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DOĞRUSAL OLMAYAN CRAMÉR-LUNDBERG TİPİ RİSK MODELİ İÇİN 
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Tarih: Ağustos 2021 

Bu çalışmada doğrusal olmayan bir Cramér-Lundberg risk modeli ele alınmış, 

araştırılmış ve iflas olasılıkları, 𝜓(𝑢), hesaplanmıştır. Literatürde klasik model olarak 

da bilinen bu modelin doğrusal gösterimi şu şekilde tanımlanır: 

 

𝑼(𝒕) = 𝒖 + 𝒄𝒕 − 𝑺(𝒕)                                                                                                            (1) 

 

Denklem (1)'deki 𝑈(𝑡) risk süreci, belirli bir 𝑡 zamanında bir sigorta şirketinin 

sermaye miktarını ifade eder, sabit 𝑢 şirketin başlangıç sermayesidir, 𝑐 – prim oranı, 

𝑆(𝑡) =  ∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1 , [0, 𝑡] aralığında meydana gelen kazalar için yapılan ödemelerden 

dolayı  sermaye çıkışını tanımlayan bir ödüllü-yenileme sürecidir, 𝑁(𝑡) bir yenileme 

süreci olup [0, 𝑡] aralığındaki toplam kaza sayısını belirtmektedir, 𝑋𝑖’ler ise, 𝑖. hasar 

için ödeme miktarını gösteren bağımsız ve aynı dağılıma sahip rasgele 

değişkenlerdir. Denklem (1)'de görüldüğü gibi şirketin prim gelirini ifade eden 𝒄𝒕 

terimi zamanın doğrusal bir fonksiyonudur. Ancak bu varsayım gerçekçi değildir, 

çünkü bir sigorta şirketinin prim geliri her zaman doğrusal olarak artamaz. Bu, 

özellikle sigorta poliçesi sahipleri ile doymuş pazarlar için geçerlidir. Bu nedenle, 

prim gelirinin, monoton olarak artmasına rağmen, büyüme hızı zamanla azalan bir 
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fonksiyon olarak modellenmesi tavsiye edilir. Bu nedenle, bu çalışmada aşağıdaki 

gibi ifade edilen, daha gerçekçi özel bir doğrusal olmayan matematiksel model inşa 

edilmiş ve incelenmiştir: 

𝑽(𝒕) = 𝒖 + 𝒄∑ 𝒍𝒏(𝟏 +𝑾𝒊)

𝑵(𝒕)

𝒊=𝟏

+ 𝒄 𝒍𝒏(𝟏 + (𝒕 − 𝑻𝑵(𝒕))) − 𝑺(𝒕)                                 (2) 

 

Denklem (2)'de, 𝑊𝑖’lar (𝑖 = 1, 2, 3… ) kazalar arasındaki süreleri gösteren pozitif, 

bağımsız ve aynı dağılıma sahip rastgele değişkenler dizisidir; 𝑇𝑁(𝑡) = ∑ 𝑊𝑖
𝑁(𝑡)
𝑖=1  ise, 

𝑊𝑖 , 𝑖 = 1,2,3, …  rastgele değişkenlerinin dizisine karşılık gelen bir ödüllü-yenileme 

sürecidir  ve Logaritmik Risk Süreci olarak adlandırılan 𝑉(𝑡) ise herhangi bir 𝑡 

zamanda şirketin sermaye dengesini tanımlar. Bu çalışmanın temel amacı, denklem 

(2)'deki doğrusal olmayan risk modelinin iflas etme olasılığını, 𝜓(𝑢), hesaplamaktır. 

Model oluşturulurken stokastik süreçler, yenileme süreçleri, ödüllü-yenileme 

süreçleri ve bu süreçlerin olasılıksal özellikleri kullanılmıştır. İlk aşamada doğrusal 

olmayan modelimizin iflas etme olasılığı için Lundberg tipi üst sınır bulunmuştur. 

Bu olasılık sınırları hesaplanmaya çalışılırken doğrusal olmayan denklemlerle 

karşılaşıldığında sayısal çözüm yöntemleri kullanılmıştır. Çeşitli senaryoları dikkate 

almak için farklı olasılık dağılımları ve parametreleri göz önünde bulundurup, 

regresyon modeli ile yaklaşık bir çözüm bulunmuştur. İkinci aşamada, bu doğrusal 

olmayan model için yukarıdan ve aşağıdan iflas olasılığının yaklaşık sınırları 

bulunmuştur. Bu aynı zamanda iflas olasılığı için Cramér tipi sınır olarak da bilinir. 

Bu amaçla, kazaları (hasarları) temsil eden {𝑋𝑛} dizisi tarafından üretilen yenileme 

sürecinin kalan ömrünün limit dağılımını tanımlayan rastgele değişkeni 𝑋̂’ın 

istatistiksel özelliklerinden yararlanılmıştır. Özellikle, iflas olasılığının sınır 

ifadesinde bilinmeyen bir katsayı olan sabit bir 𝐶'yi belirlemek için 𝑋̂’ın moment 

çıkaran fonksiyonu kullanılmıştır. Bu ifadeleri sadeleştirmek ve kompakt bir forma 

dönüştürmek için kalkülüs yöntemleri kullanılmıştır. Benzer şekilde, iflas 

olasılıklarını incelemek ve hesaplamak için farklı senaryoları dikkate almak için 

çeşitli olasılık dağılımları ve parametreler kullanılmıştır. 

 

Anahtar Kelimeler: Risk Teorisi, Cramér-Lundberg Risk Modeli, Doğrusal 

Olmayan Sigorta Modeli, İflas Olasılığı, Lundberg Eşitsizliği. 
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In this study, a non-linear Cramér-Lundberg risk model is considered, investigated 

and ruin probabilities, 𝜓(𝑢), are calculated. In literature, a linear form of this model, 

also known as classical model, is defined as follows: 

 

𝑼(𝒕) = 𝒖 + 𝒄𝒕 − 𝑺(𝒕)                                                                                                            (1) 

 

The risk process 𝑈(𝑡) in Eq.(1) expresses an amount of capital of  an insurance 

company at a given time 𝑡, the constant 𝑢 is initial capital of the company, 𝑐 – the 

premium rate, 𝑆(𝑡) =  ∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1  is a renewal-reward process which represents the 

outflow of cash caused by reimbursements for claims occurred in the interval [0, 𝑡], 

𝑁(𝑡)  is a renewal process counting the total number of claims within the time frame 

[0, 𝑡] and 𝑋𝑖’s are i.i.d. random variables denoting the amount of payment for  𝑖𝑡ℎ 

claim. As seen in (1), the term 𝒄𝒕 expressing the company’s premium income is a 

linear function of time. However, this assumption is not realistic, because the 

premium income of an insurance company cannot always increase linearly. This is 

especially true for the markets saturated with insurance policy holders. Therefore, it 
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is advisable to assume that the premium income is modeled as a function whose rate 

of growth decreases with time, although this function is monotonically increasing. 

For this reason, in this work, a more realistic special non-linear mathematical model 

is constructed and investigated, which is given as follows: 

𝑽(𝒕) = 𝒖 + 𝒄∑ 𝒍𝒏(𝟏 +𝑾𝒊)

𝑵(𝒕)

𝒊=𝟏

+ 𝒄 𝒍𝒏(𝟏 + (𝒕 − 𝑻𝑵(𝒕))) − 𝑺(𝒕)                                 (2) 

 

In (2), 𝑊𝑖’s (𝑖 = 1, 2, 3… ) are positive i.i.d. sequence of random variables 

describing inter-arrival times of claims;  𝑇𝑁(𝑡) = ∑ 𝑊𝑖
𝑁(𝑡)
𝑖=1  is a renewal-reward 

process, corresponding to the sequence of random variables 𝑊𝑖′𝑠 , 𝑖 = 1,2,3, … , and 

𝑉(𝑡) defines company’s capital balance at any  time 𝑡 which is modelled by so called 

a Logarithmic Risk Process.  The main purpose of this study is to evaluate ruin 

probability, 𝜓(𝑢), of non-linear risk model in (2). While establishing the model, 

stochastic processes, renewal processes, reward-renewal processes and the 

probabilistic characteristics of these processes were used. In the first stage, the 

Lundberg type upper bound was found for the ruin probability of our non-linear 

model. While trying to calculate these probability bounds, numerical solution 

methods were used when nonlinear equations were encountered. In order to consider 

various scenarios, different probability distributions and parameters are considered 

and an approximate solution is found with the regression model. In the second stage, 

bounds for ruin probability from above and below is found for this non-linear model. 

This is also known as Cramér-type bound for the ruin probability. For this purpose, 

the statistical characteristics of the random variable, 𝑋̂, which describes the residual 

time (limit distribution) of the renewal process produced by the sequence {𝑋𝑛}, 

representing the accidents(damages), was exploited. In particular, moment generating 

function of 𝑋̂ was utilized to determine a constant 𝐶, which is an unknown 

coefficient in the bound expression of the ruin probability. In order to simplify these 

expressions and transform them into a compact form, calculus methods were used. 

Similarly, in order to examine and calculate ruin probabilities, various probability 

distributions and parameters were used to consider different scenarios.  

 

Keywords: Risk Theory, Cramér-Lundberg Risk Model, Non-Linear Insurance 

Model, Ruin Probability, Lundberg’s Inequality. 
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LIST OF SYMBOLS 

Symbols used in this work are presented below with their explanations. 

 

Symbols       Explanation 

 

𝐸𝐹𝑋  expectation of 𝑋 with respect to the distribution 𝐹 

𝐸𝑥𝑝(𝜆) Exponential distribution with parameter 𝜆: 

𝐹(𝑥) = 1 − 𝑒−𝜆𝑥 ,   𝑥 > 0 

𝐹 distribution function/distribution of a random variable 

𝐹𝐴  distribution function/distribution of the random 

variable 𝐴 

𝐹𝐼  integrated tail distribution: 

𝐹𝐼(𝑥) = (𝐸𝐹𝑋)
−1∫ 𝐹̅

𝑥

0

(𝑦)𝑑𝑦,   𝑥 ≥ 0 

𝐹̅   tail of the distribution function 𝐹: 𝐹̅ = 1 − 𝐹 

𝐹𝑛∗  n-fold convolution of the distribution 

function/distribution 𝐹 

𝑁,𝑁(𝑡)  claim number or claim number process 

(Ω, ℱ, P)  
𝜓(𝑢)  

probability space  

ruin probability 

𝜌  safety loading 

𝑆𝑛  cumulative sum of 𝑋1, 𝑋2, … 𝑋𝑛 

𝑆, 𝑆(𝑡)  total, aggregate claim amount process 

𝑡  time, index of a stochastic process 

𝑇𝑖  arrival times of a claim number process 

𝑢 initial capital 

𝑈[𝑎, 𝑏]  uniform distribution on (𝑎, 𝑏) 
𝑈(𝑡)  risk process 

𝑉(𝑡) non-linear risk process 

𝑣𝑎𝑟(𝑋) variance of the random variable 𝑋 

𝑋𝑛 claim size 

~ 𝑋 ~ 𝐹: 𝑋 has distribution 𝐹 

≈ approximately equals 
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1.  INTRODUCTION 

There are many applications of stochastic processes in science and engineering. Risk 

Theory is one of them. In actuarial science and applied probability, another term for 

risk theory is non-life insurance mathematics, which models insurance business. 

Theft, fires, floods, accidents, riots etc. – are natural or man-made examples of 

catastrophes that can be investigated in the framework of stochastic processes. In 

particular, it models the claims that occur and recommends to insurance businesses 

how much premium to charge to policy holders so that the insurance company does 

not run into insolvency/ruin. One of the prominent models in risk theory is Cramér-

Lundberg Risk model. 

 

1.1 The Fundamental Model 

 

At the onset of the nineteenth (19th) century, Filip Lundberg (1903), the Swedish 

actuary, introduced a simple model. In this model, the basic relationship between 

incoming cash premiums and outgoing claim amounts is established. In literature, 

this model is known as Cramér-Lundberg Risk model. The equation describing this 

risk process (also known as surplus process) is as follows:  

 

𝑼(𝒕) = 𝒖 + 𝒑(𝒕) − 𝑺(𝒕),    𝒕 ≥ 𝟎                                                                                    (1.1) 

 
where the terms are defined as follows: 

 

𝑼(𝒕) : Insurance company’s cash balance at time 𝑡 – risk process 

𝒖 = 𝑼(𝟎) > 𝟎 : Company’s initial capital at 𝑡 = 0 – constant 

𝒑(𝒕) ≡ 𝒄𝒕 :  Premium income function. 𝒄 > 0 is the premium rate 

𝑺(𝒕) ≡  ∑ 𝑿𝒊
𝑵(𝒕)
𝒊=𝟏 : Reward renewal process describing the outflowing reimbursements 

due to claims happened in the time frame [0, 𝑡] – total claim amount process 

𝑿𝒊 : positive i.i.d. random variables denoting the amount of payment for the 𝑖𝑡ℎ 

claim, for 𝑖 = 1,2,3… 



  

2 

 

𝑵(𝒕) :  Renewal process describing the number of claims occurred in [0, 𝑡] – claim 

number process, the counting process 

𝑁(𝑡) ≡ 𝑚𝑎𝑥 {𝑛 ≥ 1 ∶   𝑇𝑛 = ∑𝑊𝑖 

𝑛

𝑖=1

 ≤ 𝑡  , 𝑡 ≥ 0} 

𝑻𝒊 : Claim arrival times 

𝑇0 = 0 , 𝑇𝑛 = 𝑊1 +⋯+𝑊𝑛  and 0 ≤ 𝑇1 ≤ 𝑇2… . 

𝑾𝒊 : Positive i.i.d. random variables denoting the inter-arrival times of claims, for 

𝑖 = 1,2,3… 

 

   The i.i.d. property of the claim sizes, 𝑋𝑖, presumes that the portfolio at hand has a 

homogenous structure. This means that the portfolio of insurance policies (contracts) 

carries similar risks such as insurance against fire of suburban houses or against 

accident of particular type of cars.  

   Figure 1.1 below helps to better visualize the risk process, by providing a sample 

path of both processes 𝑁 and 𝑆, which are corresponding counting process and 

compound sum process, respectively. Observe that both process’ jumps occur at 

times when 𝑡 = 𝑇𝑖, for 𝑖 = 1, 2, 3, … at discrete times. By an amount of 1 in the 

former case and by an amount of 𝑋𝑖 for the former case. Also, (1.1) can be written in 

more explicit and expressive form as in (1.2) below: 

 

𝑼(𝒕) = 𝒖 + 𝒄 ∙ 𝒕 − ∑𝑿𝒊

𝑵(𝒕)

𝒊=𝟏

                                                                                               (1.2) 

 

 

Figure 1.1 :  A corresponding sample path of the process 𝑁 and 𝑆 
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   The graph in Figure 1.2 below, depicts the idealized evolution of the process 𝑈(𝑡). 

With initial capital 𝑢, the process 𝑈(𝑡) increases linearly in each time interval 

[𝑇𝑖, 𝑇𝑖+1), for  𝑖 = 0, 1, 2… , with slope 𝑐, until the disruption time when the accident 

occurs. To be specific, let us take time interval [𝑇0, 𝑇1), in which the process has 

grown linearly wih the slope 𝑐 up until an accident disrupts the process by an amount 

of 𝑋1, and hence the value of 𝑈(𝑡) has decreased by that exact amount. Similarly, the 

process regains the upward movement with the slope 𝑐 exactly at time 𝑇1 up until the 

process is interrupted by the second accident at 𝑇2 with an intensity of 𝑋2, so on and 

so forth.  

   It is also possible that the process 𝑈(𝑡) could assume a negative values, in the case 

of when accident occurs with a large claim size, sufficiently large so that it can cause 

the process 𝑈(𝑡) to fall below zero. In that situation, we call this event as ruin. 

 

 

Figure 1.2: An idealized realization of the risk process 𝑈(𝑡) 
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1.2 Definitions and Theoretical Background 

 

In this sub-section we elaborate on the total claim amount process 𝑆(𝑡) 

 

𝑺(𝒕) = ∑𝑿𝒊

𝑵(𝒕)

𝒊=𝟏

 ,     𝒕 ≥ 𝟎,                                                                                                    (1.3) 

 

in which we assume that 𝑁(𝑡) and (𝑋𝑖) are independent, in other words, the claim 

number process and the claim size sequence are independent. Also, note that (𝑋𝑖) is 

independent and identically distributed (i.i.d.) and positive, i.e., 𝑋𝑖 > 0 , sequence of 

random variables. By the choice of the type of the the process 𝑁(𝑡), various 

realizations for the process 𝑆(𝑡) can be modelled. 

 

1.2.1 The Reason Behind the Linearity of Income Function 𝒑(𝒕)  

 

   In order to decide how much premium to charge, one needs to determine the shape 

of the premium income function 𝑝(𝑡). This should be done in accordance with the 

order of magnitude of the process 𝑆(𝑡), which models the aggregate losses of the risk 

process 𝑈(𝑡). The determination of the shape of the 𝑝(𝑡) is important, bacause on 

one hand, if one chooses 𝑝(𝑡) to be too steep, the insurance company may not be 

competitive due to overly premium charges. On the other hand, if one chooses 𝑝(𝑡) 

to be too slowly increasing function, the insurance company runs a risk of ruin.  

    In general, it is analytically complicated to determine the distribution of  𝑆(𝑡), in 

other words, it can be mathematically intractble problem. Therefore, researchers 

utilize simulation methods or numerical calculations with the aim of estimation of 

the distribution of 𝑆(𝑡). But in this section, we aim for the basic idea about the size f 

the total claim amount. Hence we look at the elementary properties of 𝑆(𝑡), such as 

its expectation and its variance. These characteristics of 𝑆(𝑡) can be determined by 

the well-known techniques which are the strong law of large numbers and the central 

limit theorem, respectively, for 𝑆(𝑡) when time 𝑡 tends to infinity.  

   We assumed that (𝑋𝑖) and 𝑁(𝑡) are independent. Also assume that 𝐸(𝑁(𝑡)) <  ∞ 

and 𝐸(𝑋1) < ∞. Then, the expecation of 𝑆(𝑡) can be calculated as follows: 
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𝐸(𝑆(𝑡)) = 𝐸[𝐸(∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1 |𝑁(𝑡))] = 𝐸(𝑁(𝑡)𝐸(𝑋1)) = 𝐸(𝑁(𝑡))𝐸(𝑋1) 

 

We know from renewal theory that, in the basic model, 𝐸𝑁(𝑡) = 𝜆𝑡, when 𝑁(𝑡) is a 

homogenous Poisson process with intensity of 𝜆 parameter. Hence, 

 

𝐸(𝑆(𝑡)) =  𝜆𝑡𝐸(𝑋1) 

 

This result tells us only about the average behaviour of the process 𝑆(𝑡), i.e., when 

time tends to infinity, the expected total claim grows roughly linearly with respect to 

time in the simple model. 

   In order to gain more insight about the behaviour of 𝑆(𝑡) furthar than its expected 

value, one could consider its vairance. Let us assume that 𝑣𝑎𝑟(𝑁(𝑡)) <  ∞ and 

𝑣𝑎𝑟(𝑋1) < ∞. Then, by using the property of independence of 𝑁(𝑡) and (𝑋𝑖), we 

can derive the following two equations: 

 

i. 𝑣𝑎𝑟[∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1 |𝑁(𝑡)] = ∑ 𝑣𝑎𝑟(𝑋𝑖|𝑁(𝑡)) = 𝑁(𝑡)𝑣𝑎𝑟(𝑋1|𝑁(𝑡))

𝑁(𝑡)
𝑖=1  

                                         = 𝑁(𝑡)𝑣𝑎𝑟(𝑋1) 

ii) 𝐸[∑ 𝑋𝑖
𝑁(𝑡)
𝑖=1 |𝑁(𝑡)] = 𝑁(𝑡)𝐸(𝑋1) 

 

Note that, conditional 𝑁(𝑡) only implies the choice of type of 𝑁(𝑡) in our derivation. 

 

Thus, the variance of  𝑆(𝑡) can be written as follows: 

 

𝑣𝑎𝑟(𝑆(𝑡)) = 𝐸[𝑁(𝑡)𝑣𝑎𝑟(𝑋1)] + 𝑣𝑎𝑟(𝑁(𝑡)𝐸(𝑋1)) 

                     = 𝐸(𝑁(𝑡))𝑣𝑎𝑟(𝑋1) + 𝑣𝑎𝑟(𝑁(𝑡))(𝐸(𝑋1))
2. 
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Proposition 1  

In the renewal model, if 𝐸(𝑊1) =  𝜆
−1 < ∞ and 𝐸(𝑋1) < ∞ ,  

lim
𝑡 → ∞

𝐸(𝑆(𝑡))

𝑡
=  𝜆𝐸(𝑋1) , 

and if var(𝑊1) < ∞ and var(𝑋1) < ∞, 

lim
𝑡 → ∞

var(𝑆(𝑡))

𝑡
=  𝜆[var(𝑋1)  +  var(𝑊1)𝜆

2(𝐸(𝑋1))
2] . 

 

For proof of the proposition, please refer to Mikosch (2004), Lemma 2.3.4. 

In summary, we have the following: 

 

𝐸(𝑆(𝑡)) =  𝜆 𝑡 𝐸(𝑋1)  and  var(S(t)) =  𝜆 𝑡 𝐸(𝑋1
2)  

 

for every 𝑡 > 0 , in the Cramér-Lundberg model. 

 

In a nutshell, this result implies that in the renewal model, the expectation and the 

variance of the total claim amount grow roughly linearly as a function of t. This 

information sheds light on how to charge premiums. As can be seen from results, the 

premium should increase roughly linearly and with a slope larger than 𝜆𝐸𝑋1 in order 

to compensate for accidents represented by 𝑆(𝑡). And this summarizes the reason 

behind conventional assumption that premium income function 𝑝(𝑡) is linear in time. 

 

1.2.2 Classical Types of  Calculation of Premium Principles  

 

   In order for insurance companies to avoid ruin, a proper premium charging policy 

is necessary. The collected premiums will be used to cover losses, represented by 

𝑆(𝑡), that occured over time.  

   The simplest approach would be considering the expectation of the process 𝑆(𝑡). 

Recall that,  

𝐸(𝑆(𝑡)) =  𝜆 𝑡 𝐸(𝑋1) 

and  

𝑝(𝑡) = 𝑐𝑡 

 

Then, by inspection it can be said that the company loses when 𝑝(𝑡) < 𝐸(𝑆(𝑡)) and 

gains profit when 𝑝(𝑡)  > 𝐸(𝑆(𝑡)), on average, for large 𝑡.  



  

7 

 

Therefore, it is reasonable to “load” the expected total claim amount by 𝜌, which is 

a certain positive number. As an example, consider the renewal model in Proposition 

1, in which we derived the following equation: 

 

𝐸(𝑆(𝑡)) =  𝜆𝐸(𝑋1)𝑡(1 + 𝑜(1)), 𝑡 →  ∞ . 

 

Then one can choose 𝑝(𝑡) accordingly as below: 

 

𝑝(𝑡) = (1 +  𝜌)𝐸(𝑆(𝑡))   or    𝑝(𝑡) = (1 +  𝜌)𝜆𝐸(𝑋1)𝑡 

 

for some positive number  𝜌, which is known as the safety loading in the literature.  

 

   The choice of 𝜌 is done considering the balance between the possibility of the ruin 

of the insurance company versus the risk of being less competitive in the market. In 

other words, if one chooses 𝜌 large, the premiums would be higher and hence the 

insurance business will be making relatively more money and hence avoiding the 

ruin. On the other hand, if 𝜌 is too large, the insurance company runs the risk of 

losing customers (the insureds), as the other insurance companies might be offering 

lower premiums, which eventually results in the loss of the premium income. In 

short, the choice of the premium charge is an intricate topic. Preferably, the company 

should find an optimal balance between premium income and the total claim amount. 

Therefore, more sophisticated principles must be developed when it comes to 

premium calculation. Only some of the well-known principles in the literature are 

discussed below: 

 

i) The net or equivalence principle: 𝑝𝑛𝑒𝑡(𝑡) 

 

This is a benchmark premium as the name suggests. Because, the premium 𝑝(𝑡) is 

determined as follows: 

𝑝𝑛𝑒𝑡(𝑡) = 𝐸(𝑆(𝑡)) . 

 

i.e., the premium is exactly equal to the expectation of the total claim amount 𝑆(𝑡). 
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Which means, on average, the company does not gain or lose cash. This can be 

interpreted as fair market premium, but it would be misleading, becasue this choice 

of 𝑝(𝑡) does not take into consideration the fact that the process 𝑆(𝑡) has non-zero 

variance and its deviation from its mean can be both in the positive and negative 

directions. Therefore, the company should avoid this principle, since this could cause 

some losses to the company and eventually force to run into ruin. Therefore, not a 

prudent choice from company’s perspective. 

 

ii) The expected value principle: 𝑝𝐸𝑉(𝑡) 

 

𝑝𝐸𝑉(𝑡) = (1 +  𝜌)𝐸(𝑆(𝑡)) , 

 

for some 𝜌 > 0. The reasoning behind this principle is similar to that of in (i). 

 

iii) The variance principle 

 

𝑝𝑣𝑎𝑟(𝑡) = 𝐸(𝑆(𝑡)) +  𝛼 var(𝑆(𝑡)),  

 

for some 𝛼 > 0.  

The rationale behind this principle is in an asymptotic sense that Propositipon 1 

suggests. Here, 𝛼 serves as positive safety loading as in the case (ii) above. 

 

iv) The standard deviation principle: 𝑝𝑆𝐷(𝑡) 

 

𝑝𝑆𝐷(𝑡) = 𝐸(𝑆(𝑡)) =  𝛼 √var(𝑆(𝑡)) , 

 

for some 𝛼 > 0.  

Observe that, by choice of the principle, one charges a smaller premium when 

compared to the expected value and variance principles. 
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1.3 Unrealistic Assumption – Need For More Realistic Model 

 

There are mainly two assumptions about this classical model: 

 

Assumption 1: 𝑝(𝑡) is deterministic and linear. 

Assumption 2: The claim size process (𝑋𝑖) and the claim arrival process (𝑇𝑖) are 

mutually independent.  

 

Although assumption 1 might hold for some rare cases, in general it is not realistic in 

real life. Because the premium income of an insurance company cannot always 

increase linearly. Therefore, it is advisable to assume that the premium income is 

modeled as a function whose rate of growth decreases with time, although this 

function is monotonically increasing. For this reason, in this thesis, a more realistic 

special non-linear mathematical model is constructed and investigated. 
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11 

 

2.  LITERATURE REVIEW 

 Insurance and insurance business is a concept that concerns and affects almost 

everyone in our daily lives. Therefore, insurance is an inevitable part of developed 

economies. Contemporary economies and modern states would hardly operate 

without insurance companies. Because, these institutions guarantee compensation to 

almost any actors of the society at the individualistic, company, or the organizational 

level at an unfortunate times when catastrophes such as fires, floods, accidents and 

riots befalls onto them. The notion of insurance is interesting topic. It is an integral 

part of our civilization. The trust of the insurer and the insured runs the businesses. 

Therefore, the examination of risk and ruin problems of insurance company has an 

important role in actuarial science. Many valuable studies have been done in the 

literature on this subject.  

   It is crucial that science must be at the core of this mutual trust between the insurer 

and the insured. Therefore, in the 20th century, Filip Lundberg [25] and Harald 

Cramér [10], the Swedish mathematicians and the pioneers in this area, laid 

foundations of modern risk theory based on the probability theory, statistics, and 

stochastic processes. They realized that the theory of stochastic processes provides 

the most appropriate framework for modeling an insurance business, i.e., modelling 

the claims and their inter-arrival times. In recent years, the Cramér-Lundberg model 

is one of the pillars of non-life insurance mathematics [28]. This model has been 

extended and adapted to various fields of applies probability: queuing theory, 

renewal theory, branching processes, reliability, financial mathematics and extreme 

value theory are just some of them. 

   The literature on risk theory is vast. There are many models that aim at describing 

the risk process. They all have one thing in common which is extending or modifying 

the classical model, which is given in (2.1) below:  

 

𝑼(𝒕) = 𝒖 + 𝒑(𝒕) − 𝑺(𝒕),    𝒕 ≥ 𝟎                                                                                    (2.1) 

 
where the terms are defined as follows: 
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𝑼(𝒕) : Insurance company’s cash balance at time 𝑡 – risk process 

𝒖 = 𝑼(𝟎) > 𝟎 : Company’s initial capital at 𝑡 = 0 – constant 

𝒑(𝒕) ≡ 𝒄𝒕 :  Premium income function where positive 𝑐 is the premium rate 

𝑺(𝒕): Reward renewal process describing the outgoing reimbursements due to 

accidents happened in the time frame [0, 𝑡] – total claim amount process 

 

In classical model, there are mainly three components comprising the governing 

equation of risk process 𝑈(𝑡): initial capital 𝑢, premium income 𝑝(𝑡), and total claim 

amount process 𝑆(𝑡), as can be seen in (2.1). Almost each related work on the topic 

contains assumption(s) about one or more components of the equation and some kind 

of relationship between or among them. These assumptions are merely for the 

purpose of capturing the real-life scenario of insurance business, while still being 

able to track the problem mathematically and computationally.  

   There are few assumptions, other than when interest rates are assumed to be non-

zero or non-constant, about initial capital 𝑢 – as it is a constant amount of initial 

reserve [37]. The question of how much of initial capital is required to keep the 

probability of ruin above some predefined threshold value is answered in [27]. In a 

very few cases investment of the initial capital 𝑢 as income or preventive measure is 

considered [29]. The evaluation of ruin probabilities strongly depends on the 

distribution of the claim amounts, and given two or more claim distributions, it is 

natural to ask which one implies larger values of ruin probabilities in finite or infinite 

time horizon for the given initial capital value of 𝑢. This issue is addressed in [8, 23, 

26, 32, 36].  As far as the author is concerned, the majority of the research is done on 

variations of premium income function 𝑝(𝑡) and its relation to the total claim process 

𝑆(𝑡). A study conducted in [4] deals with stochastic premium income function which 

is also independent of the risk process.  A scenario when the total claim amount 

process is the same as in the classical model while the premium income, unlike the 

classical case, is considered to be a stochastic process, called as random premiums 

risk process, is investigated in [35] and ruin probabilities are estimated numerically. 

Similarly, in [38], risk model with stochastic premiums income is considered and 

some specific dependence structure among the claim sizes, inter-claim times and 

premium sizes is assumed.  
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   The studies mentioned above are all valuable, each focusing on specific sets of 

conditions. However, to the best of authors knowledge, there is no work that models 

premium income function 𝑝(𝑡) as a general non-linear (deterministic) function 

except that of in [19]. In which, the premium income function was assumed to be 

root-square function, i.e., 𝑝(𝑡) = 𝑐√𝑡. Although, the assumption that 𝑝(𝑡) is linear 

function might hold for some rare cases, in general it is not realistic in real life. 

Because the premium income of an insurance company cannot always increase 

linearly. This is especially true for the markets saturated with insurance policy 

holders. Therefore, it is reasonable to assume that the premium income is modeled as 

a function whose rate of growth decreases with time, although this function is 

monotonically increasing.  

   The contributions of this study are many fold. Firstly, a brand-new non-linear risk 

process model, 𝑉(𝑡), was introduced. In this model, the premium income function 

could assume any form so long as its rate of growth decreases with time, although it 

is monotonically increasing. In this study, we assumed 𝑝(𝑡) to be a logarithmic 

function, i.e., 𝑔(𝑡) = 𝑐𝑙𝑛(1 + 𝑡). And we called this a Logarithmic Risk Process, 

𝑉(𝑡), for obvious reasons. Second, we calculated a Lundberg-type upper bound for 

ruin probability of this non-linear risk process, utilizing numerical methods. Lastly, 

we have derived a new exact formula for Cramér-type bound for ruin probability of 

this risk process, which is both from below and above. While doing so, the statistical 

characteristics of the random variable, 𝑋̂, which describes the residual time (limit 

distribution) of the renewal process produced by the sequence {𝑋𝑛}, denoting the 

accidents(damages), was exploited. In particular, moment generating function of 𝑋̂ 

was utilized to determine a constant 𝐶, which is an unknown coefficient in the bound 

expression of the ruin probability. And an approximate value of this constant is 

calculated in conjunction with the previous results. In order to simplify these 

expressions and transform them into a compact form, calculus methods were used 

   The rest of the study is organized as follows. In the next section, non-linear model 

is constructed and  some definitions are provided. Following that, two sections are 

dedicated to calculation of ruin probabilities. And in the last section, conclusion of 

this study is presented. 
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3.  NON-LINEAR MODEL: GENERAL FUNCTIONS 

In this section, a special case of non-linear Cramér-Lundberg risk model is considered and 

investigated. In the previous sections, a linear form of this model was defined as follows:    

 

𝑼(𝒕) = 𝒖 + 𝒑(𝒕) − 𝑺(𝒕)                                                                                                                   (3.1) 

 

where the terms are defined as follows: 

 

𝑼(𝒕) : Insurance company’s cash balance at time 𝑡 – risk process 

𝒖 = 𝑼(𝟎) > 𝟎 : Company’s initial capital at 𝑡 = 0 – constant 

𝒑(𝒕) ≡ 𝒄𝒕 :  Premium income function. 𝒄 > 0 is the premium rate 

𝑺(𝒕): Reward renewal process describing the outflowing reimbursements due to claims 

happened in the time frame [0, 𝑡] – total claim amount process 

 

In equation (3.1), 𝑝(𝑡) − premium income function, is linear in time, i.e., 𝑝(𝑡) = 𝑐𝑡. 

However, this assumption is not realistic, because the premium income of an insurance 

company cannot always increase linearly. This is especially true for the markets saturated 

with insurance policy holders. Therefore, it is advisable to assume that the premium income is 

modeled as a function whose rate of growth decreases with time, although this function is 

monotonically increasing. For this reason, in this work, a more realistic special non-linear 

mathematical model is constructed and investigated. Although, any general function 

possessing aforementioned properties is suitable, in this work logarithmic function was 

preferred to due to its nice analytical properties. A related work was done by Hanalioğlu [19], 

where premium income function was root square function. Therefore, premium income 

function for our non-linear model becomes as follows: 

 

𝒈(𝒕) = 𝒄𝒍𝒏(𝟏 + 𝒕) 
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instead of 𝑝(𝑡) = 𝑐𝑡. Observe that 𝑔(𝑡) is monotonically increasing function whose rate of 

growth is decreasing with time.  

 

Now we can define Logarithmic Risk Process, 𝑉(𝑡), as follows: 

 

𝑽(𝒕) = 𝒖 + 𝒄∑ 𝒍𝒏(𝟏 +𝑾𝒊)

𝑵(𝒕)

𝒊=𝟏

+ 𝒄 𝒍𝒏(𝟏 + (𝒕 − 𝑻𝑵(𝒕))) − 𝑺(𝒕)                                             (3.2) 

 

where the terms are defined as follows: 

 

𝑽(𝒕) : Insurance company’s cash balance at time 𝑡 – non-linear risk process 

𝒖 = 𝑼(𝟎) > 𝟎 : Company’s initial capital at 𝑡 = 0 – constant 

𝒈(𝒕) ≡ 𝒄𝒍𝒏(𝟏 + 𝒕) :  Premium income function. 𝒄 > 0 is the premium rate  

𝑺(𝒕) ≡  ∑ 𝑿𝒊
𝑵(𝒕)
𝒊=𝟏 : Reward renewal process describing the outflowing reimbursements due to 

claims happened in the time frame [0, 𝑡] – total claim amount process 

𝑿𝒊 : positive i.i.d. random variables denoting the amount of payment for the 𝑖𝑡ℎ claim, for 𝑖 =

1,2,3… 

𝑵(𝒕) :  Renewal process describing the number of claims occurred in [0, 𝑡] – claim number 

process, the counting process 

𝑁(𝑡) ≡ 𝑚𝑎𝑥 {𝑛 ≥ 1 ∶   𝑇𝑛 = ∑𝑊𝑖 

𝑛

𝑖=1

 ≤ 𝑡  , 𝑡 ≥ 0} 

𝑻𝒊 : Claim arrival times 

𝑇0 = 0 , 𝑇𝑛 = 𝑊1 +⋯+𝑊𝑛  and 0 ≤ 𝑇1 ≤ 𝑇2… . 

𝑾𝒊 : positive i.i.d. random variables denoting the inter-arrival times of claims, for 𝑖 = 1,2,3… 

 

 

To better visualize the evolution of the logarithmic risk process, please refer to Figure 3.1 

below: 
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Figure 3.1 : Logarithmic Risk Process 𝑉(𝑡) 

 

Observe that, now our model has become non-linear, as the name suggests. A visual 

comparison of Figure 3.1 and Figure 3.2 captures the differences of two processes, where 

former is non-linear and the latter is linear. 

 

 
Figure 3.2 : A linear risk process 𝑈(𝑡) 

 

The main purpose of this thesis is to calculate the ruin probability of the non-linear model in 

the equation (3.2). For this purpose, we need to establish some related definitions. In the 

following, three definitions are presented. 
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Definition 3.1 (Ruin, ruin time, ruin probability) 

 

i. The event that 𝑉 ever falls below zero is called ruin: 

𝑹𝒖𝒊𝒏 =  {𝑉(𝑡) < 0  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡 > 0} 

 

ii. The time when the process falls below zero for the first time is called ruin time, T: 

𝑇 = inf {𝑡 > 0: 𝑉(𝑡) < 0} 

 

iii. Then 𝜓(𝑢) – the probability of ruin, is then given by: 

𝝍(𝒖) ≡ 𝑃(𝑅𝑢𝑖𝑛 | 𝑉(0) = 𝑢) = 𝑃(𝑇 < ∞), 𝑢 > 0  

 

Observe that ruin can occur only at discrete times 𝑡 =  𝑇𝑛 for some 𝑛 ≥ 1. Therefore, we 

can write  

𝑅𝑢𝑖𝑛 =  {inf
𝑡>0
𝑉(𝑡) < 0} =  {inf

𝑛≥1
 𝑉(𝑇𝑛)  < 0} 

           =  {inf
𝑛≥1

 [𝑢 + 𝑔(𝑇𝑛) − 𝑆(𝑇𝑛)]  < 0} 

           =  {inf
𝑛≥1

 [𝑢 + 𝑐 ∑ 𝑔(𝑊𝑖)
𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1  ]  < 0} .  

 

In the last step of the definition of the event ruin we used the fact that  

 

𝑁(𝑇𝑛) = 𝑚𝑎𝑥{𝑖 ≥ 1 ∶  𝑇𝑖 ≤ 𝑇𝑛} = 𝑛  𝑎. 𝑠. 

 

since we assumed that 𝑊𝑗 > 0 and  𝑔(𝑊𝑖) > 0  a.s. for all 𝑗 ≥ 1.  

 

Since, 𝑇𝑛 = 𝑊1 +⋯+𝑊𝑛 , write 

 

𝑍𝑛 =  𝑋𝑛 − 𝑐𝑔(𝑊𝑛) ,   𝑆𝑛 = 𝑍1 +⋯+ 𝑍𝑛 , 𝑛 ≥ 1,      𝑆0 = 0 . 

 

Then we have the following alternative expression for the ruin probability 𝜓(𝑢) with initial 

capital of 𝑢:  
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𝜓(𝑢) = 𝑃 (inf
𝑛≥1

 (−𝑆𝑛)  <  −𝑢) = 𝑃 (sup
𝑛≥1

 𝑆𝑛 > 𝑢)                                                                   (3.3)   

 

Equation (3.3) can be summarized as: 𝜓(𝑢) is the tail probability of the supremum functional 

of the random walk (𝑆𝑛), because sequences (𝑊𝑖) and (𝑋𝑖) are mutually independent and 

each of the sequences seperately are comprised of i.i.d. random variables. 

 

Definition 3.2  (Net Profit Condition – NPC )  

 

We say that the renewal model satisfies the net profit condition (𝑁𝑃𝐶) if  

 

𝐸(𝑍1) = 𝐸(𝑋1) − 𝑐𝐸(𝑔(𝑊1))  < 0                                                                                                 (3.4) 

 

The NPC condition can be interpreted as: the expected claim size 𝐸(𝑋1) has to be smaller 

than the expected premium income 𝑐𝐸(𝑔(𝑊1)), in a given unit of time. In other words, more 

premium income should be earned by the company than the paid claim sizes by the company.  

However, this does not mean that ruin of the company is completely averted. Because, net 

profit conditin does not take into consideration the fluctuational bevaviour of the stochastic 

process. 

 

   In this model, a  small claim condition is assumed, meaning that, there exists a moment 

generating function of the claim size distribution in a neighborhood of the origin, i.e., 

 

𝑚𝑋1(ℎ) = 𝐸(𝑒
ℎ𝑋1), ℎ ∈ (−ℎ0, ℎ0)   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ0  > 0.   

 

Also, by Markov’s Inequality, we can rewrite the above eqaution as: for ℎ ∈ (0, ℎ0), 

 

𝑃(𝑋1 > 𝑥) = 𝑃(𝑒
ℎ𝑋1 > 𝑒ℎ𝑥) ≤ 𝑒−ℎ𝑥𝑚𝑋1(ℎ), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ ∈ (0, ℎ0)  and for all 𝑥 > 0 
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Definition 3.3 (Generalized Lundberg coefficient)  

 

Assume that there exists a moment generating function of 𝑍1 in some neighborhood of 

(−ℎ0, ℎ0), 𝑓𝑜𝑟 ℎ0 > 0, of the origin. If there exists a unique positive solution 𝑟 > 0 to the 

equation below, 

 

r ≡  inf {ℎ > 0 ∶   𝑚𝑍1
(ℎ) = 𝐸(𝑒ℎ𝑍1) = 𝐸(𝑒ℎ(𝑋1−𝑐𝑔(𝑊1))) = 1 }                                             (3.5) 

 

it is called the generalized Lundberg coefficient. 
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4.  APPROXIMATION TO LUNDBERG TYPE BOUND FOR NON-LINEAR 

MODEL 

In this part of the thesis, a Lundberg type upper bound is found for our non-linear 

model constructed previously. The following theorem establishes this relation. 

 

Theorem 4.1 (Lundberg’s inequality) 

 

Assume the non-linear model in (3.2) whch satisfies the net profit condition. And 

also assume that the generalized adjustment coefficient 𝑟 exists. Then, for all 𝑢 > 0, 

the following inequality holds: 

 

𝝍(𝒖) ≤ 𝒆−𝒓∙𝒖  

 

For proof of the Theorem 4.1, please refer to Mikosch (2004) 

 

Observe that the probability of ruin will be very small for a large initial capital 𝑢, 

with the exponential bound from above. The magnitude of the adjustment coefficient 

𝑟 is also vital. The smaller r is, the riskier is the portfolio. Also, the result of the 

theorem is much more informative than the average behavior of the portfolio, as it 

was also commented in the definition of the NPC. It is assumed that the initial capital 

is known. In order to find a Lundberg-type upper bound for our model, what remains 

to be calculated is the generalized Lundberg coefficient 𝑟, which we do in the 

following sections. 

 

4.1 Investigation and Analysis of the Generalized Lundberg Coefficient 𝒓 

 

In order to find 𝑟, let us reconsider the equation (3.5), 

 

𝑚𝑍1
(ℎ) = 𝐸(𝑒ℎ𝑍1) = 𝐸(𝑒ℎ(𝑋1−𝑐𝑔(𝑊1))) = 1                                                                 (4.1) 
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Before we move on, let’s remind that 𝑋𝑖 − positive i.i.d random variable denoting the 

amount of payment for the 𝑖𝑡ℎ claim for 𝑖 = 1,2,3… and 𝑔(𝑡) = ln (1 + 𝑡) – 

premium income function.  

 

Expanding (4.1) yields the following: 

 

𝑚𝑍1
(ℎ) = 𝐸(exp(ℎ𝑍1))|ℎ=𝑟 = 𝐸 (exp (𝑟 ∙ (𝑋1 − 𝑐 ∙ 𝑔(𝑊1)))) 

       = 𝐸(exp(𝑟 ∙ 𝑋1)) ∙ 𝐸(exp(−𝑐𝑟 ∙ 𝑔(𝑊1))) 

  Now equating the right-hand side to 1, we get: 

 

⟹ 𝐸(exp (𝑟 ∙ 𝑋1))⏟          
 𝑀𝑋(𝑟)

∙  𝐸(exp(−𝑐𝑟 ∙ 𝑔(𝑊1)))⏟              
𝑀𝑔(𝑊)(−𝑐𝑟)

= 1 

 

By definition of the moment generating function (MGF), we can write the following: 

 

𝑀𝑋(𝑟) ∙ 𝑀𝑔(𝑊)(−𝑐𝑟) = 1                                                                                                   (4.2) 

 

Here, note that 𝑀𝑋(𝑟) is the MGF of a general random variable 𝑋1 and 𝑀𝑔(𝑊) is the 

MGF of 𝑔(𝑊1). Since it very hard to compute 𝑟 for a general random variable, we 

investigate particular cases. In other words, we resort to well-studied distributions.  

 

Special Case-1: 𝑋1 ~ 𝐸𝑥𝑝(𝜇) and 𝑊1 ~ 𝐸𝑥𝑝(𝜆) 

Let 𝑋1 ~ 𝐸𝑥𝑝(𝜇). PDF of the exponential random variable 𝑋1 is given as follows: 

 

𝑓𝑋1(𝑥) = {
𝜇𝑒−𝜇𝑥, 𝑥 ≥ 0

0, 𝑥 < 0
 

 

Also, MGF of 𝑋1 is as follows: 

 

𝑀𝑋(𝑟) = 𝐸(exp(𝑟 ∙ 𝑋1)) =  
𝜇

𝜇−𝑟
 ,  where 𝑟 <  𝜇   

 

Then from equation (4.2), we get :  

 

 𝑀𝑋(𝑟) ∙ 𝑀𝑔(𝑊)(−𝑐𝑟) = 1   ⟹ 𝑀𝑔(𝑊)(−𝑐𝑟) =  
𝜇 − 𝑟

𝜇
= 1 −

𝑟

𝜇
 

 

For simplicity, define,  𝑓1(𝑟) ≡ 𝑀𝑔(𝑊)(−𝑐𝑟) = 𝐸(exp(−𝑐𝑟 ∙ 𝑔(𝑊1))) and 
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𝑓2(𝑟) ≡
𝜇 − 𝑟

𝜇
= 1 −

𝑟

𝜇
 

 

Obviously, we have 𝑓1(𝑟) =  𝑓2(𝑟) 

From the definition of the moment generating function, we can write the following: 

 

𝑓1(𝑟) ≡ 𝑀𝑔(𝑊)(−𝑐𝑟) = ∫ exp(−𝑐𝑟 ∙ 𝑔(𝑡)) 𝑑𝐹𝑊(𝑡)
∞

0
= 1 − 

𝑟

𝜇
≡ 𝑓2(𝑟)                (4.3)  

 

in which, 𝐹𝑊(𝑡) is the cumulative distribution function (CDF) of a random variable 

𝑊1. 

 

Now, assume that 𝑊1 ~ 𝐸𝑥𝑝(𝜆) . Then,  

 

𝑓1(𝑟) = ∫ λ ∙ exp(−λt) exp(−𝑐𝑟 ∙ 𝑔(𝑡)) 𝑑𝑡
∞

0

=  

          = 𝜆 ∫ exp(−λt − 𝑐𝑟 ∙ 𝑔(𝑡)) 𝑑𝑡
∞

0
= 1 − 

𝑟

𝜇
= 𝑓2(𝑟)                                          (4.4)  

 

Substituting 𝑔(𝑡) = ln (1 + 𝑡)  into (4.4), one gets: 

 

𝑓1(𝑟)  = 𝜆 ∫ exp(−λt − 𝑐𝑟 ∙ ln (1 + 𝑡)) 𝑑𝑡
∞

0
=  

            = 𝜆∫ exp(−λt) ∙
𝑑𝑡

(1 + 𝑡)𝑐𝑟

∞

0

 

 

Since 𝑓1(𝑟) =  𝑓2(𝑟), we can write the following equality: 

 

𝜆∫ exp(−𝜆𝑡) ∙
𝑑𝑡

(1 + 𝑡)𝑐𝑟
= 1 −

𝑟

𝜇
                                                                               (4.5)

∞

0

 

 

Since our aim is to compute 𝑟, now question reduces to finding 𝑟 satisfying in (4.5). 

Since it hard to find a general solution, we solve for 𝑟 with some parameter values of  

𝜆 𝑎𝑛𝑑 𝑐. To better illustrate, let  𝜆 = 1 . Then (4.5) becomes, 

 

𝑓1(𝑟) = ∫ exp(−𝑡) ∙
𝑑𝑡

(1 + 𝑡)𝑐𝑟
= 1 −

𝑟

𝜇
= 𝑓2(𝑟)

∞

0

 

 

Now also assume that 𝑐 = 0.7, then (4.5) becomes as follows: 
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𝑓1(𝑟) = ∫
𝑒−𝑡

(1 + 𝑡)0.7∙𝑟
𝑑𝑡 = 1 −

𝑟

𝜇
= 𝑓2(𝑟),    𝑓𝑜𝑟 𝑟 > 0                                        (4.6)

∞

0

 

 

Clearly, there is no analytical solution to 𝑟 in equation (4.6) due to the integral at the 

left-hand side. Therefore, it should be calculated numerically, which we do in the 

following section with the help of software package MATLAB. Also, we vary the 

values of 𝜇 to see how the solution values of 𝑟 changes respectively. 

 

Special Case-2: 𝑋1 ~ 𝑈[0, 𝑏] and 𝑊1 ~ 𝐸𝑥𝑝(𝜆) 

Let 𝑋1 ~ 𝑈[0, 𝑏]. PDF of the uniform random variable 𝑋1 is given as follows: 

 

𝑓𝑋1(𝑥) = { 
1

𝑏
,   0 ≤ 𝑥 ≤ 𝑏

0,           𝑥 > 𝑏
 

 

Also, MGF of 𝑋1 is as follows: 

 

𝑀𝑋(𝑟) = 𝐸(exp(𝑟 ∙ 𝑋1)) = {
𝑒𝑏𝑟 − 1

𝑏𝑟
,   𝑟 ≠ 0

1,   𝑟 = 0
   

 

Also, assume that 𝑊1 ~ 𝐸𝑥𝑝(𝜆) . Then, similar analysis yields:  

 

𝑓1(𝑟) = ∫ exp(−𝑡) ∙
𝑑𝑡

(1 + 𝑡)𝑐𝑟
=

𝑏𝑟

𝑒𝑏𝑟 − 1
= 𝑓2(𝑟)                                                  (4.7)

∞

0

 

 

Again, there is no analytical solution for r in this equation. Therefore, it should be 

calculated numerically in MATLAB. 

 

 

4.2 Computation of 𝒓 

 

Since there is no analytical closed form solution for 𝑟 in (4.6) and (4.7), an algorithm 

was devised on MATLAB which gives numeric solutions to 𝑟. Roughly, this 

algorithm finds the intersection of 𝑓1(𝑟) and 𝑓2(𝑟), as we vary the values of 𝜇. 
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Algorithm steps are given below: 

 

1. Solve LHS and RHS for 0 ≤ 𝑟 ≤ 𝐾, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 0 < 𝐾 <  ∞. Then we plot the 

graphs of both 𝑓1(𝑟) and 𝑓2(𝑟). (Fix 𝜇 > 0 value.) 

2. By visual inspection, we roughly decide the approximate value of  𝑟 at large 

increments of 𝑟.  

3. Then around that approximate value of 𝑟, we search for better approximation of 𝑟 

by making the increment sizes of the algorithm smaller. 

4. Then around that better approximated neighborhood, we start to take differences 

of 𝑓1(𝑟) and 𝑓2(𝑟). Whenever the difference changes its sign, we decide that point to 

be a solution to 𝑟.  

5. Decrease/increase the value of 𝜇 and repeat the steps (1-4). 

 

In the following section, numeric values of 𝑟 are calculated for some special cases. 

 

4.3 Numerical calculation of 𝒓 for some special cases 

 

In this section, we tackle the problem numerically with the help of the computer 

software.  

 

4.3.1 Special Case 1: Exponential claim arrivals and exponential claim size 

distributions 

 

In section 4.1, we have already established the following equation for Special Case 1 

when 𝑋1 ~ 𝐸𝑥𝑝(𝜇) and 𝑊1 ~ 𝐸𝑥𝑝(𝜆), where 𝜆 = 1 and 𝑐 = 0.7 

 

𝑓1(𝑟)  = ∫
𝑒−𝑡

(1 + 𝑡)0.7𝑟
dt =  1 − 

𝑟

𝜇
= 𝑓2(𝑟)                                                             (4.8)

∞

0

 

 

To calculate 𝑟, the algorithm devised in Section 4.2 was deployed in MATLAB. By 

varying the value of 𝜇, the corresponding values of 𝑟 were calculated. In the Tables 

from 4.1 through 4.7, sample calculations of 𝑟 is demonstrated.  

   In the first row of the tables, the related parameters are provided. And in the last 

row, the computed approximate value of 𝑟 is provided and the corresponding ruin 

probability is given.  

    In the first column of the tables, the number of steps of the algorithm is presented. 

In the second columns, the value of 𝑟 is varied and the values of 𝑓1(𝑟) and 𝑓2(𝑟) are 

presented in the third and the fourth columns of the tables. As the rule of the 
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algorithm, whenever the sign of the difference between  𝑓1(𝑟) and 𝑓2(𝑟) is changed 

in the fifth columns, there we find the intersection of  𝑓1(𝑟) and 𝑓2(𝑟). In other 

words, the 𝑟 value which cause the change in the sign of the difference of 𝑓1(𝑟) and 

𝑓2(𝑟) is the solution to the related equation. The two values of 𝑟 which correspond to 

the solution is highlighted.  

   For example, when 𝜆 = 1, 𝑐 = 0.7 and 𝜇 = 20, the value of 𝑟 = 18.465. Observe 

that in order to determine 𝑟, two values of 𝑟 where 𝑓1(𝑟) − 𝑓2(𝑟) changes sign is 

averaged out. Since these are approximate solutions, it is a good practice to take 

arithmetic average. Because one cannot tell if 𝑟 should be rounded up or down. 

 

Table 4.1 : The value of 𝑟 for 𝜆 = 1; 𝑐 = 0.7; 𝜇 = 20 

λ=1 ; c=0.7 ; μ=20 ; 

n r f1(r) f2(r) f1(r) – f2(r) 

0 18.4000 0.077143 0.080000 -0.002857 

1 18.4100 0.077102 0.079500 -0.002398 

2 18.4200 0.077060 0.079000 -0.001940 

3 18.4300 0.077019 0.078500 -0.001481 

4 18.4400 0.076978 0.078000 -0.001022 

5 18.4500 0.076937 0.077500 -0.000563 

6 18.4600 0.076896 0.077000 -0.000104 

7 18.4700 0.076855 0.076500 0.000355 

8 18.4800 0.076813 0.076000 0.000813 

9 18.4900 0.076772 0.075500 0.001272 

10 18.5000 0.076732 0.075000 0.001732 

𝒓∗ ≈ 𝟏𝟖. 𝟒𝟔𝟓 ;  𝑹𝒖𝒊𝒏 𝑷𝒓:  𝝍(𝒖) ≤  𝒆−𝟏𝟖.𝟒𝟔𝟓 ∙ 𝒖 

 

Table 4.2 : The value of 𝑟 for 𝜆 = 1; 𝑐 = 0.7; 𝜇 = 15 

λ=1 ; c=0.7 ; μ=15 ; 

n r f1(r) f2(r) f1(r) – f2(r) 

0 13.0000 0.108465 0.133333 -0.024868 

1 13.1000 0.107659 0.126667 -0.019008 

2 
13.2000 0.106865 0.120000 -0.013135 

3 13.3000 0.106082 0.113333 -0.007252 

4 13.4000 0.105310 0.106667 -0.001357 
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5 
13.5000 0.104549 0.100000 0.004549 

6 13.6000 0.103799 0.093333 0.010466 

7 13.7000 0.103060 0.086667 0.016393 

8 
13.8000 0.102330 0.080000 0.022330 

9 13.9000 0.101611 0.073333 0.028278 

10 14.0000 0.100902 0.066667 0.034236 

𝒓∗ ≈ 𝟏𝟑. 𝟒𝟓 ;  𝑹𝒖𝒊𝒏 𝑷𝒓:  𝝍(𝒖) ≤  𝒆−𝟏𝟑.𝟒𝟓 ∙ 𝒖 

 

Table 4.3 : The value of 𝑟 for 𝜆 = 1; 𝑐 = 0.7; 𝜇 = 10 

λ=1 ; c=0.7 ; μ=10 ; 

n r f1(r) f2(r) f1(r) – f2(r) 

0 8.0000 0.172479 0.200000 -0.027521 

1 8.1000 0.170494 0.190000 -0.019506 

2 8.2000 0.168551 0.180000 -0.011449 

3 8.3000 0.166651 0.170000 -0.003349 

4 8.4000 0.164792 0.160000 0.004792 

5 8.5000 0.162973 0.150000 0.012973 

6 8.6000 0.161192 0.140000 0.021192 

7 8.7000 0.159449 0.130000 0.029449 

8 8.8000 0.157741 0.120000 0.037741 

9 8.9000 0.156069 0.110000 0.046069 

10 9.0000 0.154430 0.100000 0.054430 

𝒓∗ ≈ 𝟖. 𝟑𝟓 ;  𝑹𝒖𝒊𝒏 𝑷𝒓:  𝝍(𝒖) ≤  𝒆−𝟖.𝟑𝟓 ∙ 𝒖 

 

Table 4.4 : The value of 𝑟 for 𝜆 = 1; 𝑐 = 0.7; 𝜇 = 5 

λ=1 ; c=0.7 ; μ=5 ; 

n r f1(r) f2(r) f1(r) – f2(r) 

0 2.8000 0.4092263 0.4400000 -0.0307737 

1 2.9000 0.3995585 0.4200000 -0.0204415 

2 3.0000 0.3902824 0.4000000 -0.0097176 

3 3.1000 0.3813770 0.3800000 0.0013770 

4 3.2000 0.3728226 0.3600000 0.0128226 

5 3.3000 0.3646009 0.3400000 0.0246009 

6 3.4000 0.3566948 0.3200000 0.0366948 

7 3.5000 0.3490881 0.3000000 0.0490881 

8 3.6000 0.3417656 0.2800000 0.0617656 
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9 3.7000 0.3347131 0.2600000 0.0747131 

10 3.8000 0.3279172 0.2400000 0.0879172 

𝒓∗ ≈ 𝟑. 𝟎𝟓 ;  𝑹𝒖𝒊𝒏 𝑷𝒓:  𝝍(𝒖) ≤  𝒆−𝟑.𝟎𝟓 ∙ 𝒖 

 

Table 4.5 : The value of 𝑟 for 𝜆 = 1; 𝑐 = 0.7; 𝜇 = 3 

λ=1 ; c=0.7 ; μ=3 ; 

n r f1(r) f2(r) f1(r) – f2(r) 

0 0.5000 0.820122 0.833333 -0.013212 

1 0.6000 0.790119 0.800000 -0.009881 

2 0.7000 0.761790 0.766667 -0.004877 

3 0.8000 0.735018 0.733333 0.001684 

4 0.9000 0.709698 0.700000 0.009698 

5 1.0000 0.685732 0.666667 0.019065 

6 1.1000 0.663030 0.633333 0.029696 

7 1.2000 0.641508 0.600000 0.041508 

8 1.3000 0.621091 0.566667 0.054424 

9 1.4000 0.601706 0.533333 0.068372 

10 1.5000 0.583287 0.500000 0.083287 

𝒓∗ ≈ 𝟎.𝟕𝟓 ; 𝑹𝒖𝒊𝒏 𝑷𝒓:  𝝍(𝒖) ≤  𝒆−𝟎.𝟕𝟓 ∙ 𝒖 

 

Table 4.6 : The value of 𝑟 for 𝜆 = 1; 𝑐 = 0.7; 𝜇 = 2.4 

λ=1 ; c=0.7 ; μ=2.40 ; 

n r f1(r) f2(r) f1(r) – f2(r) 

0 
0.0000 1.00000000000 1.00000000000 0.00000000000 

1 
0.0050 0.99791603816 0.99791666667 -0.00000062850 

2 
0.0100 0.99583856764 0.99583333333 0.00000523431 

3 
0.0150 0.99376756371 0.99375000000 0.00001756371 

4 
0.0200 0.99170300173 0.99166666667 0.00003633506 

5 
0.0250 0.98964485719 0.98958333333 0.00006152385 

6 
0.0300 0.98759310566 0.98750000000 0.00009310566 

7 
0.0350 0.98554772285 0.98541666667 0.00013105619 

8 
0.0400 0.98350868455 0.98333333333 0.00017535122 

9 
0.0450 0.98147596666 0.98125000000 0.00022596666 

10 
0.0500 0.97944954519 0.97916666667 0.00028287852 

𝒓∗ ≈ 𝟎. 𝟎𝟎𝟕𝟓 ; 𝑹𝒖𝒊𝒏 𝑷𝒓;  𝝍(𝒖) ≤  𝒆−𝟎.𝟎𝟎𝟕𝟓 ∙ 𝒖 
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Table 4.7 : The value of 𝑟 for 𝜆 = 1; 𝑐 = 0.7; 𝜇 = 2.375 

λ=1 ; c=0.7 ; μ=2.375 ; 

n r f1(r) f2(r) f1(r) – f2(r) 

0 0.0000 1.000000000 1.000000000 0.000000000 

1 0.0050 0.999582687 0.999574468 0.000008219 

2 0.0100 0.999165635 0.999148936 0.000016699 

3 0.0150 0.998748843 0.998723404 0.000025438 

4 0.0200 0.998332310 0.998297872 0.000034438 

5 0.0250 0.997916038 0.997872340 0.000043698 

6 0.0300 0.997500026 0.997446809 0.000053217 

7 0.0350 0.997084272 0.997021277 0.000062996 

8 0.0400 0.996668778 0.996595745 0.000073034 

9 0.0450 0.996253544 0.996170213 0.000083331 

10 0.0500 0.995838568 0.995744681 0.000093887 

𝒓∗ ≈ 𝑫𝒐𝒆𝒔 𝒏𝒐𝒕 𝒆𝒙𝒊𝒔𝒕 

 

Also notice that in Table 4.7 the solution to 𝑟 does not exist. This is because the NPC 

condition is violated. In fact, the solution to 𝑟 cuts off at around 𝜇 ≈ 2.4. Let’s 

confirm this numerically as well. We know that NPC should hold, i.e.,  

 

𝐸(𝑋1) − 𝑐𝐸(𝑔(𝑊1))  < 0 

 

must hold. We know that 𝐸(𝑋1) =
1

𝜇
, since 𝑋1 ~ 𝐸𝑥𝑝(𝜇). Also, 𝑊1 ~ 𝐸𝑥𝑝(𝜆) and 

𝐸(𝑔(𝑊1)) =  ∫ ln(1 + 𝑡) ∙ 𝜆𝑒−𝜆𝑡𝑑𝑡 = ∫ ln(1 + 𝑡) ∙ 𝑒−𝑡𝑑𝑡
∞

0

∞

0
≈ 0.5963 was 

calculated in MATLAB. Since 𝑐 = 0.7, solving for 𝜇, we find that 

 

𝜇 ≈
1

(0.7) ∙ (0.5963)
= 2.396 

 

This is expected due to NPC condition.  

 

Now, let’s plot 𝜇 vs 𝑟∗ in the Figure 5.1. In total 23 different values of 𝑟 was 

calculated for 23 different values of 𝜇.   
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Figure 4.1 : 𝜇   𝑣𝑠  𝑟∗ 
 

Observe that the graph in Figure 4.1 is almost linear. Therefore, a linear regression 

line was fit to these 23 data points along with calculated value of 𝑟, which can be 

seen in Figure 4.2 below: 

 
Figure 4.2 : Numeric vs Regression Estimate of r 

 

Linear regression equation is obtained in MATLAB as follows, with Least Square 

Estimation (LSE) method: 

 

𝑟̂ =  −2.2573 + 1.0449 ∙ 𝜇 +  𝜀,     𝑓𝑜𝑟 𝜇 ≥ 2.396  
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in which, the intercept is −2.2573 and the slope is 1.0449. Here, 𝜀 is a noise factor. 

 

In Table 4.8 below, an average absolute error is calculated for the non-extreme 

errors.  

Table 4.8 : Summary table for special case 1 

 

n μ r 𝒓̂ Abs. Err. 
1 3.5 1.35 1.3999 3.69% 

2 4 1.95 1.9223 1.42% 

3 4.5 2.55 2.4448 4.13% 

4 5 3.05 2.9672 2.71% 

5 6 4.15 4.0121 3.32% 

6 7 5.25 5.0570 3.68% 

7 8 6.25 6.1019 2.37% 

8 9 7.35 7.1468 2.76% 

9 10 8.35 8.1917 1.90% 

10 11 9.35 9.2366 1.21% 

11 12 10.35 10.2815 0.66% 

12 13 11.35 11.3264 0.21% 

13 14 12.45 12.3713 0.63% 

14 15 13.45 13.4162 0.25% 

15 16 14.435 14.4611 0.18% 

16 17 15.445 15.5060 0.39% 

17 18 16.445 16.5509 0.64% 

18 19 17.455 17.5958 0.81% 

19 20 18.465 18.6407 0.95% 

AVG: 1.68044% 

 

 

Previously, we kept 𝑐 = 0.7 constant and varied 𝜇 values, until NPC condition was 

violated. The similar analysis was done for 𝑐 = 0.5 and 𝑐 = 0.3, whose plots are 

drawn along with when 𝑐 = 0.7. As one can see, 𝜇 vs 𝑟∗ values are almost linearly 

related for different values of 𝑐, in each case with its NPC condition cutt off value.  
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Figure 4.3 : All three cases; c = 0.3, 0.5 , 0.7 

 

Conclusion – 1.1: To find a Lundberg-type upper bound for the ruin probability for 

the special case 1 when 𝑋1 ~ 𝐸𝑥𝑝(𝜇) and 𝑊1 ~ 𝐸𝑥𝑝(𝜆), instead of calculating an 

integral equation in (4.1), we could simply approximate 𝑟 with a linear function, 

without much loss of a precision. 

 

4.3.2 Special Case 2: Exponential Claim Arrivals and Uniform Claim Size 

Distributions 

 

In section 4.1, we have already established the following equation for Special Case 1 

when : 𝑋1 ~ 𝑈[0, 𝑏] and 𝑊1 ~ 𝐸𝑥𝑝(𝜆), where 𝜆 = 1 and 𝑐 = 0.7 

 

𝑓1(𝑟) = ∫ exp(−𝑡)
𝑑𝑡

(1 + 𝑡)0.7∙𝑟
=

𝑏𝑟

𝑒𝑏𝑟 − 1
= 𝑓2(𝑟)                                                 (4.9)

∞

0

 

 

By applying the similar procedure as in special case 1, we obtain the following 

values for 𝑟 in table 4.9 below:  
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Table 4.9: Summary table for special case 2 

  

 

n b r  Err. n b r 𝒓̂ Err. 

1 0.025 292.5 292.1082 0.13% 16 0.6 2.25 1.3213 41.28% 

2 0.05 126.5 129.1308 2.08% 17 0.425 5.75 4.5366 21.10% 

3 0.075 77 73.2458 4.88% 18 0.45 5.05 3.8036 24.68% 

4 0.1 52.5 50.8184 3.20% 19 0.475 4.45 3.1891 28.34% 

5 0.125 39.25 39.4034 0.39% 20 0.5 3.95 2.6738 32.31% 

6 0.15 30.75 32.0678 4.29% 21 0.525 3.45 2.2418 35.02% 

7 0.175 24.65 26.5934 7.88% 22 0.55 3.05 1.8796 38.37% 

8 0.2 20.35 22.2080 9.13% 23 0.575 2.65 1.5759 40.53% 

9 0.225 17.2 18.5930 8.10% 24 0.6 2.25 1.3213 41.28% 

10 0.25 14.6 15.5808 6.72% 25 0.65 1.65 0.9288 43.71% 

11 0.275 12.7 13.0610 2.84% 26 0.7 1.15 0.6529 43.22% 

12 0.3 10.9 10.9500 0.46% 27 0.75 0.675 0.4590 32.00% 

13 0.325 9.55 9.1805 3.87% 28 0.775 0.425 0.3848 9.45% 

14 0.35 8.35 7.6972 7.82% 29 0.8 0.275 0.3226 17.33% 

15 0.375 7.35 6.4535 12.20%           

     AVG: 18.00% 

 

And the plot of the obtained values for 𝑟 for given values of 𝑏 is given in Figure 4.4 

below. 

 
Figure 4.4: 𝑏   𝑣𝑠  𝑟∗ 
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Similarly, Exponential Regression Fit is utilized, and the following equation is 

obtained in MATLAB 

 

𝑟̂ =  714.2 ∙ 𝑒−47.83∙𝑏 + 90.74 ∙ 𝑒−7.049∙𝑏 + 𝜀, 𝑓𝑜𝑟 0 < 𝑏 ≤ 0.83482 

 

In Figure 4.5 below, the plot of the numeric result and the plot of the estimate is 

given. 

 
Figure 4.5: Numeric vs Exponential Estimate of  r 

 

 

Question : Why does solution cut off at around 𝑏 ≈ 0.83 ?  

Answer : Net Profit Condition! 

• We know that 𝐸(𝑋1) =
𝑏

2
< 𝑐𝐸(𝑔(𝑊1)) must be satisfied.  

• Here, 𝑐 = 0.7  

• Also, MATLAB calculation yields : 𝐸(𝑔(𝑊1)) ≈ 0.5963      

Solving for 𝑏, we find that 𝑏 ≈ 2 ∙ 0.7 ∙ 0.5963 = 0.83482, as expected. 

 

Again, when values of 𝑐 are 0.7, 0.5 and 0.3, the plot of the solution for 𝑟 for given 

values of 𝑏 are given in Figure 4.6 below. 
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Figure 4.6: All three cases; c = 0.3, 0.5 , 0.7 

 

Conclusion – 1.2: To find a Lundberg type upper bound for the ruin probability, 

instead of calculating an integral equation in (4.3), we could simply approximate 𝑟 

with an exponential function. Observe that the absolute error in this case is relatively 

higher. Thats attibuted to the high sensitivity of the model fitted. 
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5.  APPROXIMATION TO CRAMÉR TYPE BOUND FOR NON-LINEAR 

MODEL 

In part 4 of the thesis, we only found a loose upper bound for our non-linear model. 

In this part of the thesis, we try to find tighter bound for the ruin probability. More 

specifically, we find approximate upper and lower bounds for the ruin probability for 

the non-linear model, which is known as Cramér-type bound in the literature.  

   In fact, in Theorem 5.1 below, a neat formula and expression is given for 

calculating such bounds. However, it is rather too complicated integral equation. 

Additionally, it is very hard to interpret it. In fact, for only a few distributions the 

ruin probability 𝜓(𝑢) can be expressed as an explicit function of the ingredients of 

the risk process. Most of the time this requires numeric methods or Monte Carlo 

approximations to 𝜓(𝑢). 

   What we did in in this work is, we exploited the statistical characteristics of the 

random variable, 𝑋̂, which describes the residual time (limit distribution) of the 

renewal process produced by the sequence {𝑋𝑛}, representing the 

accidents(damages). In particular, moment generating function of 𝑋̂ was utilized to 

determine a constant 𝐶, which is an unknown coefficient in the bound expression of 

the ruin probability as can be seen in Theorem 5.1. In order to simplify these 

expressions and transform them into a compact form, calculus methods were used. 

   First, let us present one of the most important results of risk theory, thanks to 

Cramér [10]. 

 

Theorem 5.1 (Cramer’s ruin bound)  

 

Consider the Cramér-Lundberg model which satisfies the net profit condition. 

Additionally, assume that the claim size distribution function 𝐹𝑋1 has a density, the 

moment generating function of 𝑋1 exists in some neighborhood (−ℎ0, ℎ0) of the 

origin, the adjustment coefficient 𝑟 exists and lies in (0, ℎ0). Then there exists a 

constant C > 0 such that 

𝑙𝑖𝑚
𝑢 ⟶∞

𝑒𝑟𝑢𝜓(𝑢) = 𝐶  

and  
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𝐶 = [
𝑟

𝜌𝐸(𝑋1)
∫ 𝑥𝑒𝑟𝑥𝐹̅𝑋1(𝑥)𝑑𝑥 
∞

0

]

−1

 

 

For proof of the Theorem 4.1, please refer to Mikosch (2004) 

 

The reciprocal expression for the constant 𝐶 is given in (5.1) below. To compute this 

𝐶, one needs to know the adjustment coefficient 𝑟, the expected claim size 𝐸𝑋1 , the 

safety loading 𝜌 and some other characteristics of 𝐹𝑋1 as well. To satisfy net profit 

condition (NPC), we have chosen 𝜌 to be as follows, i.e.,  

 

𝜌 = 𝑐
𝐸[𝑔(𝑊1)]

𝐸𝑋1
− 1 > 0 

 

Please observe that it is not an easy task to calculate the value of 𝐶, at least it is not a 

straightforward task. Now let us rewrite the expression for 𝐶 as in equation (5.1) 

below and try to simplify it by expanding it: 

 

1

𝐶
=

𝑟

𝜌𝐸𝑋1
∫ 𝑥𝑒𝑟𝑥𝐹̅𝑋1𝑑𝑥
∞

0

                                                                                                  (5.1) 

 

Before we move on, please note that 𝐹𝐴 denotes the distribution function of any 

random variable 𝐴 and accordingly 𝐹̅𝐴 = 1 − 𝐹𝐴 denotes its tail. 
 

Let’s denote the integration part as: 

 

𝑰(𝒓) ≡  ∫ 𝑥𝑒𝑟𝑥
∞

0

𝐹̅𝑋1(𝑥)𝑑𝑥                                                                                                (5.2) 

 

for ease of computability. 

From calculus, we use the following fact, Taylor Series Expansion: 

 

𝑒𝑟𝑥 =∑
(𝑟𝑥)𝑛

𝑛!

∞

𝑛=0
                                                                                                            (5.3) 

 

After inserting Taylor form of 𝑒𝑟𝑥 in (5.3) into (5.2) above, we get the following: 
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𝑰(𝒓) ≡  ∫ 𝑥 (∑
(𝑟𝑥)𝑛

𝑛!

∞

𝑛=0
)

∞

0

𝐹̅𝑋1(𝑥)𝑑𝑥 =  ∑
(𝑟)𝑛

𝑛!

∞

𝑛=0
∫ 𝑥𝑛+1
∞

0

𝐹̅𝑋1(𝑥)𝑑𝑥        (5.4) 

 

Another well-known fact from statistics is the following identity: 

 

𝐸(𝑋𝑘) ≡ 𝑘∫ 𝑥𝑘−1
∞

0

𝐹̅𝑋1(𝑥)𝑑𝑥                                                                                          (5.5) 

 

Leaving the integration part of (5.5) on the left-hand side, we have the following 

equation: 

 

∫ 𝑥𝑛+1
∞

0

𝐹̅𝑋1(𝑥)𝑑𝑥 =
1

𝑛 + 2
𝐸(𝑋𝑛+2)                                                                             (5.6) 

 

Then inserting (5.6) into (5.4) we get: 

 

𝑰(𝒓) =  ∑
𝑟𝑛

𝑛!

∞

𝑛=0
 
1

𝑛 + 2
𝐸(𝑋𝑛+2)                                                                                  (5.7)  

 

Again, for ease of notation,  let  𝑚𝑘 ≡ 𝐸(𝑋
𝑘)  𝑓𝑜𝑟 𝑘 = 1, 2…  

Then 𝐼(𝑟) in (5.7) can be rewritten as follows: 

 

𝑰(𝒓) =  ∑
(𝑛 + 1)𝑟𝑛

(𝑛 + 2)!

∞

𝑛=0
 𝑚𝑛+2                                                                                      (5.8) 

 

By change of index in (5.8) as 𝑛 = 𝑖 − 2, we get the following: 

 

𝑰(𝒓) =  ∑
(𝑖 − 1)𝑟𝑖−2

𝑖!

∞

𝑖=2
 𝑚𝑖 = ∑

𝑖𝑟𝑖−2

𝑖!

∞

𝑖=2
 𝑚𝑖 −∑

𝑟𝑖−2

𝑖!

∞

𝑖=2
 𝑚𝑖  =   

         = ∑
𝑟𝑖−2

(𝑖 − 1)!

∞

𝑖=2
 𝑚𝑖 −∑

𝑟𝑖−2

𝑖!

∞

𝑖=2
 𝑚𝑖 

         =
1

𝑟
∑

𝑟𝑖−1

(𝑖 − 1)!

∞

𝑖=2
 𝑚𝑖 −

1

𝑟2
∑

𝑟𝑖

𝑖!

∞

𝑖=2
 𝑚𝑖 

         =
1

𝑟
∑

𝑟𝑗

𝑗!

∞

𝑗=1
 𝑚𝑗+1 −

1

𝑟2
∑

𝑟𝑗

𝑗!

∞

𝑗=2
 𝑚𝑗 
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         = 𝑚2 + 
1

𝑟
∑

𝑟𝑗

𝑗!

∞

𝑗=2
 𝑚𝑗+1 −

1

𝑟2
∑

𝑟𝑗

𝑗!

∞

𝑗=2
 𝑚𝑗 

         = 𝑚2 + ∑
𝑟𝑗

𝑗!

∞

𝑗=2
 
𝑚𝑗+1

𝑟
−∑

𝑟𝑗

𝑗!

∞

𝑗=2
 
𝑚𝑗

𝑟2
= 𝑚2 + ∑ [

𝑟𝑗

𝑗!

𝑚𝑗+1

𝑟
− 
𝑟𝑗

𝑗!

𝑚𝑗

𝑟2
]

∞

𝑗=2
  

          = 𝑚2 + ∑
𝑟𝑗

𝑗!
[
𝑚𝑗+1

𝑟
− 
𝑚𝑗

𝑟2
]

∞

𝑗=2
 = 𝑚2 + 

1

𝑟2
∑

𝑟𝑗

𝑗!
[𝑟𝑚𝑗+1 −𝑚𝑗]

∞

𝑗=2
 

 

In summary, 

 

𝑰(𝒓) = 𝑚2 + 
1

𝑟2
∑

𝑟𝑗

𝑗!
[𝑟𝑚𝑗+1 −𝑚𝑗]

∞

𝑗=2
                                                                     (5.9)  

 

And also, since 𝑰(𝒓) ≡  ∫ 𝑥𝑒𝑟𝑥
∞

0
𝐹̅𝑋1(𝑥)𝑑𝑥 from (5.2) above, we have 

 

𝑰(𝒓) = 𝑚2 + 
1

𝑟2
∑

𝑟𝑗

𝑗!
[𝑟𝑚𝑗+1 −𝑚𝑗] = ∫ 𝑥𝑒𝑟𝑥

∞

0

𝐹̅𝑋1(𝑥)𝑑𝑥 = 𝑰(𝒓)
∞

𝑗=2
              (5.10) 

 

Now we can rewrite the starting equation in (5.1) as: 

 

1

𝐶
=

𝑟

𝜌𝐸𝑋1
∫ 𝑥𝑒𝑟𝑥
∞

0

𝐹̅𝑋1(𝑥)𝑑𝑥 =
𝑟

𝜌𝑚1
{𝑚2 + 

1

𝑟2
∑

𝑟𝑗

𝑗!
[𝑟𝑚𝑗+1 −𝑚𝑗]

∞

𝑗=2
}       (5.11)  

 

Let us simplify (5.11) even further below: 

 

1

𝐶
=

𝑟

𝜌𝑚1
{𝑚2 + 

1

𝑟2
∑

𝑟𝑗

𝑗!
[𝑟𝑚𝑗+1 −𝑚𝑗]

∞

𝑗=2
} 

    =
𝑟𝑚2

𝜌𝑚1
+

1

𝜌𝑚1𝑟
∑

𝑟𝑗

𝑗!
[𝑟𝑚𝑗+1 −𝑚𝑗]

∞

𝑗=2
 

    =
2𝑟𝑚2

𝜌2𝑚1
+

1

𝜌𝑚1𝑟
∑

𝑟𝑗

𝑗!
[𝑟𝑚𝑗+1 −𝑚𝑗]

∞

𝑗=2
 

 

In summary, 

1

𝐶
=
2𝑟𝑚2

𝜌2𝑚1
+

1

𝜌𝑚1𝑟
∑

𝑟𝑗

𝑗!
[𝑟𝑚𝑗+1 −𝑚𝑗]

∞

𝑗=2
                                                               (5.12) 
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5.1 Expressing the constant 𝑪 in terms of 𝑴𝑿̂(𝒓) and 𝑴′𝑿̂(𝒓)   
 

Similarly, for simplicity, let’s denote the random variable which describes the 

residual time (limit distribution) of the renewal process produced by the sequence 

{𝑋𝑛}  with 𝑋̂. Then, 𝑚̂𝑗
′𝑠  will become the 𝑗𝑡ℎ moment of the limit distribution (of 

residual time) generated by the {𝑋𝑛} sequence of renewal process.   

 

Then, we can write the following well-known identity from renewal theory: 

 

𝑚𝑗+1

(𝑗 + 1)𝑚1
≡ 𝑚̂𝑗   

𝑚𝑗+1 ≡ (𝑗 + 1)𝑚1𝑚̂𝑗 

𝑚𝑗 ≡  𝑗𝑚1𝑚̂𝑗−1 

 

In this case, the MGF of the random variable 𝑋̂ can be expresses as follows:  

 

𝑀𝑋̂(𝑟) ≡ 𝐸(𝑒
𝑟𝑋̂) =  ∑

𝑟𝑗

𝑗!
𝑚̂𝑗 = 1 + ∑

𝑟𝑗

𝑗!
𝑚̂𝑗  

∞

𝑗=1

∞

𝑗=0

 

 

Re-arranging the terms in (5.12), and expressing it in terms of 𝑚̂𝑗’s we get: 

 

1

𝐶
=
2𝑟𝑚2

𝜌2𝑚1
+

1

𝜌𝑚1𝑟
∑

𝑟𝑗

𝑗!
[𝑟(𝑗 + 1)𝑚1𝑚̂𝑗 − 𝑗𝑚1𝑚̂𝑗−1]

∞

𝑗=2
 

                                       =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
∑

𝑟𝑗

𝑗!
[𝑟(𝑗 + 1)𝑚̂𝑗 − 𝑗𝑚̂𝑗−1]

∞

𝑗=2
 

In summary, 

 

1

𝐶
=
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
∑

𝑟𝑗

𝑗!
[𝑟(𝑗 + 1)𝑚̂𝑗 − 𝑗𝑚̂𝑗−1]

∞

𝑗=2
                                                     (5.13) 

 

Here, note that 

 

𝑀𝑋̂(𝑟) ≡ 𝐸(𝑒
𝑟𝑋̂) =  ∑

𝑟𝑗

𝑗!
𝑚̂𝑗 = 1 + ∑

𝑟𝑗

𝑗!
𝑚̂𝑗  

∞

𝑗=1

∞

𝑗=0
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Thus, 

 

∑
𝑟𝑗

𝑗!
𝑚̂𝑗  

∞

𝑗=1

= 𝐸(𝑒𝑟𝑋̂) − 1                                                                                                 (5.14) 

 

Similarly, 

 

𝑀′𝑋̂(𝑟) ≡ 𝐸(𝑋̂𝑒
𝑟𝑋̂) =  ∑

𝑗𝑟𝑗−1

𝑗!
𝑚̂𝑗 = ∑

𝑟𝑗−1

(𝑗 − 1)!
𝑚̂𝑗  

∞

𝑗=1

∞

𝑗=1

 

                                     =  ∑
𝑟𝑘

𝑘!
𝑚̂𝑘+1 = 𝑚̂1 +∑

𝑟𝑗

𝑗!
𝑚̂𝑗+1 

∞

𝑗=1

 

∞

𝑘=0

 

 

Thus, 

 

∑
𝑟𝑗

𝑗!
𝑚̂𝑗+1 

∞

𝑗=1

=  𝐸(𝑋̂𝑒𝑟𝑋̂) − 𝑚̂1 = 𝑀
′
𝑋̂(𝑟) − 𝑚̂1                                                       (5.15) 

 

Now we can express 1 𝐶⁄  in term of 𝑀𝑋̂(𝑟) and 𝑀′𝑋̂(𝑟) by expanding (5.13), 

 

1

𝐶
=
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
∑

𝑟𝑗

𝑗!
[𝑟(𝑗 + 1)𝑚̂𝑗 − 𝑗𝑚̂𝑗−1]

∞

𝑗=2
 

    =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
∑

𝑟𝑗

𝑗!
[𝑗𝑚̂𝑗𝑟 + 𝑚̂𝑗𝑟 − 𝑗𝑚̂𝑗−1]

∞

𝑗=2
 

    =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
[∑

𝑟𝑗

𝑗!
𝑗𝑚̂𝑗𝑟 +∑

𝑟𝑗

𝑗!
𝑚̂𝑗𝑟 −∑

𝑟𝑗

𝑗!
𝑗𝑚̂𝑗−1

∞

𝑗=2

∞

𝑗=2

∞

𝑗=2
] 

    =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
[∑

𝑟𝑗+1

(𝑗 − 1)!
𝑚̂𝑗 +∑

𝑟𝑗+1

𝑗!
𝑚̂𝑗 −∑

𝑟𝑗

(𝑗 − 1)!
𝑚̂𝑗−1

∞

𝑗=2

∞

𝑗=2

∞

𝑗=2
] 

     =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
[∑

𝑟𝑘+2

𝑘!
𝑚̂𝑘+1 +∑

𝑟𝑘+1

𝑘!
𝑚̂𝑘 − 𝑟

2𝑚̂1 −∑
𝑟𝑘+1

𝑘!
𝑚̂𝑘

∞

𝑘=1

∞

𝑘=1

∞

𝑘=1
] 

     =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
[𝑟2∑

𝑟𝑘

𝑘!
𝑚̂𝑘+1 + 𝑟∑

𝑟𝑘

𝑘!
𝑚̂𝑘 − 𝑟

2𝑚̂1 − 𝑟∑
𝑟𝑘

𝑘!
𝑚̂𝑘

∞

𝑘=1

∞

𝑘=1

∞

𝑘=1
] 

     =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
[𝑟2(𝑀′

𝑋̂(𝑟) − 𝑚̂1) + 𝑟(𝑀𝑋̂(𝑟) − 1) − 𝑟
2𝑚̂1 − 𝑟(𝑀𝑋̂(𝑟) − 1)] 

     =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
[𝑟2𝑀′𝑋̂(𝑟) − 2𝑟

2𝑚̂1] 

     =
2𝑟

𝜌
𝑚̂1 +

1

𝜌𝑟
𝑟2𝑀′𝑋̂(𝑟) −

2

𝜌𝑟
𝑟2𝑚̂1 
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=
2𝑟

𝜌
𝑚̂1 +

𝑟

𝜌
𝑀′𝑋̂(𝑟) −

2𝑟

𝜌
𝑚̂1 

=
𝑟

𝜌
𝑀′𝑋̂(𝑟) 

 

We finally arrive at the following compact and easy to interpret result, 

 

𝟏

𝑪
=
𝒓

𝝆
𝑴′𝑿̂(𝒓)                                                                                                                     (5.16) 

 

Here,  𝐹(𝑥) denotes the claim size distribution of 𝑋1, 𝑋2….  and 𝑚1 = 𝐸(𝑋1).  𝑋̂ is 

the random variable describing the residual time (limit distribution) of the renewal 

process produced by the sequence {𝑋𝑛}  and its c.d.f is given as follows: 

 

𝑭𝑿̂(𝒙) ≡ 𝑷{𝑿̂ ≤ 𝒙} =
𝟏

𝒎𝟏
∫ (𝟏 − 𝑭(𝒙))𝒅𝒙
𝒙

𝟎
    (Smith’s Key Renewal Theorem) 

Thus, 𝑓𝑋̂(𝑥) =  𝐹′𝑋̂(𝑥) =
1

𝑚1
(1 − 𝐹(𝑥))  is p.d.f. of 𝑋̂ . 

Here, 𝑀𝑋̂(𝑟) = 𝐸(𝑒
𝑟𝑋̂) = ∫ 𝑒𝑟𝑥𝑓𝑋̂(𝑥)

∞

0
𝑑𝑥  and  𝑀′𝑋̂(𝑟) = 𝐸(𝑋̂𝑒

𝑟𝑋̂)  

 

5.2 Numerical calculation of 𝑪 for some special cases 

 

The main purpose of the thesis is to calculate ruin probabilities of the non-linear 

model. In (5.16), we have derived a compact formula in regard to Theorem 5.1 for 

calculation of a constant 𝐶. However, it is not possible to calculate 𝐶 for an arbitrary 

distribution. Therefore, we resort to special cases below. 

 

Special Case – 1: 𝑿𝟏 ~  Exp(𝝁),   𝝁 > 𝟎 and 𝑾𝟏 ~  𝑬𝒙𝒑(𝝀), 𝝀 > 𝟎 

 

Let  𝑋1~  Exp(𝜇),   𝜇 > 0 and 𝑊1 ~  𝐸𝑥𝑝(𝜆), 𝜆 > 0 

1. CDF of 𝑿𝟏: 𝐹(𝑥) = 1 − 𝑒−𝜇𝑥, 𝑥 ∈ [0,∞), 𝜇 > 0 

2. 𝑓𝑋̂(𝑥) =  
1

𝑚1
(1 − 𝐹(𝑥)) =  𝜇(1 − (1 − 𝑒−𝜇𝑥)) =  𝜇𝑒−𝜇𝑥   {= 𝑓𝑋1(𝑥)} 

3. 𝑀𝑋̂(𝑟) = 𝐸(𝑒
𝑟𝑋̂) = ∫ 𝑒𝑟𝑥

∞

0
𝑓𝑥̂(𝑥)𝑑𝑥 = 

                  = ∫ 𝑒𝑟𝑥
∞

0

1

𝑚1
(1 − 𝐹(𝑥))𝑑𝑥 = ∫ 𝑒𝑟𝑥

∞

0

𝜇𝑒−𝜇𝑥𝑑𝑥 
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= 𝜇∫ 𝑒−(𝜇−𝑟)𝑥
∞

0

𝑑𝑥 =  
𝜇

𝜇 − 𝑟
, 𝑟 < 𝜇 

4. 𝑀′𝑋̂(𝑟) = 𝐸(𝑋̂𝑒
𝑟𝑋̂) = (𝜇 ∫ 𝑒(𝑟−𝜇)𝑥

∞

0
𝑑𝑥)

𝑟

′
= (

𝜇

𝜇−𝑟
)𝑟
′ =

𝝁

(𝝁−𝒓)𝟐
 

 

𝜌 = 𝑐
𝑬[𝒈(𝑾𝟏)]

𝑬𝑿𝟏
− 1 > 0   < Safety loading, 𝑐 = (1 + 𝜌)

𝐸𝑋1

𝐸𝑊1
 > 

𝐸(𝑔(𝑊1)) ≈ 𝑔(𝐸(𝑊1)) +
𝑔′′(𝐸(𝑊1))

2!
𝑉𝑎𝑟(𝑊1)  <Taylor expansion> 

𝑎 = 𝐸𝑊1 =
1

𝜆
, 𝜆 > 0 ; 𝑚1 = 𝐸(𝑋1) =  

1

𝜇
  

𝑉𝑎𝑟(𝑊1) =  
1

𝜆2
  

𝑔(𝑥) = ln (1 + 𝑥) ; 𝑔′(𝑥) =
1

1+𝑥
 ; 𝑔′′(𝑥) =

−1

(1+𝑥)2
 

 

Let  𝜆 = 1, 𝑐 = 0.7, 𝜇 = 10 

 

Table 5.1 : The value of 𝑟 for 𝜆 = 1; 𝑐 = 0.7; 𝜇 = 10 

λ=1 ; c=0.7 ; μ=10 ; 

n r f1(r) f2(r) f1(r) – f2(r) 

0 8.0000 0.172479 0.200000 -0.027521 

1 8.1000 0.170494 0.190000 -0.019506 

2 8.2000 0.168551 0.180000 -0.011449 

3 8.3000 0.166651 0.170000 -0.003349 

4 8.4000 0.164792 0.160000 0.004792 

5 8.5000 0.162973 0.150000 0.012973 

6 8.6000 0.161192 0.140000 0.021192 

7 8.7000 0.159449 0.130000 0.029449 

8 8.8000 0.157741 0.120000 0.037741 

9 8.9000 0.156069 0.110000 0.046069 

10 9.0000 0.154430 0.100000 0.054430 

𝒓∗ ≈ 𝟖. 𝟑𝟓 ;  𝑹𝒖𝒊𝒏 𝑷𝒓:  𝝍(𝒖) ≤  𝒆−𝟖.𝟑𝟓 ∙ 𝒖 

 

 

𝑓1(𝑟)  = ∫
𝑒−𝑡

(1+𝑡)0.7𝑟
dt =  1 − 

𝑟

𝜇
= 𝑓2(𝑟)

∞

0
,    𝑓𝑜𝑟  𝑟 > 0 

 

⇒ 𝑟 ≈ 8.35  
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• 𝜌 = 𝑐𝜇𝐸[𝑔(𝑊1)] − 1 ≈ 𝑐𝜇 (𝑔(𝑎) +
𝑔′′(𝑎)

2!
𝑉𝑎𝑟(𝑊1)) − 1 =    

            = 0.7 ∗ 10(ln (1 +
1

1
) +

−1

2 (1 +
1

1
)
2

1

12
) − 1 = 

           = 7 (ln(2) −
1

8
) − 1 ≈ 2.98 

 

• 𝑀′𝑋̂(𝑟) = 𝐸(𝑋̂𝑒
𝑟𝑋̂) =

𝜇

(𝜇−𝑟)2
=

10

(10−8.35)2
=

10

2.7225
 

 

1

𝐶
=
𝑟

𝜌
𝑀′𝑋̂(𝑟) ⇒ 𝑪 =

𝜌

𝑟 ∗ 𝑀′𝑋̂(𝑟)
=
2.98

8.35
 
2.7225

10
≈ 𝟎. 𝟎𝟗𝟖 

 

⇒ 𝝍(𝒖) ≈ 𝐶𝑒−𝑟𝑢  = 𝟎. 𝟎𝟗𝟖𝒆−𝟖.𝟑𝟓∗𝒖 

 

Here, 𝑢 denotes the initial capital. 

 

Now, lets confirm this above calculation by the formula given in Theorem 5.1, i.e.,  

 

𝐶 = [
𝑟

𝜌𝐸(𝑋1)
∫ 𝑥𝑒𝑟𝑥𝐹̅𝑋1(𝑥)𝑑𝑥 
∞

0

]

−1

 

 

We already know that,  

 

𝑟 ≈ 8.35 

𝜌 ≈ 2.98 

𝐸(𝑋1) =  
1

𝜇
=
1

10
 

 

and calculating the integral below: 

 

∫ 𝑥𝑒𝑟𝑥𝐹̅𝑋1(𝑥)𝑑𝑥 ≈ ∫ 𝑥𝑒8.35𝑥(1 − (1 − 𝑒−𝜇𝑥))𝑑𝑥 
∞

0

= ∫ 𝑥𝑒(8.35−𝜇)𝑥𝑑𝑥 
∞

0

∞

0

 

                                    = ∫ 𝑥𝑒(8.35−10)𝑥𝑑𝑥 
∞

0

= ∫ 𝑥𝑒−1.65𝑥𝑑𝑥 ≈ 0.3673
∞

0
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Thus, inserting the values we get: 

 

𝐶 ≈ [
8.35

2.98 ∗
1

10

∗ 0.3673]

−1

= [
83.5 ∗ 0.3673

2.98
]
−1

= 0.0972 

 

 

Which confirms the approximate result found alternatively. 

 

Conclusion – 2: Instead of calculating, 

 

𝐶 = [
𝑟

𝜌𝐸(𝑋1)
∫ 𝑥𝑒𝑟𝑥𝐹̅𝑋1(𝑥)𝑑𝑥 
∞

0

]

−1

 

 

we have found an alternative way of computing the value of 𝐶 as follows: 

 

1

𝐶
=
𝑟

𝜌
𝑀′𝑋̂(𝑟) 

 

• 𝑋̂ is a random variable describing the residual time (limit distribution) of the 

renewal process produced by the sequence {𝑋𝑛} which represents the 

accidents(damages) 

• 𝑀𝑋̂(𝑟) is the moment generating function of 𝑋̂ 
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6.  CONCLUSION 

In this work, a special non-linear risk process was constructed and studied. This 

model extends the classical risk process by relaxing the assumption that the premium 

income function is linear in time, 𝑝(𝑡) = 𝑐𝑡. In our model, we let the premium 

income function 𝑔(𝑡) = ln (1 + 𝑡) to be logarithmic, although it could be any 

general function whose rate of growth decreases with time while it is still 

monotonically increasing. We called this stochastic process as Logarithmic Risk 

Process, 𝑉(𝑡). In the first part of the thesis, we found a Lundberg-type upper bound 

of ruin probability for this non-linear process. While trying to calculate this bound, 

non-linear equations were encountered. To solve these non-linear equations, 

numerical methods were employed. In the second part of the study, a Cramér-type 

bound of ruin probability was calculated for this model. Statistical characteristics of 

the random variable, 𝑋̂ , which denotes the residual time (limit distribution) of the 

renewal process produced by the sequence {𝑋𝑛}, representing the 

accidents(damages), was exploited. In particular, moment generating function of 𝑋̂ 

was utilized to determine a constant 𝐶, which is an unknown coefficient in the bound 

expression of the ruin probability. In order to simplify these expressions and 

transform them into a compact form, calculus methods were used. Also, results from 

part one was used in conjunction with results in part two while finding approximate 

value for the value of 𝐶. In both parts, various scenarios, in a sense of distribution 

functions, were considered in order to investigate and calculate ruin probabilities.  
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