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In this study, a semi-Markovian random walk with a discrete interference of chance (X(t))
is considered and under some weak assumptions the ergodicity of this process is discussed.
The exact formulas for the first four moments of ergodic distribution of the process X(t) are
obtained when the random variable f1, which is describing a discrete interference of
chance, has a triangular distribution in the interval [s, S] with center (S + s)/2. Based on
these results, the asymptotic expansions with three-term are obtained for the first four
moments of the ergodic distribution of X(t), as a � (S � s)/2 ?1. Furthermore, the asymp-
totic expansions for the variance, skewness and kurtosis of the ergodic distribution of the
process X(t) are established. Finally, by using Monte Carlo experiments it is shown
that the given approximating formulas provide high accuracy even for small values of
parameter a.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Many interesting problems resulting from the theories of stock control, reliability, queuing, mathematical biology, sto-
chastic finance, mathematical insurance and so on can be expressed by random walk or by the help of the modification
of this process. There are many valuable studies on these processes in the literature (for examples [1–9]). However, the exist-
ing studies are generally theoretical and they are not exactly helpful to solve concrete problems in practice due to the com-
plexity of their mathematical formulas. Therefore, in addition to exact formulas, several approximated formulas are offered
for these kinds of problems in the literature (for examples [1,2,4,8–13]). The approximated formulas are generally simpler
and easier in application. But, on the other hand, it is necessary that the approximated formulas should be sufficiently close
to the exact expressions. One of the most effective methods to obtain these kinds of approximated formulas is the asymptotic
method. In many cases it is possible to obtain approximated formulas, which are closer to the exact expressions, by increas-
ing the number of terms in the obtained asymptotic expansions. However, when the number of terms in the asymptotic
expansions is considerably increased, the approximated expressions start to lose their simplicity and meaning. Therefore,
in this study we consider only three-term asymptotic expansions. Let us give the following models before going to analyze
the main problem.
. All rights reserved.
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1.1. The model

Suppose that, any system is in state z = s + x at initial time t = 0. Here, s > 0 is a predefined control level and x P 0. Signals
of demands and supplies are included in the system at random times Tn ¼

Pn
i¼1ni;n � 1. System passes from one state (X(t))

to another by jumping at time Tn, according to quantities of demands or supplies {�gn}, n P 1 as follows:
XðT1Þ � X1 ¼ z� g1; XðT2Þ � X2 ¼ z� g1 � g2; . . . ;XðTnÞ � Xn ¼ z� g1 � g2 � . . .� gn; . . .
This variation of system continues until a certain random time s1, which is referred to as the first crossing time from the
control level s > 0. When the system crosses the control level s > 0, the system is immediately brought to the position f1,
where the random variable f1 has a certain distribution in the interval [s, S]. We define one period as the time between
two consecutive epochs at which the state of system (X(t)) crosses s > 0. According to this definition, first period ends at
s1, the second ends at s2, and so on. Then,
Xðsn þ 0Þ ¼ fn; n ¼ 1;2;3; . . .
Here fn ’s had the same distribution as f1.
Our aim, in this paper, is to construct a stochastic process X(t), which mathematically describes the model above and to

obtain three-term asymptotic expansions for first the four ergodic moments of the process X(t). Moreover, for testing the
accuracy of the obtained approximation formulas, we will use the Monte Carlo simulation exact expressions. Note that ana-
logically stochastic process with exponentionally distributed interference of chance is investigated in the study [10]. But in
the present study the random variable f1 which describes a discrete interference of chance has a triangular distribution in
the interval [s, S] with center (S + s)/2. In other words, it is desired that f1 takes values close to S and s with a very low prob-
ability. Having f1 very close to S increases the average inventory level, which, in turn, increases the holding cost. On the other
hand, if f1 takes values close to s, then the system may re-start again in very short time intervals. This is not desirable in
practice as it increases the number of orders, which causes an increase in the total ordering cost.

The following specific (real) model explain why the random variable f1 which describes a discrete interference of chance
may be a triangular distribution in the interval [s, S].
1.2. Real model

A company operating in the energy sector produces, stores, fills and distributes liquefied petroleum gas (LPG). Domestic
LPG distribution is carried out through pipelines and land transport. Where there is no pipeline installation, gas is distributed
through land transport. LPG is carried from the LPG production center (a city in Turkey) to the 30 dealers by tankers with the
capacities of 22 m3 (approx. 10–11 tons) and 35 m3 (approx. 17–18 tons). The tankers are kept under surveillance with Glo-
bal Positioning System (GPS) 24 h and seven days. After delivering the needed amount of gas to the dealer, if more than 10%
of the capacity of the tanker is left over, the tanker waits in its position until the next order of the dealer. Each dealer has a
storage capacity of S = 30 m3 (one storage tank of 30 m3 or two storage tanks 10 and 20 m3). Random amounts of LPG (gn) are
sold from these storage tanks at random times (nn). When at random moments sn, n P 1 the level of LPG in the tank of the
dealer falls below the control level s = S/5, a demand signal is automatically sent online to the production center. As a re-
sponse to this demand, the nearest tanker(s) to the dealer is directed to the demanding dealer. If there is no tanker near
the dealer, a full tanker is sent from the production center.

For security concerns (in order not to let the gas pressure reach its maximum value), the dealers usually fill 85% of the
capacity (S) of their tanks. However, by taking a risk the dealers fill their tanks to the full capacity when need arises. On
the other hand, even if the amount of gas in the tanker does not meet 85% of the dealer’s tank, the amount of gas in the tanker
is loaded into the dealer’s tank.

To sum up the working principle explained above, after each filling, 85% of the tank of each dealer is most probably filled.
With a remote possibility, the capacities of the tanks are used to their lowest limit s or to the highest limit S.

Therefore, in our opinion, the process which explains the working of the storage explained above can be considered as a
stochastic process with a triangular distributed interference of chance.

Now, let us construct the process X(t) from the mathematical point of view.
2. Mathematical construction of the process X(t)

Let {(nn, gn, fn)}, n = 1, 2, 3,..., be a sequence of independent and identically distributed triples of random variables defined
on any probability space (X, I, P), such that nn’s are positive, gn’s take negative values as well as positive ones, fn ’s have a
triangular distribution in the interval [s, S], with center (S + s)/2. Suppose that n1, g1, f1 are mutually independent random
variables and their distribution functions are known, i.e.
UðtÞ ¼ Pfn1 � tg; FðxÞ ¼ Pfg1 � xg; pðzÞ ¼ Pff1 � zg; t > 0; x > 0; z 2 ½s; S�:
Define renewal sequence {Tn} and random walk {Sn} as follows:
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Tn ¼
Xn

i¼1

ni; Sn ¼
Xn

i¼1

gi; T0 ¼ S0 ¼ 0; n ¼ 1;2; . . .
Introduce a sequence of integer valued random variables {Nn} as:
N0 ¼ 0; Nnþ1 ¼ inffk � Nn þ 1 : fn � Sk þ SNn < sg; n � 0; f0 ¼ z 2 ½s; S�:
Here inf{£} = +1 is stipulated.
Put sn ¼ TNn , n P 0 and define the m(t) as:
mðtÞ ¼maxfn � 0 : Tn � tg:
We can now construct desired stochastic process X(t) as follows:
XðtÞ ¼ fn � SvðtÞ þ SNn ; if sn � t < snþ1; n ¼ 0;1;2; . . . ; f0 ¼ z 2 ½s; S�:
The process X(t) is called a semi-Markovian random walk with triangular distributed interference of chance. One of the tra-
jectories for the process X(t) as shown in Fig. 1:

The main aim of this study is to investigate the asymptotic behaviour of the stationary moments of X(t) as
a � (S � s)/2 ?1. For this purpose, we first discuss the ergodicity of the process X(t).

Introduce the following notations:
anðx; zÞ ¼ Pfz� Sk � s; k ¼ 1; n; z� Sn � xg; n � 1;

a0ðx; zÞ ¼ eðx� zÞ;
where e(t) = 1 as t P 0 and e(t) = 0 as t < 0;
Aðx; zÞ ¼
X1
n¼0

anðx; zÞ; Aðx; �Þ ¼
Z S

s
Aðx; zÞdpðzÞ:
3. Preliminary discussions

To investigate the stationary characteristics of the considered process, it is necessary to prove that X(t) is ergodic under
some assumptions. This property can be given by the following proposition.

Proposition 3.1. Let the initial sequence of the random variables {(nn, gn, fn)}, n P 1 satisfy the following supplementary
conditions:

(i) 0 < En1 <1, (ii) 0 < Eg1 <1, (iii) g1 is non-arithmetic random variables.

Then the process X(t) is ergodic and the following expression is correct with probability 1, for each measurable bounded function
f(x) (f:[s, S] ? R):
Fig. 1. One of the trajectories of the process X(t).
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lim
t!1

1
t

Z t

0
f ðXðuÞÞdu ¼ 1

Að1; �Þ

Z S

s
f ðxÞdxAðx; �Þ; ð3:1Þ
where Að1; �Þ � lim
x!1

Aðx; �Þ.

Proof. The process X(t) belongs to wide class of the processes which is known in the literature as a class of the semi-Markov
processes with a discrete interference of chance. Furthermore, the ergodic theorem of type Smith’s ‘‘key renewal theorem”
exists in the literature for this class (see, Gihman and Skorohod [14], p. 243). Since the assumptions of this general theorem
have been provided under the conditions of Proposition 3.1, the process X(t) is ergodic and Eq. (3.1) have been provided with
a probability 1. h

Let us put uXðaÞ � lim
t!1

EfexpðiaXðtÞÞg;a 2 R.
Using the basic identity for random walks (see, Feller [15], p. 514) and Proposition 3.1, we obtain the following Proposi-

tion 3.2.

Proposition 3.2. Suppose that the assumptions of Proposition 3.1 are satisfied and random variable f1, which is describes a
discrete interference of chance, has a triangular distribution in the interval [s, S] with center (S + s)/2. Then the characteristic
function uxðaÞ of the ergodic distribution of the process X(t) can be expressed by means of the characteristics of the pair (N(x), SN(x))
and random variable g1 as follows:
uXðaÞ � lim
t!1

EfeiaXðtÞg ¼ 1
EN

Z S

s
eiaz

uSNðz�sÞ
ð�aÞ � 1

ugð�aÞ � 1
dpðzÞ; ð3:2Þ
where
EN ¼
Z S

s
EN1ðz� sÞdpðzÞ; uSN

ðaÞ ¼ E expðiaSN1 Þ;

ugðaÞ ¼ E expðiag1Þ; a 2 R n f0g:
4. Exact formulas for the first four moments of the ergodic distribution

The aim of this section is to express the first four moments of the ergodic distribution of the process X(t) by the appro-
priating ones of the boundary functional SN(z�s) and random variable g1. For this, let us introduce the following notations:
mk ¼ Eðgk
1Þ; MkðxÞ ¼ E Sk

NðxÞ

� �
; k ¼ 1;5; x > 0
and for the shortness of expressions we put
mk1 ¼
mk

m1
; Mk1ðxÞ ¼

MkðxÞ
M1ðxÞ

; k ¼ 2;5;

JknðaÞ ¼
Z 2a

0
xnMkðxÞpaðxÞdx; k ¼ 1;5; n ¼ 0;4; a � ðS� sÞ=2;

paðxÞ ¼ p0ðxþ sÞ ¼ x
a2 ; if 0 � x < a and paðxÞ ¼ p0ðxþ sÞ ¼ 2a� x

a2 if a � x � 2a;

EðXkÞ ¼ lim
t!1

EððXðtÞÞkÞ; k ¼ 1;4;
where XðtÞ � XðtÞ � s.

For the measurable and bounded function M(x):
c�MðxÞ ¼ c

R x
0 MðuÞdu; x > 0, where, c is constant.

We can now state the first main result of this section as follows:

Theorem 4.1. Suppose that the conditions of the Proposition 3.2 and E|g1|3 <1 are satisfied. Then the first and second moments
of the ergodic distribution of the process XðtÞ exist and can be expressed by means of the characteristics of the boundary functional
SN(x) and random variable g1 as follows:
EðXÞ ¼ 2J11ðaÞ � J20ðaÞ
2J10ðaÞ

þ A1; ð4:1Þ

EðX2Þ ¼ 1
J10ðaÞ

J12ðaÞ � J21ðaÞ þm21 J11ðaÞ �
1
2

J20ðaÞ
� �

þ 1
3

J30ðaÞ
� �

þ A2; ð4:2Þ
where
A1 ¼
m21

2
; A2 ¼

m2
21

2
�m31

3
:



R. Aliyev et al. / Applied Mathematical Modelling 34 (2010) 3599–3607 3603
Theorem 4.2. Suppose that the conditions of the Proposition 3.2 and E|g1|5 <1 are satisfied. Then the third and fourth moments
of the ergodic distribution of the process X(t) exist and can be expressed by means of the characteristics of the boundary functional
SN(x) and random variable g1 as follows:
EðX3Þ ¼ 1
J10ðaÞ

J13ðaÞ �
3
2

J22ðaÞ þ J31ðaÞ �
1
4

J40ðaÞ þ 3A1 J12ðaÞ � J21ðaÞ þ
1
3

J30ðaÞ
� �

þ 3A2 J11ðaÞ �
1
2

J20ðaÞ
� �� �

þ 3A3;

EðX4Þ ¼ 1
J10ðaÞ

J14ðaÞ � 2J23ðaÞ þ 2J32ðaÞ � J41ðaÞ þ
1
5

J50ðaÞ þ 4A1 J13ðaÞ �
3
2

J22ðaÞ þ J31ðaÞ �
1
4

J40ðaÞ
� ��

þ6A2 J12ðaÞ � J21ðaÞ þ
1
3

J30ðaÞ
� �

þ 12A3 J11ðaÞ �
1
2

J20ðaÞ
� ��

þ 3A4;
where
A3 ¼
m41

12
�m31m21

3
þm3

21

4
;

A4 ¼
m4

21

4
�m31m2

21

2
þm41m21

6
þm2

31

9
�m51

30
:

4.1. Proof of Theorems 4.1 and 4.2

Note that the conditions of Theorems 4.1 and 4.2 provide the existence and finiteness of first five moments of SN(x) (see,
Feller [15], p. 514). Therefore, Taylor expansions of the characteristic functions ugð�aÞ and uSNðxÞ

ð�aÞ can be obtained, as
a ? 0. Using that this Taylor expansions in (3.2) it can be obtained the statements of the Theorems 4.1 and 4.2.

5. Third-order asymptotic expansions for the first four moments of the ergodic distribution

In this section, we obtain three-term asymptotic expansions for the first four moments of the ergodic distribution of the
process X(t). For this aim, we use ladder variables of a random walk. Consider the random walk Sn ¼

Pn
i¼1gi;n � 1, with ini-

tial state S0 = 0. Let mþ1 ¼minfn � 1 : Sn > 0g; vþ1 ¼ Smþ1
.

Note that, the random variables mþ1 and vþ1 is called the first strict ascending ladder epoch and ladder height of the random
walk {Sn}, n P 0, respectively (see, Feller [15], p. 391).

Let fvþn g; n � 1 be a sequence of independent and identically distributed variables, having the same common distribution
with the random variable vþ1 .

Define HðxÞ ¼minfn � 1 :
Pn

i¼1vþi � xg; x � 0.
Note that H(x) is a renewal process, which is generated by means of the positive valued random variables vþn ;n � 1.

According to Dynkin’s principle, it can be shown that
NðxÞ ¼
XHðxÞ
i¼1

mþi and SNðxÞ ¼
XHðxÞ
i¼1

vþi :
The following Lemma 5.1 is given in the paper [9]:

Lemma 5.1 (Khaniyev and Mammadova [9]). Let the conditions of Theorem 4.1 be satisfied. Then the following asymptotic
expansions are true for the first five moments of SN(x), as x ?1:
(1) M1ðxÞ ¼ xþ l21
2 þ o 1

x

� 	
;
 (2) M2ðxÞ ¼ x2 þ l21xþ 1

3 l31 þ oð1Þ;

(3) M3ðxÞ ¼ x3 þ 3

2 l21x2 þ l31xþ oðxÞ;
 (4) M4ðxÞ ¼ x4 þ 2l21x3 þ 2l31x2 þ oðx2Þ;

(5) M5ðxÞ ¼ x5 þ 5

2 l21x4 þ 10
3 l31x3 þ oðx3Þ;
where lk ¼ E vþ1
� 	k

;lk1 ¼ lk=l1; k ¼ 2;3; MkðxÞ ¼ E Sk
NðxÞ

� �
; k ¼ 1;5.

Corollary 5.1. Under the assumptions of Lemma 5.1, the following asymptotic expansions are true for the integrals from the
moments of SN(x), as x ?1:

(1) 1�M1ðxÞ ¼ 1
2 x2 þ 1

2 l21xþ 1
12 ½3l2

21 � 2l31� þ oð1Þ;
(2) 1�ðxkM1ðxÞÞ ¼ xkþ2

kþ2 þ xkþ1

2ðkþ1Þl21 þ oðxkÞ; k � 1;

(3) 1�ðxkM2ðxÞÞ ¼ xkþ3

kþ3 þ xkþ2

kþ2 l21 þ xkþ1

3ðkþ1Þl31 þ oðxkþ1Þ; k � 0;



3604 R. Aliyev et al. / Applied Mathematical Modelling 34 (2010) 3599–3607
(4) 1�ðxkM3ðxÞÞ ¼ xkþ4

kþ4 þ 3xkþ3

2ðkþ3Þl21 þ xkþ2

kþ2 l31 þ oðxkþ2Þ; k � 0;

(5) 1�M4ðxÞ ¼ 1
5 x5 þ 1

2 l21x4 þ 2
3 l31x3 þ oðx3Þ;

(6) 1�ðxM4ðxÞÞ ¼ 1
6 x6 þ 2

5 l21x5 þ 1
2 l31x4 þ oðx4Þ;

(7) 1�M5ðxÞ ¼ 1
6 x6 þ 1

2 l21x5 þ 5
6 l31x4 þ oðx4Þ;

(8) 1�ðxM5ðxÞÞ ¼ 1
7 x7 þ 5

12 l21x6 þ 2
3 l31x5 þ oðx5Þ.
Lemma 5.2. Under the assumptions of Theorem 4.1 the following asymptotic expansions are true as a ?1:
J10ðaÞ ¼ aþ 1
2 l21 þ oð1=aÞ;
 J11ðaÞ ¼ 7

6 a2 þ 1
2 l21aþ oð1Þ;
J12ðaÞ ¼ 3
2 a3 þ 1

2 l21a2 þ oðaÞ;
 J13ðaÞ ¼ 31
15 a4 þ 3

4 l21a3 þ oða2Þ;

J14ðaÞ ¼ 3a5 þ 31

30 l21a4 þ oða3Þ;
 J20ðaÞ ¼ 7
6 a2 þ l21aþ 5

3 l31 þ oð1Þ;

J21ðaÞ ¼ 3

2 a3 þ 7
6 l21a2 þ oðaÞ;
 J22ðaÞ ¼ 31

15 a4 þ 3
2 l21a3 þ 7

18 l31a2 þ oða2Þ;

J23ðaÞ ¼ 3a5 þ 31

15 l21a4 þ 1
2 l31a3 þ oða3Þ;
 J30ðaÞ ¼ 5

2 a3 þ 15
4 l21a2 þ oðaÞ;
J31ðaÞ ¼ 31
15 a4 þ 9

4 l21a3 þ oða2Þ;
 J32ðaÞ ¼ 3a5 þ 31
10 l21a4 þ 3

2 l31a3 þ oða3Þ;

J40ðaÞ ¼ 31

15 a4 þ 3l21a3 þ 7
3 l31a2 þ oða2Þ;
 J41ðaÞ ¼ 3a5 þ 62

15 l21a4 þ 3l31a3 þ oða3Þ;

J50ðaÞ ¼ 3a5 þ 31

6 l21a4 þ 5l31a3 þ oða3Þ.
Proof. Proof of Lemma 5.2 implies from the Lemma 5.1 and Corollary 5.1 using by integration methods from studies of Fed-
eryuk (see, Federyuk [16]). h
Theorem 5.1. Let the conditions of Theorem 4.1 be satisfied. Then the following asymptotic expansion can be written for the first
two moments of the ergodic distribution of the process X(t), as a ?1:
EðXÞ ¼ 7
12

aþ 1
2

m21 �
7

12
l21


 �
þ 1

6
7
8
l2

21 � 5l31


 �
1
a
þ o

1
a


 �
; ð5:1Þ

EðX2Þ ¼ 1
2

a2 þ 1
12
ð7m21 � 3l21Þaþ

m2
21

2
�m31

3
� 7

24
m21l21 þ

1
8
l2

21 þ oð1Þ; ð5:2Þ
where EðXkÞ � lim
t!1

EðXðtÞ � sÞk; k � 1.

Proof. According to Lemma 5.2, as a ?1 h
1
2J10ðaÞ

¼ 1
2a

1� 1
2
l21

1
a
þ 1

4
l2

21
1
a2 �

1
8
l3

21
1
a3 þ o

1
a3


 �� �
: ð5:3Þ
The other hand, as a ?1
2J11ðaÞ � J20ðaÞ ¼
7
6

a2 � 5
3
l31 þ oð1Þ: ð5:4Þ
Substituting the expressions (5.3) and (5.4) in to formula (4.1) we get the asymptotic expansion (5.1). Analogically substi-
tuting the asymptotic expansions J12(a), J21(a), J11(a), J20(a), J30(a), J10(a) from Lemma 5.2 in to the exact formula (4.2), carry-
ing out the corresponding calculations, we finally get the asymptotic expansions (5.2).

Corollary 5.2. Let the conditions of Theorem 5.1 be satisfied. Then the following asymptotic expansion can be written for the
variance of the ergodic distribution of X(t), as a ?1:
VarðXÞ ¼ 23
144

a2 þ 13l21

144
aþ Bþ oð1Þ;
where
B ¼ m2
21

4
�m31

3
� 75

576
l2

21 þ
35
36

l31:
Theorem 5.2. Let the conditions of Theorem 4.2 be satisfied. Then the following asymptotic expansions can be written for the third
and fourth moments of the ergodic distribution of X(t), as a ?1:
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Compar

a

50
40
30
20
10
9
8
7
6
5
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EðX3Þ ¼ 31
60

a3 � 3
2

A1 �
31

120
l21


 �
a2 þ 31

240
� 7

8
A1


 �
l2

21 �
7
6
l31 þ

7
4

A2

� �
aþ oðaÞ;

EðX4Þ ¼ 3
5

a4 � 31
30

A1 �
3

10
l21


 �
a3 þ 3

10
l2

21 �
1
2

A1l21 þ 3A2


 �
a2 þ oða2Þ;
where
A1 ¼
m21

2
;A2 ¼

m2
21

2
�m31

3
:

Proof. Proof of Theorem 5.2 is similarly to the proof of Theorem 5.1. h
Remark 5.1. So, we obtained the asymptotic expansions for the first four ergodic moments of XðtÞ. Using these moments, it
is possible to calculate skewness (c3) and kurtosis (c4) of the ergodic distribution of XðtÞ:
c3 ¼
EðX � lÞ3

r3 ; c4 ¼
EðX � lÞ4

r4 � 3; where l ¼ EðXÞ;r2 ¼ VarðXÞ:
Corollary 5.3. Under the conditions of Theorem 5.2, the following asymptotic expansions can be written for the skewness (c3) and
kurtosis (c4) of the ergodic distribution of XðtÞ, as a ?1:
c3 ¼ 0:6056þ O
1
a


 �
and c4 ¼ �0:3357þ O

1
a


 �
:

6. Simulation results

Thus, the main aim of this study has been attained. But it is advisable to test the adequateness of approximated formulas
to the exact ones. Fort this purpose, using the Monte Carlo experiments we can give the following simulation results. First, let
us denote by bEðXkÞ; k ¼ 1;4 and eEðXkÞ the simulated and asymptotic values of the kth moment ðEðXkÞÞ of ergodic distribution
of the process XðtÞ, respectively. Moreover, we put
Dk ¼ jbEðXkÞ � eEðXkÞj; dk ¼
DkbEðXkÞ
� 100%; Apk ¼ 100%� dk; k ¼ 1;2;3:
In other word Dk; dk; Apk; k ¼ 1;4 are the absolute error, relative error and accuracy percentage between simulated and
asymptotic values of kth ergodic moments ðEðXkÞ; k ¼ 1;4Þ of the process XðtÞ, respectively. In the Tables 1–4, the asymptotic
and simulated values of EðXkÞ are compared, when the variable g1 has normal distribution with parameters (1,1). (Note that,
approximated values of l1, l2, l3 taken from the study [9]). For the calculation of each quantity bEðXkÞ, 108 trajectories of the
process XðtÞ were simulated by using Monte Carlo simulation method. The asymptotic values eEðXkÞ for EðXkÞ are taken from
Theorems 5.1 and 5.2 without remainder terms, here s = 0. The tables with the asymptotic and simulated values of kth mo-
ment (EðXkÞ; k ¼ 1;4) of ergodic distribution of the process XðtÞ are presented as follows.
ison of the asymptotic and simulated values of EðXÞ.

bEðXÞ eEðXÞ D1 d1 (%) Ap1 (%)

29.653119 29.801254400 0.148135402 0.4995609 99.50044
23.818905 23.961542390 0.142637388 0.5988411 99.40116
17.993536 18.117577920 0.124041919 0.6893693 99.31063
12.167070 12.262982320 0.095912317 0.7882943 99.21171
6.313335 6.365862175 0.052527175 0.8320036 99.16800
5.711445 5.768353995 0.056908995 0.9964028 99.00360
5.129110 5.167302104 0.038192104 0.7446146 99.25539
4.532171 4.561187768 0.029016768 0.6402399 99.35976
3.972255 3.947479764 0.024775236 0.6237071 99.37629
3.382124 3.321621892 0.060502108 1.7888791 98.21112



Table 2
Comparison of the asymptotic and simulated values of EðX2Þ.

a bEðX2Þ eEðX2Þ D2 d2 (%) Ap2 (%)

50 1288.490552 1288.4505500 0.0400062 0.003105 99.9969
40 830.063400 830.6295770 0.5661771 0.068209 99.93179
30 472.465982 472.8086080 0.3426263 0.072519 99.92748
20 214.455051 214.9876400 0.5325885 0.248345 99.75165
10 57.314823 57.1666708 0.1481522 0.258489 99.74151
9 46.998902 46.8845739 0.1143281 0.243257 99.75674
8 37.753640 37.6024770 0.151163 0.400393 99.59961
7 29.649688 29.3203801 0.3293079 1.110662 98.88934
6 22.311508 22.0382833 0.2732247 1.224591 98.77541
5 16.222781 15.7561864 0.4665946 2.876169 97.12383

Table 3
Comparison of the asymptotic and simulated values of EðX3Þ.

a bEðX3Þ eEðX3Þ D3 d3 (%) Ap3 (%)

50 67325.56881 67499.70306 174.1342555 0.2586451 99.74135
40 34837.64027 34920.18329 82.54302433 0.2369363 99.76306
30 14932.32594 14980.4531 48.1271605 0.3223018 99.6777
20 4555.035026 4580.51249 25.477464 0.5593253 99.44067
10 625.658769 620.3614558 5.297313167 0.8466777 99.15332
9 463.308736 459.1847792 4.123956775 0.8901099 99.10989
8 332.576351 328.3059984 4.2703526 1.2840217 98.71598
7 230.766167 224.6251134 6.141053642 2.6611586 97.33884
6 152.170722 145.0421241 7.1285979 4.6846054 95.31539
5 92.626459 86.45703063 6.169428375 6.6605465 93.33945

Table 4
Comparison of the asymptotic and simulated values of EðX4Þ.

a bEðX4Þ eEðX4Þ D3 d4 (%) Ap4 (%)

50 3961304.609000 3962737.4000 1432.791100 0.03617 99.96383
40 1643938.562000 1644679.0100 740.445940 0.045041 99.95496
30 531992.940500 531678.4200 314.520500 0.059121 99.94088
20 109522.243000 109433.2880 88.954956 0.081221 99.91878
10 7625.999060 7641.2640 15.264936 0.20017 99.79983
9 5114.708570 5126.9421 12.233571 0.239184 99.76082
8 3279.874903 3288.2255 8.350633 0.254602 99.7454
7 2009.204611 1992.4118 16.792777 0.835792 99.16421
6 1149.358449 1121.1986 28.159761 2.450042 97.54996
5 590.531283 570.6837 19.847533 3.360962 96.63904
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Remark 6.1. As seen from the presented tables, the asymptotic values provide a high accuracy to the simulated values even
for small values of the parameter a � (S � s)/2. For example, as seen from Tables 1–4 the accuracy percentage (AP) is greater
than 99%, for each values of parameters a P 9. This indicates that the obtained approximations can safely be used for the
various needs of the application.
7. Conclusion

In this study, a semi-Markovian random walk process X(t) with a triangular interference of chance is considered. The
asymptotic expansions are obtained for the first four moments, variance, skewness and kurtosis of the ergodic distribution
of X(t) as a ?1. Finally, by using Monte Carlo experiments it is shown that the given approximation formulas provide high
accuracy even for small values of parameter a � (S � s)/2. The evident and obvious forms of the asymptotic expansions allow
us to observe how the initial random variables n1, g1 and f1 influence to the stationary characteristics of the process X(t).

It is seen from the models from the introduction section that the triangular interference of chance play an important role
in practice. At the same time, the internal logic of development of the theory of semi-Markov processes also demands con-
sideration of the triangular interference of chance.

Moreover, it is seen from Corollary 5.3, the ergodic distribution of the process X(t) is skewed to the right for the large val-
ues of the parameter a, because the skewness (c3) is positive. At the same time, the ergodic distribution of the X(t) process
converges to a flattened distribution because the kurtosis (c4) is negative.
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In the light of this information, the final form of the ergodic distribution of the process WðtÞ � XðtÞ�s
a as a ?1 can be

found. Also in cases where the discrete interference of chance is not triangular, the limit form of the ergodic distribution
can be obtained by using similar asymptotic methods. These limit distributions are important in the study of different real
models.
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