://www.drugbank.ca/

Gulcin Ozsoy et al. BMC Bioinformatics (2018) 19:136

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34

35.

Kamal MS, Nimmy SF. Strucbreak: a computational framework for
structural break detection in dna sequences. Interdisc Sci Comput Life Sci.
2017,9(4):512-27.

Kamal MS, Nimmy SF, Parvin S. Performance evaluation comparison for
detecting dna structural break through big data analysis. Comput Syst Sci
Eng. 2016;31:1-15.

Kamal MS, Parvin'S, Ashour AS, ShiF, Dey N. De-bruijn graph with
mapreduce framework towards metagenomic data classification. Int J Inf
Technol. 2017;1(9):59-75.

Kamal S, Dey N, Nimmy SF, Ripon SH, AliNY, Ashour AS, Karaa WBA,
Nguyen GN, Shi F. Evolutionary framework for coding area selection from
cancer data. Neural Comput & Applic. 2018;29(4):1015-37.

Keiser MJ, SetolaV, Irwin JJ, Laggner C, Abbas Al, Hufeisen SJ,

Jensen NH, Kuijer MB, Matos RC, Tran TB, et al. Predicting new molecular
targets for known drugs. Nature. 2009;462(7270):175-81.

Kotelnikova E, Yuryev A, Mazo |, Daraselia N. Computational approaches
for drug repositioning and combination therapy design. J Bioinforma
Comput Biol. 2010;8(03):593-606.

Kuhn M, Campillos M, Letunic |, Jensen LJ, Bork P. A side effect resource
to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6(1):343.
https://doi.org/10.1038/msb.2009.98.

LiJ, LuZ. A new method for computational drug repositioning using drug
pairwise similarity. 2013 IEEE Int Conf Bioinforma Biomed. 2012;0:1-4.

LiJ, Zhu X, Chen JY. Building disease-specific drug-protein connectivity
maps from molecular interaction networks and pubmed abstracts. PLoS
Comput Biol. 2009;5(7):e1000450.

Lim H, Poleksic A, Yao Y, TongH, He D, Zhuang L, Meng P, Xie L.
Large-scale off-target identification using fast and accurate dual
regularized one-class collaborative filtering and its application to drug
repurposing. PLoS Comput Biol. 2016;12(10):e1005135.

Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review
of network-based approaches to drug repositioning. Brief Bioinforma.
2017;bbx017.

LuoH, Wang J, LiM, Luo J, Peng X, Wu F-X, Pan Y. Drug repositioning
based on comprehensive similarity measures and bi-random walk
algorithm. Bioinformatics. 2016;32(17):2664-71.

Noeske T, Sasse BC, Stark H, Parsons CG, Weil T, Schneider G. Predicting
compound selectivity by self-organizing maps: Cross-activities of
metabotropic glutamate receptor antagonists. ChemMedChem.
2006;1(10):1066-8.

Ozgiir A, VuT, Erkan G, Radev DR. Identifying gene-disease associations
using centrality on a literature mined gene-interaction network.
Bioinformatics. 2008;24(13):i277-i285.

Ozsoy MG, Polat F, Alhajj R. Multi-objective optimization based location
and social network aware recommendation. In: 10th IEEE International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, CollaborateCom 2014, Miami, Florida, USA, October 22-25,
2014. USA: IEEE; 2014. p.233-42.

Ozsoy MG, Polat F, Alhajj R. Inference of gene regulatory networks via
multiple data sources and a recommendation method. In: 2015 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM). USA:
|EEE; 2015. p. 661-4.

Pulley JM, Shirey-Rice JK, Lavieri RR, Jerome RN, Zaleski NM, Aronoff DM,
Bastarache L, Niu X, Holroyd KJ, Roden DM, et al. Accelerating precision
drug development and drug repurposing by leveraging human genetics.
ASSAY Drug Dev Technol. 2017;15(3):113-9.

Qabaja A, Alshalalfa M, Alanazi E, Alhajj R. Prediction of novel drug
indications using network driven biological data prioritization and
integration. J Cheminformatics. 2014;6(1):1-14.

Rastegar-Mojarad M, Liu H, Nambisan P. Using social media data to
identify potential candidates for drug repurposing: a feasibility study.
JMIR Res Protocol. 2016;5(2):e121. https://doi.org/10.2196/resprot.5621.
Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A,
Sage J, Butte AJ. Discovery and preclinical validation of drug indications
using compendia of public gene expression data. Sci Transl Med.
2011,3(96):96ra77-96ra77.

Sisignano M, Parnham MJ, Geisslinger G. Drug repurposing for the
development of novel analgesics. Trends Pharmacol Sci. 2016;37(3):
172-83.

36.

37.

38.

39.

40.

41.

Page 14 of 14

Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. Pubchem:

a public information system for analyzing bioactivities of small molecules.
Nucleic Acids Res. 2009;37(Web Server issue):W623-W633.

Wikipedia. 2016. Wikipedia: Drug repositioning. Available: https://en.
wikipedia.org/wiki/Drug_repositioning. Accessed Apr 2018.

Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B,
Hassanali M. Drugbank: a knowledgebase for drugs, drug actions and
drug targets. Nucleic Acids Res. 2008;36(suppl 1):D901—D906.

Wu Z, Wang Y, Chen L. Network-based drug repositioning. Mol BioSyst.
2013;9(6):1268-81.

Yang L, Agarwal P. Systematic drug repositioning based on clinical
side-effects. PLoS ONE. 2011;6(12):28025.

Zhang P, Agarwal P, Obradovic Z. Computational drug repositioning by
ranking and integrating multiple data sources. In: Blockeel H, Kersting K,
Nijssen'S, Zelezny F, editors. ECML/PKDD (3), ser. Lecture Notes in
Computer Science, vol. 8190. Heidelberg: Springer; 2013. p. 579-94.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
e We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



https://doi.org/10.1038/msb.2009.98
https://doi.org/10.2196/resprot.5621
https://en.wikipedia.org/wiki/Drug_repositioning
https://en.wikipedia.org/wiki/Drug_repositioning

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Pareto dominance and collaborative filtering based prediction
	Details of the proposed method
	Similarity calculation
	Neighbor selection
	Item selection


	Results and discussion
	Data set
	Evaluation metrics
	Evaluation results

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

