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Abstract

In this work, giving a modification of the well-known Szasz–Mirakjan operators, we prove that the error estimation of our
operators is better than that of the classical Szasz–Mirakjan operators. Furthermore, we obtain a Voronovskaya type theorem for
these modified operators.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the approximating operators, Ln , preserve ei (x) = x i (i = 0, 1), i.e., Ln(e0; x) = e0(x) and Ln(e1; x) =

e1(x), n ∈ N. These conditions hold, specifically, for the Bernstein polynomials, the Szász–Mirakjan operators, and
the Baskakov operators (see [1–5]). For each of these operators, Ln(e2; x) 6= e2(x) = x2. Recently, King [6] presented
a non-trivial sequence {Vn} of positive linear operators which approximate each continuous function on [0, 1] while
preserving the functions e0 and e2. Then it is proved that the operators Vn have a better rate of convergence than
the classical Bernstein polynomials whenever 0 ≤ x < 1/3. Statistical variants of King’s results have recently been
studied by Duman and Orhan [7]. Recently, some approximation results on the Meyer–König and Zeller type operators
preserving x2 have been investigated by the authors [8].

The aim of this work is to obtain a sequence of positive linear operators which has a better rate of convergence than
the classical Szász–Mirakjan operators.

We first consider the Banach lattice

E :=

{
f ∈ C[0,+∞) : lim

x→+∞

f (x)
1 + x2 is finite

}
endowed with the norm

‖ f ‖∗ := sup
x∈[0,+∞)

| f (x)|
1 + x2 .
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Then, the set {e0, e1, e2} is a K+-subset of E ; also the space E is isomorphic to C[0, 1] (see, for details, [2]).
Let us now recall that the well-known Szász–Mirakjan operators are defined on the space E as follows:

Sn( f ; x) = e−nx
∞∑

k=0

f
(

k
n

)
(nx)k

k!
, f ∈ E and x ≥ 0. (1)

Note that the series on the right hand side of (1) is absolutely convergent because f ∈ E . Furthermore, every Sn maps
CB[0,+∞), the space of all bounded and continuous functions on [0,+∞), into itself.

Now, for the Szász–Mirakjan operators, the following lemma is known (see, for instance, [1,9]).

Lemma A. Let ei (x) = x i , i = 0, 1, 2, 3, 4. Then, for each x ≥ 0, we have

(a) Sn(e0; x) = 1,
(b) Sn(e1; x) = x,
(c) Sn(e2; x) = x2

+
x
n ,

(d) Sn(e3; x) = x3
+

3x2

n +
x
n2 ,

(e) Sn(e4; x) = x4
+

6x3

n +
7x2

n2 +
x
n3 .

2. Construction of the operators

Let {un(x)} be a sequence of real-valued continuous functions defined on [0,∞) with 0 ≤ un(x) < ∞. Now
consider the following operators:

Dn( f ; x) = e−nun(x)
∞∑

k=0

f
(

k
n

)
(nun(x))k

k!
, (2)

where x ∈ [0,∞), f ∈ E and n ∈ N. It is clear that the operators Dn are positive and linear. Observe that choosing
un(x) = x , our operators Dn turn out to be the classical Szász–Mirakjan operators given by (1).

Now, if we replace un(x) by u∗
n(x) defined as

u∗
n(x) :=

−1 +
√

4n2x2 + 1
2n

, x ≥ 0 and n ∈ N, (3)

then the operators Dn given by (2) reduce to the operators

D∗
n( f ; x) = e−nu∗

n(x)
∞∑

k=0

f
(

k
n

) (
nu∗

n(x)
)k

k!
, f ∈ E and x ≥ 0. (4)

Then, observe that every D∗
n maps CB[0,+∞) into itself. Hence, it follows from Lemma A that

Lemma 2.1. For each x ≥ 0, we have

(a) D∗
n(e0; x) = 1,

(b) D∗
n(e1; x) = −

1
2n +

√
4n2x2+1

2n ,
(c) D∗

n(e2; x) = x2,

(d) D∗
n(e3; x) =

3x2

2n +
1

2n3 +

(
x2

2n −
1

2n3

)√
4n2x2 + 1,

(e) D∗
n(e4; x) = x4

+
1

2n4 +

(
2x2

n2 −
1

2n4

)√
4n2x2 + 1.

Now, fix b > 0 and consider the lattice homomorphism Tb : C[0,+∞) → C[0, b] defined by Tb( f ) := f |[0,b] for
every f ∈ C[0,+∞). In this case, we see that, for each i = 0, 1, 2,

lim
n→∞

Tb
(
D∗

n(ei )
)

= Tb(ei ) uniformly on [0, b]. (5)
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On the other hand, with the universal Korovkin type property with respect to monotone operators (see Theorem
4.1.4 (vi) of [2, p. 199]) we have the following: “Let X be a compact set and H be a cofinal subspace of C(X). If E
is a Banach lattice, S : C(X) → E is a lattice homomorphism and if {Ln} is a sequence of positive linear operators
from C(X) into E such that limn→∞ Ln(h) = S(h) for all h ∈ H , then limn→∞ Ln( f ) = f provided that f belongs
to the Korovkin closure of H”.

Hence, by using (5) and the above property we obtain the following result.

Theorem 2.2. limn→∞ D∗
n( f ) = f uniformly on [0, b] provided f ∈ E and b > 0.

In order to get uniform convergence on [0,+∞) of the sequence {D∗
n( f )} we consider the following subspace E∗

of E :

E∗
:= { f ∈ C[0,+∞) : lim

x→+∞
f (x) is finite}

endowed with the sup-norm.
For a given λ > 0, consider the function fλ(x) := e−λx , (x ≥ 0). Then, for every x ≥ 0 and n ∈ N, we have

D∗
n( fλ; x) = e−nu∗

n(x)
∞∑

k=0

e−λ k
n

(
nu∗

n(x)
)k

k!

= e−nu∗
n(x)

∞∑
k=0

(
nu∗

n(x)e
−λ/n)k

k!

= exp
{
−nu∗

n(x)
[
1 − exp(−λ/n)

]}
.

Observe that

lim
n→∞

D∗
n( fλ) = fλ uniformly on [0,+∞).

Hence using this limit and applying Proposition 4.2.5-(7) of [2, p. 215] one can obtain the next result at once.

Theorem 2.3. limn→∞ D∗
n( f ) = f uniformly on [0,+∞) provided f ∈ E∗.

3. Better error estimation

In this section we compute the rate of convergence of the operators D∗
n defined by (4). Then, we will show that our

operator has better error estimation than that of the classical Szász–Mirakjan operators Sn given by (1). To achieve
this we use the modulus of continuity.

If we define the function ψx , (x ≥ 0), by ψx (y) = y − x , then by Lemma 2.1 one can get the following result,
immediately.

Lemma 3.1. For every x ≥ 0, we have

(a) D∗
n(ψx ; x) = −x −

1
2n +

√
4n2x2+1

2n

(b) D∗
n(ψ

2
x ; x) = 2x2

+
x
n −

x
√

4n2x2+1
n ,

(c) D∗
n(ψ

3
x ; x) = −4x3

+
1

2n3 +

(
2x2

n −
1

2n3

)√
4n2x2 + 1,

(d) D∗
n(ψ

4
x ; x) = 8x4

−
4x3

n −
2x
n3 +

1
2n4 +

(
−

4x3

n +
2x2

n2 +
2x
n3 −

1
2n4

)√
4n2x2 + 1.

Let f ∈ CB[0,+∞) and x ≥ 0. Then, the modulus of continuity of f denoted by ω( f, δ) is defined to be

ω( f, δ) = sup
|y−x |≤δ

x,y∈[0,+∞)

| f (y)− f (x)| .

Then we have the following
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Theorem 3.2. For every f ∈ CB[0,+∞), x ≥ 0 and n ∈ N, we have∣∣D∗
n( f ; x)− f (x)

∣∣ ≤ 2ω( f, δx ),

where δx :=

√
2x
(
x − u∗

n(x)
)

and u∗
n(x) is given by (3).

Proof. Now, let f ∈ CB[0,+∞) and x ≥ 0. Using linearity and monotonicity of D∗
n we easily get, for every δ > 0

and n ∈ N, that∣∣D∗
n( f ; x)− f (x)

∣∣ ≤ ω( f, δ)
{

1 +
1
δ

√
D∗

n
(
ψ2

x ; x
)}
,

Now applying Lemma 3.1(b) and choosing δ = δx the proof is completed. �

Remark. For the classical Szász–Mirakjan operators Sn given by (1) we know that, for every f ∈ CB[0,+∞), x ≥ 0
and n ∈ N,

|Sn( f ; x)− f (x)| ≤ 2ω( f, αx ), (6)

where αx :=

√
x
n .

Now we claim that the error estimation in Theorem 3.2 is better than that of (6) provided f ∈ CB[0,+∞) and
x ≥ 0. Indeed, for x ≥ 0 and n ∈ N, we have

√
4n2x2 + 1 ≥ 2nx , which yields that

−
1

2n
+

√
4n2x2 + 1

2n
≥ x −

1
2n
. (7)

It follows from (3) and (7) that x − u∗
n(x) ≤

1
2n . This guarantees that δx ≤ αx for x ≥ 0, which corrects our claim.

4. A Voronovskaya type theorem

In this section, we prove a Voronovskaya type theorem for the operators D∗
n given by (4).

We first need the following lemma.

Lemma 4.1. limn→∞ n2 D∗
n
(
ψ4

x ; x
)

= 3x2 uniformly with respect to x ∈ [0, b] with b > 0.

Proof. Then, by using (3) in Lemma 3.1(d) and after some simple calculations, we may write that

n2 D∗
n

(
ψ4

x ; x
)

= −
4nx3

2nx +
√

4n2x2 + 1
+

2x2

2nx +
√

4n2x2 + 1

+ 2x

(
−1 +

√
4n2x2 + 1
n

)
+

1 −
√

4n2x2 + 1
2n2 .

Now taking limit as n → ∞ on both sides of the above equality we obtain

lim
n→∞

n2 D∗
n

(
ψ4

x ; x
)

= −x2
+ 0 + 4x2

+ 0 = 3x2

uniformly with respect to x ∈ [0, b], (b > 0), which completes the proof. �

Theorem 4.2. For every f ∈ E such that f ′, f ′′
∈ E, we have

lim
n→∞

n
{

D∗
n( f ; x)− f (x)

}
=

1
2

x f ′′(x)−
1
2

f ′(x)

uniformly with respect to x ∈ [0, b], (b > 0).

Proof. Let f , f ′, f ′′
∈ E . Define

Ψ(y, x) =


f (y)− f (x)− (y − x) f ′(x)−

1
2 (y − x)2 f ′′(x)

(y − x)2
, if y 6= x

0, if y = x .



1188 O. Duman, M.A. Özarslan / Applied Mathematics Letters 20 (2007) 1184–1188

Then by assumption we have Ψ(x, x) = 0 and the function Ψ(·, x) belongs to E . Hence, by Taylor’s theorem we get

f (y) = f (x)+ (y − x) f ′(x)+
(y − x)2

2
f ′′(x)+ (y − x)2Ψ(y, x).

Now from Lemma 3.1(a)–(b)

n{D∗
n( f ; x)− f (x)} = n

(
x − u∗

n(x)
) (

x f ′′(x)− f ′(x)
)

+ nD∗
n

(
ψ2

x (y)Ψ(y, x); x
)
. (8)

If we apply the Cauchy–Schwarz inequality for the second term on the right hand side of (8), then we conclude
that

n
∣∣∣D∗

n

(
ψ2

x (y)Ψ(y, x); x
)∣∣∣ ≤

(
n2 D∗

n(ψ
4
x (y); x)

) 1
2
(

D∗
n(Ψ

2(y, x); x)
) 1

2
. (9)

Let η(y, x) := Ψ2(y, x). In this case, observe that η(x, x) = 0 and η(·, x) ∈ E . Then it follows from Theorem 2.2
that

lim
n→∞

D∗
n

(
Ψ2(y, x); x

)
= lim

n→∞
D∗

n (η(y, x); x) = η(x, x) = 0 (10)

uniformly with respect to x ∈ [0, b], (b > 0). Now considering (9) and (10), and also using Lemma 4.1, we
immediately see that

lim
n→∞

nD∗
n

(
ψ2

x (y)Ψ(y, x); x
)

= 0 (11)

uniformly with respect to x ∈ [0, b]. On the other hand, observe now that, by (3),

lim
n→∞

n
(
x − u∗

n(x)
)

=
1
2
. (12)

Then, taking limit as n → ∞ in (8) and using (11) and (12) we have

lim
n→∞

n
{

D∗
n( f ; x)− f (x)

}
=

1
2

(
x f ′′(x)− f ′(x)

)
uniformly with respect to x ∈ [0, b]. The proof is completed. �

Finally, as in Theorem 2.3, one can obtain the following result at once.

Theorem 4.3. For every f ∈ E∗ such that f ′, f ′′
∈ E∗, we have

lim
n→∞

n
{

D∗
n( f ; x)− f (x)

}
=

1
2

x f ′′(x)−
1
2

f ′(x)

uniformly with respect to x ∈ [0,+∞).
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