
Menu Optimization for Multi-Profile Customer Systems
on Large Scale Data

Jeyhun Karimov1 • Murat Ozbayoglu2 • Bulent Tavli2 • Erdogan Dogdu3

Accepted: 24 June 2021 / Published online: 24 July 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Everyday, a majority of the people, most probably several times, use the banking

applications through online applications or physical ATM (Automated Teller

Machine) devices for managing their financial transactions. However, most financial

institutions provide static user interfaces regardless of the needs for different cus-

tomers. Saving even a few seconds for each transaction through more personalized

interface design might not only result in higher efficiency, but also result in cus-

tomer satisfaction and increased market share among the competitors. In ATM

Graphical User Interface (GUI) design, transaction completion time is, arguably,

one of the most important metrics to quantify customer satisfaction. Optimizing

GUI menu structures has been pursued and many heuristic techniques for this

purpose are present. However, menu optimization by employing an exact mathe-

matical optimization framework has never been performed in the literature. We cast

the ATM menu optimization problem as a Mixed Integer Programming (MIP)

framework. All the parameters of the MIP framework are derived from a compre-

hensive actual ATM menu usage database. We also proposed two heuristic

approaches to reduce the computational complexity. Our solution can be accus-

tomed with ergonomic factors and can easily be tailored for optimization of various

menu design problems. Performance evaluations of our solutions by using actual

ATM data reveal the superior performance of our optimization solution.

Keywords HCI design and evaluation methods � Mixed integer programming �
Heuristic algorithms � Graphical user interfaces � Interaction design

theory � Scalable data processing

Extended author information available on the last page of the article

123

Computational Economics (2022) 60:221–242
https://doi.org/10.1007/s10614-021-10147-0(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-5987-0164
http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-021-10147-0&domain=pdf
https://doi.org/10.1007/s10614-021-10147-0

1 Introduction

Graphical User Interface (GUI) is an important component of interactive computer

applications with multiple user profiles (i.e., users exhibiting different usage

behaviors and patterns). Interactive web portals, Automated Teller Machines

(ATMs), smart phone applications are among many of these applications. There is

an opportunity to customize user interfaces, especially user menus, of these systems,

for different user profiles based on the usage behaviours so that user satisfaction,

service quality, and profitability can be increased. For example decreasing

transaction completion time benefits many users of ATMs and the banks that own

those ATMs. This problem, in general, is called ‘‘menu optimization’’ or ‘‘menu

customization’’ problem Goubko and Danilenko (2010).

A naive glimpse to the menu optimization problem may render the problem,

erroneously, as a trivial one. For example, determining the most clicked menu items

and positioning them in top menu screens, is a quick solution Jain (2012). In fact,

such a heuristic may reduce the average completion time provided that frequently

used items are not already at the upper layers of menu hierarchy. However, there are

several constraints that prevent such a heuristic to be implemented freely. For

example, there is an upper limit on the number of items that can be placed in a

single screen, due to screen space and/or the ergonomics of GUI design Al-Saleh

and Bendak (2013). Besides those, menu items cannot be arbitrarily grouped under a

single menu item because they may not be related to each other (semantics)

Danilenko and Goubko (2013). Indeed, usability is one of the main factors affecting

the quality of software systems McCall et al. (1977); Mayer et al. (2016).

Therefore, in optimizing menus ensuring usability is vital. For example, the

structure of the menu cannot contain any ambiguous placement of menu items.

Hence, optimizing a menu structure necessitates taking many constraints into

consideration which accordingly requires construction of a well defined mathemat-

ical optimization framework. Furthermore, abstractions mapping constraints arising

due to ergonomics, semantics, resource limitations, and functional behaviors should

be captured by concise and efficient mathematical representations to be used in the

optimization framework.

Optimization of ATM menu design is a topic investigated in the literature from

various perspectives and for maximizing different objectives Zhang et al. (2012).

Our main contribution in this study is the creation of a generic mathematical

optimization model which is guaranteed to uncover the optimum design among

many possible alternatives under the given constraints within the defined variable

space. We transformed the ATM menu optimization problem into a network flow

problem by treating the menu items as vertices of the graph, links between the menu

items as edges, and the users’ navigation among the vertices as the flows. The

objective is to position the menu items in such a way that the total weighted sum of

flows on the vertices is the achievable minimum without violating the usability,

ergonomics, and resource constraints. All parameters of the model are derived from

a large database of actual ATM logs. Since our optimization model is a Mixed

Integer Program (MIP), it is rather straightforward to extend its applicability to

123

222 J. Karimov et al.

many GUI menu optimization problems other than the ATM menu optimization

problem by customizing the parameters, constraints, and objective function. To the

best of our knowledge, such optimization framework has never been constructed in

the context of ATM menu optimization in the literature. One exception is an earlier

study where the initial design and performance analysis of our MIP-based solution

has been introduced Karimov et al. (2015b). In this study we improved our model

and significantly expanded our performance evaluations. Nevertheless, in this study

we seek answers to the following research questions, the answers of which also

represent our novel contributions enumerated as follows:

1. How can we unearth the behaviors and actions of a huge number of users buried

in ATM logs to create efficient abstractions and parameters to provide input to a

mathematical programming framework?

2. How can we transform the ATM menu optimization problem into an equivalent

network flow problem that can be modeled as an MIP model?

3. How can we embed the ergonomics, usability, and resource constraints into the

MIP model?

4. Can we construct a heuristic model that has much lower complexity than the

exact model?

5. What is the extent of the improvements brought by the MIP model in

comparison to simple heuristics like moving up the highly accessed menu items

to the upper layer menu screens?

The rest of the paper is organized as follows. Literature review is presented in

Sect. 2. We present the system model in Sect. 3. Experiments are provided in

Sect. 4. Conclusions are drawn and open questions for future research are given in

Sect. 5.

2 Related Work

The selection and design of effective menus is at the core of human computer

interaction Norman (1991). There has been significant attention to this issue

previously. We organized the existing studies in literature in three groups. The first

group of studies are focused on improving the performance of hierarchical menus.

The second group of studies emphasize the use of heuristic approaches for menu

optimization. The third group of studies specifically address ATM menu

optimization.

2.1 Hierarchical Menus

Hierarchical menu optimization has been the main topic of many studies in

literature Miller (1981), Witten et al. (1984), Lee and MacGregor (1985), Norman

and Chin (1988), Francis (2000), Thimbleby (2000), Norman (2008). One of the

earliest research studies conducted on menu optimization is Witten et al. (1984) that

used the hierarchical index of a digital phone book using the access frequencies of

phone numbers. Another pioneering study is Lee and MacGregor (1985) where an

123

Menu Optimization for Multi-Profile Customer... 223

analytical model for search time in menus is proposed. In Francis (2000), a

quantitative approach for hierarchical menu design is proposed. Using Huffman

Coding to optimize the menu structure based on the probabilities of menu items’

access times is another approach proposed in Thimbleby (2000). The advantage of

menu’s breadth over its depth is advocated in Norman (2008), furthermore, the

importance of cognitive psychology and human factors research in the design of

menu selection systems are emphasized. It is also shown experimentally that using

broader and shallower menus instead of deeper and narrower ones make it easier

and faster to access information Miller (1981). Context-awareness and adaptiveness

can also be considered as influential factors in responsive, dynamic menu designs

Ghiani et al. (2015). Another noteworthy approach is using hybrid menus (i.e.,
menus with larger breadth at deeper layers) which are shown to be more efficient

than menus that became narrower towards the end Norman and Chin (1988). Split

menus are proposed in Sears and Shneiderman (1994) where frequently accessed

menu items are located at the top of the menu groups or menu pages by splitting the

menus.

2.2 Heuristic Approaches

Solving an exact mathematical programming model is, generally, not feasible or

impossible due to the prohibitive computational complexity. Therefore, obtaining

good enough solutions by using heuristic or approximate algorithms is preferable in

practice. There is a wealth of literature that focus on using evolutionary algorithms

and heuristics for menu optimization Cave and Wolfe (1990), Liu et al. (2002),

Smyth and Cotter (2003), Amant et al. (2007), Hollink et al. (2007), Matsui and

Yamada (2008), Fukazawa et al. (2010), Goubko and Danilenko (2010), Bailly

et al. (2013), Troiano and Birtolo (2014), Troiano et al. (2016). Guided-Search

algorithm is proposed in Cave and Wolfe (1990) for defining the necessary

components of a good user interface. In Liu et al. (2002), Guided-Search

algorithm’s performance is investigated under different scenarios in order to

increase the satisfaction level. Genetic algorithms were used for menu structure

optimization and color scheme selection in Troiano and Birtolo (2014), Troiano

et al. (2016). In Matsui and Yamada (2008), genetic algorithm in conjunction to

simulated annealing is employed for optimizing the performance of menus on cell

phones. It is argued that automated menu optimization and design is desirable but

semantics always play a role, therefore, utilization of human assistance as part of the

optimization and design process is suggested. For example, a menu design tool that

employs interactive optimization approach to menu optimization is proposed in

Bailly et al. (2013). The tool allows designers to choose good solutions and group

items while delegating computational problems to an ant colony optimizer. In

Goubko and Danilenko (2010), the use of informal judgements for the final menu

structure along with an automated procedure is proposed. In Amant et al. (2007),

GUI optimization techniques for evaluating and improving cell phone usability with

efficient hierarchical menu design is investigated. In Fukazawa et al. (2010), menu

option usage frequencies and recent usage history data are employed as inputs to

Ranking SVM method for determining the best cell phone menu layout. In Hollink

123

224 J. Karimov et al.

et al. (2007), interactive web site menu optimization is performed with hill-climbing

method which minimizes average time to reach target pages.

2.3 ATM Menu Optimization

There have been several studies to optimize themenu structure on ATMs Kobayashi

(1986), Thatcher et al. (2005), Curran and King (2008), Cremers et al. (2008),

Taohai et al. (2010), Cooharojananone et al. (2010), Krishnan et al. (2011), Zhang

et al. (2012) for improved customer satisfaction. The main objective is to display a

menu that is optimal or results in less click counts to finish the required tasks for all

users. Such an objective is also employed for other types of menus (e.g., online
banking user interface is optimized with the same objective in Apari et al. (2013)).

In Zhang et al. (2012), literature on Human Computer Interaction Technology for

ATMs is reviewed. In certain studies on ATM menu optimization, specific

assumptions about users are made and menu optimization is performed under these

assumptions Cremers et al. (2008), Krishnan et al. (2011). In Krishnan et al. (2011),

authors proposed solutions for optimizing ATM menus for the use of student

communities. In Cremers et al. (2008), optimized ATM menus are designed for

illiterate people and these menus are tested on functionally illiterate users. Designs

of different ATM menus with speech-based and icon-based interfaces for literate,

semi-literate, or elderly people are studied earlier in Thatcher et al. (2005); Huang

et al. (2019). Note that GUI optimization for novice and low-literate customer use is

also an active research area in various contexts other than ATM menu optimization

Nielsen (1994), Dawe (2007), Medhi et al. (2011), Chanco et al. (2019).

Nevertheless, to the best of our knowledge, our menu optimization solution is the

first mathematical programming based study on menu optimization which

guarantees the optimum solution. Furthermore, our optimization framework is not

designed for a specific group of people or a specific use case. Instead, our

formulations are rather generic and can be applied to many menu optimization

contexts with minor modifications.

3 System Model

In Subsect. 3.1 we present the problem definition to form the foundation for the

details of the optimization framework described in Subsect. 3.2.

3.1 Problem Definition

The specific problem we would like to solve in this study is to optimize the structure

of an ATM menu. As in most optimization problems, also in our case there are

several constituents of the system to be optimized which are itemized as follows:

– Transforming the ATM menu optimization problem into a suitable mathematical

model is the starting point. We decide to model an ATM menu as a graph

G(V, E) where E and V are the edges and vertices of the graph, respectively. A

sample ATM menu illustrated as a tree is presented in Fig. 1. Note that the tree

123

Menu Optimization for Multi-Profile Customer... 225

in the figure is intentionally depicted as simple as possible for the sake of clarity.

In the tree, menu items are the vertices of the graph and links between the menu

items are the edges. Leaf nodes are represented by black boxes where actual

transactions take place meanwhile boxes with white background are interme-

diary nodes used for transiting from one menu screen to another.

– The graph problem can further be transformed into a network flow problem.

Leaf nodes are the source nodes while the disc shaped initial screen is the

destination for all source nodes. The flow injected through the source nodes

represent the amount of transactions destined for the source node itself which is

bound to terminate at the sink node (i.e., initial screen). Note that in practice

actual flow is from the initial screen to the leaf nodes, however, problem

construction is more efficient by reversing the flow, yet, reversing the flow

direction (i.e., reversing the ingress and egress nodes) does not interfere with the

optimization objective.

– The logs of user transactions have to be mined and for each user its

corresponding customer profile must be determined. The click count of each

menu item is not directly determined as the number of clicks for a particular

menu item from the user logs. Instead, our objective is to get the actual aim of

the user. The performed user clicks at the intermediate nodes on the path to the

Fig. 1 A sample menu structure of ATM before optimization. Rectangles represent menu items, the
numbers above boxes represent their ID, the ones below boxes represent click counts for the particular
menu item and black boxes represent leaf menu items (i.e., terminal menu items in the click path)

123

226 J. Karimov et al.

desired menu item do not contribute to the click count of the leaf node or any

node that is on its path. The only menu item that gets the credit from the click is

the one that the user is actually trying to reach. For example, considering Fig. 1

if a particular user traverses the path [Main screen]![Cash with-

draw]![€ Cash]![Withdraw 50 €] then his final objective is to reach the

[Withdraw 50 €] menu item (i.e., his aim is not to reach [Cash withdraw] or

[€ Cash] menu items, per se). So even though the user clicks [Cash withdraw] or

[€ Cash] menu items (in order to reach [Withdraw 50 €]), the click counts of the

aforementioned menu items do not get credited. Therefore, it is possible that a

certain menu item under another menu item can have a higher click count than

its parent menu item. Note that mining, clustering, analysis, and classification of

ATM usage data has been performed in our earlier studies (Karimov and

Ozbayoglu,2015; Karimov et al.,2015a), hence, in this paper we do not go into

the details of data processing and assume that the user logs are mined in an

efficient way (i.e., they are clustered and click counts of menu items for each

cluster is known).

– Original graph representation of the ATM menu to be optimized is readily

available (i.e., actual menu structure in use by the financial establishment

serving the customers). In other words, we start our optimization from the

present ATM menu represented as a tree. We use the click counts obtained from

the data logs as the amount of flow entering the network from each leaf node.

– The objective function is minimization of the transaction completion time which

can be obtained by the sum of weighted flows on the vertices of the graph. For

example, considering Fig. 1 repositioning the [€ Cash] menu item directly under

the [Main Screen] will reduce the average transaction completion time (i.e.,
reduce the total weighted flow).

– Ergonomic factors to be considered in the menu design should be taken into

account in the form of mathematical representations which will be used as the

constraints of the optimization model. Certain menus should not have more than

a predefined maximum number of menu items on each menu screen (e.g., in
smart phone or ATM menus the space constraints are very restrictive). Our

model handles this issue by limiting the number of children of each menu item.

For example, we assume that the menu shown in Fig. 1 can have at most 3

children per node.

– Semantics is another factor to be carefully embodied in the optimization

framework. Assume that we use Huffman coding Knuth (1985) to determine the

positioning of all menu items so that the most clicked menu items are placed in

top screens and the rest of the tree is reconstructed in this manner. Such an

approach would give the best solution, however, considering Fig. 1, menu items

[Enter New PIN] and [My Debt] could be placed under the same menu screen

whereas menu items [Withdraw 20 $] and [Pay Debt] can be placed under

another menu item. Such an arrangement at the same level would seriously

hamper the usability of the reconstructed menu because of the ambiguity

created. Therefore, at each menu screen there can, at most, be one generic menu

item (i.e., [Other Operations]).

123

Menu Optimization for Multi-Profile Customer... 227

The optimized version of the original menu is presented in Fig. 2. Although, in

this particular case, determining the optimal menu for Fig. 1 is not extremely

challenging, in practical menus brute force optimization is prohibitively time

consuming.

3.2 Optimization Framework

Having presented the high level overview of our optimization approach, we will

describe three optimization models. The first model is the Fully Optimum Menu

(FOM) model which is an MIP model. The second model is the Scalable Optimum

Menu (SOM) model which is a heuristic approach with lower computational

complexity than the FOM model. The third model is the Quick Optimum Menu

(QOM) model which is the model with lowest computational complexity, however,

the price paid for the speed is the higher optimality gap.

3.2.1 FOM

The FOM model, or Fully Optimum Model, which is an MIP model, can be

formulated as follows:

aij 2 f0; 1g 8i 2 SU ; 8j 2 OUTi ð1Þ

Fig. 2 A sample menu structure of ATM after optimization

123

228 J. Karimov et al.

fij � 0 8i 2 SU ; 8j 2 OUTi ð2Þ

fij �Maij; 8i 2 SU ; j 2 OUTi ð3Þ

In this model, there are three types of nodes (vertices): original menu items (set

SORG), set of combiner nodes (set SCOMB), and set of optimizer nodes (set SOPT). The
universal set of all nodes is represented by set SU . The variables of the MIP model

are fij (flow on arc-(i, j)) and aij (binary variable indicating whether any flow exists

on arc-(i, j)). The constraints on the flows are presented in Equation 1 and Equa-

tion 2. The set OUTi represents the arcs going out of node-i. Equation 3 is used to

establish the relation between the flows (fij) and their indicator variables (aij)
through the use of M which is a big number. Note that the Big M technique is a well

known technique in Integer Programming Wolsey (1998).

In Fig. 3 a sample network is illustrated which is useful in explaining the

concepts of the FOM model. The difference between Fig. 1 (the original tree

structure of the menu) and Fig. 3 is that in Fig. 3 two hypothetical node types are

introduced: optimizers (triangle-like boxes) and combiners (romb-like boxes).

Furthermore, new arcs are created (dashed lines) to integrate these nodes into the

tree.

Fig. 3 A sample menu structure with the introduction of combiners and optimizers

123

Menu Optimization for Multi-Profile Customer... 229

Optimizer nodes are used to bring the best leaf node or menu subtree to upper

levels. Optimizer nodes have connections to all grandchildren nodes of their parent

nodes, however, aij 6¼ 0 only for one of these connections (i.e., only one of the

nodes are relocated to the upper layer in the tree hierarchy). For example, in Fig. 3,

node-14, node-17, and node-18 are optimizers and all lower level nodes with the

same parent (Main Screen) are connected to them. The optimizer enables the

selection of the best node to relocate to the upper layer as there can be only one

child for each of the optimizers. In all levels of the tree hierarchy there are

optimizers except at the leaf node level. In order not to make the illustration in

Fig. 3 overcrowded, we display optimizers only in the first level. Optimizers can

only connect to the same parent menu nodes with itself (i.e., not to lower level menu

nodes). The cost of connecting to an optimizer is zero. Nevertheless, if one of the

down links of an optimizer node has non-zero flow, then the corresponding menu

item at the other end of the link is moved up in the menu hierarchy.

Combiner nodes are used to combine same level nodes under one menu node and

take them one level below. For example, in Fig. 3 node-6 is a combiner node. All

the same level nodes are possible child nodes of the combiner. If some nodes in the

same level are chosen to go downwards (so that the space necessary for possible

upcoming nodes are made available), they are collected under the combiner node

with a generic name (e.g., Others) and their previous places are taken by other menu

nodes from lower levels through the mechanisms provided by optimizer nodes.

The amount of flow injected by each node-i is denoted as Ci which is a parameter

obtained from the user logs. For the sink node (Main Screen denoted as S0) the total
amount of incoming flow is the sum of the data injected at all other nodes as stated

in Equation 4. Note that there is no outgoing flow from the sink node. For all other

nodes the difference between the incoming and outgoing flows is equal to the

injected flow at the particular node. The set INi represents the arcs coming into

node-i.

X

j2OUTi
fij �

X

j2INi

fji ¼
�
P

i2S�S0
Ci; i ¼ S0

Ci; 8i 2 SU � S0

� �
ð4Þ

Equation 5 states the constraint on the outgoing arcs from nodes. For optimizer

nodes and combiner nodes there can at most be one outgoing arc. However, it is

possible that there are no outgoing arcs from such nodes which implies that such a

node is not needed for the optimized menu structure. For all other nodes there is

exactly LiOUT number of arcs going out of node-i because a regular node must be

reachable from the Main Screen even if there is no data injected by the particular

node. Note that we set LiOUT ¼ 1.

X

j2OUTi
aij

� 1; 8i 2 SOPT [SCOMB

¼ LiOUT ; 8i 2 SORG

� �
ð5Þ

Equation 6 defines the constraint on incoming arcs to nodes. Optimizer nodes can

have at most one incoming arc. For other nodes the limit on the number of incoming

123

230 J. Karimov et al.

arcs is LiIN . Actually, L
i
IN is the maximum allowable number of menu items in a

menu screen.

X

j2INi

aji
� 1; 8i 2 SOPT

� LiIN ; otherwise

� �
ð6Þ

Weights of the arcs are given in Equation 7. All arcs except the ones incoming to

optimizer nodes have the weight of one. Arcs leading directly to the optimizer nodes

have zero weight because optimizer nodes are purely hypothetical nodes (i.e., they
will not appear in the final menu) and their sole role is to relocate certain nodes

closer to the Main Screen. By zeroing the arc cost for such nodes we enable the cost-

free upward relocation of selected nodes.

dij ¼
0; if j 2 SOPT

1; otherwise

� �
8i 2 SU ; 8j 2 OUTi ð7Þ

The objective function is given in Equation 8 which is the minimization of the

weighted sum of flows over all arcs. If the total flow is minimized then the average

transaction completion time is also minimized.

Minimize
X

i2SU

X

j2OUTi
dijfij ð8Þ

In essence, FOM is a network flow problem. Click counts of the menu items and the

initial menu tree are the main inputs of the model. By minimizing the flow in the

tree we reduce the average time spent by the users for their ATM transactions. The

solution of the FOM model will result in determining the optimum menu structure.

3.2.2 SOM

A more scalable version of FOM is SOM. Indeed, the main design philosophy of the

SOM model is to decompose the menu tree into smaller pieces and run FOM for

each smaller piece and recombine the solutions to obtain the final optimized menu

tree. However, SOM does not guarantee finding the optimal solution, yet,

computational complexity of SOM is lower than FOM. Therefore, SOM can work

on much larger menus when compared to FOM. One of the key parameters that

SOM takes as an input is the maximum number of menu items that can be contained

in a decomposed subtree (i.e., CM). The original menu is decomposed into subtrees

such that node count of each subtree cannot be greater than CM . Then, FOM is run

for all of them in parallel and results are combined.

123

Menu Optimization for Multi-Profile Customer... 231

Algorithm 1: Scalable Optimum Menu (SOM) Generation
Input: MT (the menu tree) and CM (maximum size of a subtree to be processed

by FOM)
Output: Computed tree structure

1 Let desc be a field of nodes in MT such that for arbitrary menu node-n in MT ,
n.desc shows count of all nodes under n’s subtree

2 Algorithm FindDesc(Node-n)
3 if n is a leaf node then
4 n.desc = 0
5 else
6 n.desc =

∑

c∈n.children

(FindDesc(c) + 1)

7 end
8 Run FindDesc with head node of MT
9 Set Q ← all leaf nodes of MT

10 forall Nodes in Q do
11 t ← random Node from MT

12 while t.parent �= headNode & t.parent.desc ≤CM do
13 t ← t.parent
14 end
15 Remove (CM - t.parent.desc) leaf nodes from t’s subtree with minimum click

counts and remove them also from MT
16 Update t.desc and its parents’ desc fields
17 Save t’s subtree: checkpointt ← t’s subtree
18 MT ← MT − checkpointt remove t’s subtree from MT
19 suboptimalt ← FOM(checkpointt). Send saved subtree to FOM to be

optimized
20 Make suboptimalt a leaf node of MT with suboptimalt.clickCount ← average

of all nodes’ click counts under checkpointt’s subtree
21 MT ← MT ∪ suboptimalt

22 end
23 Substitute saved leaf nodes with optimized subtrees returned from FOM method

Algorithm 1 presents the pseudo code of SOM model. It takes the menu tree,MT,

and CM . First, FindDesc method needs to run to preprocess the menu tree. It

computes the number of descendants under a particular menu node. In line 9, we put

all leaf nodes ofMT to a set Q. In lines 11-21 of the algorithm, we get a random leaf

node (t) from the setMT. Then we look for its parent’s child count (desc field). If the

count is less than CM value, it means that we can go to the upper level. We stop

when the number of nodes under a particular node is higher than CM value. After

that, the algorithm removes ðCM � n:descÞ number of least clicked leaf nodes from

node-t’ subtree because least clicked nodes are not going to replace their location, so
we can confidently remove them if needed. Then, we save the subtree under t as
checkpointt to be optimized by FOM model. The algorithm terminates successfully

after the results obtained from FOM method are put in place of the previously

replaced menu nodes.

Figure 4 illustrates the overall intuition of SOM method. As can be observed

from the figure, we divide the original menu tree into subtrees with at most CM

nodes and select the head nodes of the subtrees as representative nodes. For

example, n1 is the first representative of the lower right subtree within the dashed

123

232 J. Karimov et al.

bounding enclosure (in the leftmost panel). Then, the lower left subtree is replaced

by n2. We continue in this manner until we reach the head node of the tree.

3.2.3 QOM

As stated in Sect. 1, employing greedy heuristics for menu optimization is possible,

however, we advocated that such an approach will not result in the optimal solution,

yet, such an assertion should also be quantitatively evaluated. Hence, we design the

QOM model which is a fast and greedy approach. The overall procedure is given in

Algorithm 2 where we first traverse all tree levels. In each level we find the most

clicked menu nodes and if necessary move them upwards. If the maximum node

size is exceeded under a particular menu screen then we select the least clicked

nodes and push them downwards under Others node.

Fig. 4 Overall intuition of SOM method

123

Menu Optimization for Multi-Profile Customer... 233

Algorithm 2: Quick Optimized Menu (QOM) Generation
Input: MT the menu tree
Output: Computed tree structure

1 Let H be a set keeping the most clicked nodes
2 Traverse MT in depth first manner such that, every node keeps reference to most

clicked node under its subtree
3 forall Level l in MT do
4 forall Node n in l do
5 MT ← most clicked menu node under n’s subtree which is not element of

H
6 H ← H ∪ MT
7 C ← most clicked menu node among n direct children nodes
8 if MT click count is greater than C then
9 Add MT to nth direct children nodes.

10 end
11 if n.childCount > maxAllowedSize then
12 Select 2 least clicked menu nodes among children nodes of n, say L1

and L2
13 Add new menu node under n, named Others
14 Move L1 and L2 under Others node
15 end
16 end
17 end

3.2.4 Completixy Analysis

FOM is the model which uses MIP to find the globally optimum menu. The

optimum solution in FOM is guaranteed, however it comes with a computational

cost. MIP solutions for optimization problems are known to be NP-hard Wolsey

(2008). Since the problem is a node sequencing problem in a tree structure,

theoretically it is possible to have a computational complexity up to O(n!)
representing the number of different node permutations where n refers to the

number of nodes in the menu. Hence, FOM is the most costly algorithm compared

to SOM and QOM.

For SOM, we have a model that depends on a trade-off between achieving global

optimum and speed. The algorithm generates subtrees that consists of maximum k
nodes, which have optimum local node formations, but the subtree sequencing may

not be optimum. Analysis of Algorithm 1 results in a complexity of

O(n=k � k!nlogðnÞ) where k refers to the subtree size and n refers to the number

of nodes overall.

QOM is the fastest of the three models in our paper, since achieving high speed

was the aim in this particular case. A greedy approach is adapted and as

Algorithm 2 suggests the nodes are chosen sequentially with a depth-first-search

like heuristic that has two inner loops which can theoretically have O(n) nodes in

each level. As a result a computational complexity of O(n2) can be achieved in the

worst case.

123

234 J. Karimov et al.

Figure 7 illustrates the comparison of the computational times of the three

models across different numbers of nodes. The results closely match with the

theoretical complexity analyses of the three models.

4 Experiments

We used two data sets for the performance evaluations of our solutions. First data

(DS1) set is an ATM log data set accumulated over 18 months in ATMs of a large

financial institution. The data set consisted of 50 million ATM transactions from

160K unique customers using 2000 ATM machines. In this data set there are at most

forty menu items. The second data set (DS2) is more comprehensive and the node

count is as high as 400 nodes. Experiments are run on an Intel i7 (8 Core) machine

with 32GB RAM. We used IBM Ilog Cplex for the numerical solutions of the

optimization problems. Data mining, analysis, and user clustering for the data sets

have been performed in our previous publications Karimov et al. (2015a); Karimov

and Ozbayoglu (2015), hence, for details of data analysis we refer the reader to

Karimov et al. (2015a); Karimov and Ozbayoglu (2015) and focus on the

performance evaluations of the optimization of the menu structure.

To determine the performance gains brought by the MIP model (FOM), we first

perform analysis by using DS1. Grouping the users according to their usage patterns

into multiple clusters and creating an optimized menu for each cluster reduces the

average transaction completion time. However, even when all users are treated as a

homogeneous group and a single optimized menu is used, FOM still reduces the

average transaction completion time from 117 s to 95 s (18.8% reduction in

transaction completion time). When we grouped the users into three clusters (C1,

C2, and C3 clusters) the decrease in transaction completion times are 37.9%, 32.8%,

and 4.1% for C1, C2, and C3 clusters, respectively.

The following behavioral characteristics were observed in each cluster. C1

includes users that mostly took cash from ATM and looked into their balance. C2

includes users that mostly took cash from ATM and almost never looked into their

balance, and C3 includes users that performed advanced operations in ATM such as

money transfer, credit card operations, automatic bill payment, etc. The majority of

the customers (approx. 60%) were in C1, approximately 30% were in C2 and

approximately 10% were in C3 indicating most of the customers were interested in

cash withdrawal transactions.

There is a significant reduction of clicks in C1 and C2 clusters because C1 and

C2 clusters are composed of more homogeneous profiles than C3 cluster. Thus,

grouping users into clusters and creating optimized menus for each cluster results in

higher performance gains. In Table 1, percentages of users in each cluster benefiting

or not benefiting from the menu optimization are presented. Although the lowest

benefited cluster is C3, the highest benefited group is not C1. However, the highest

reduction of transaction completion is achieved in C1 because the benefited group in

C1 achieved more drastic reduction than the benefited group in C2.

To characterize the extent of the benefit of clustering, we obtained the reduction

of transaction completion time as a function of number clusters which is presented

123

Menu Optimization for Multi-Profile Customer... 235

in Fig. 5. As the number of clusters increases the reduction in transaction

completion time increases. However, rate of decrease gets lower as the number of

clusters increase. Even though clustering improves the performance, aggressive

clustering does not bring significant benefits.

To gain more insight into the mechanics of the FOM model we analyzed the

transaction completion time reduction in the most frequently used items (i.e., leaf
nodes in the tree). Figure 6 shows the reduction for the top nine nodes. The

reduction in the higher frequency nodes is larger than the lower frequency nodes

because the impact of more frequently used nodes is higher on average transaction

completion time.

In the rest of this section we will be using DS2 data set. Figure 7 presents the run

times of FOM, SOM, and QOM models. Here, SOM(n) shows max number of nodes

within a block. Depending on the available computing power, one may chose

different upper bounds on block sizes (nodes within triangles in Fig. 4). Due to the

large differences in run times we opted to present the run times in log-scale (y-axis

values are the log2 values of the run times). As expected, FOM run time increases

exponentially as the number of nodes in the menu tree increases. Note that the

variations in the node count are achieved by selecting random subsets of leaf nodes.

The rate of increase in running times of SOM is much lower than FOM due to the

scalability brought by the decomposition of the menu tree. Furthermore, by taking

advantage of parallelization, SOM runtime could further be reduced. QOM runtimes

Table 1 Users benefiting from menu optimization

Benefitted from optimization Not benefitted from optimization

C1 cluster 69% 31%

C2 cluster 78% 22%

C3 cluster 64% 36%

Cluster count

T
im

e
re

du
ct

io
n

(%
)

20

22

24

26

28

30

1 2 3 4 5 6 7 8

Fig. 5 Time reduction vs.
Cluster count

123

236 J. Karimov et al.

are the lowest among all (i.e., several orders of magnitude lower than SOM) because

of the simplicity of the model. However, the performance of the solutions produced

by QOM is very much dependent on the initial tree structure due to its greedy

design. From Fig. 7, it can easily be observed that SOM(n) performs better in terms

of running time once the node count exceeds n, as SOM(n) benefits from

parallelization of blocks.

In Fig. 8 we present the increase in the average transaction completion time for

SOM and QOM in comparison to the optimal solution (i.e., FOM). QOM

performance is the worst among all models due to its dependency on initial menu

structure and its greediness. For example, a value of 20% in Figure 8indicates that

average transaction completion time is 5 times higher compared to the optimal FOM

solution. The quality of SOM(n) decreases as the node count gets larger than n. The
reason for such behavior is that the number of sub-optimal solutions increase as the

node count exceeds n and the overall solution moves farther away from the global

optimum.

Node ID

1 2 3 4 5 6 7 8 9
T

im
e

re
du

ct
io

n
(%

)
10

20

30

40

50

60
Fig. 6 Time reduction vs. Node
ID

Fig. 7 Effects of increasing
node counts in menu on runtime

123

Menu Optimization for Multi-Profile Customer... 237

The effects of changing the maximum number of children of a node (i.e., LiIN) on
the objective function is presented in Fig. 9. As the number of possible children of a

particular menu node gets larger the objective functions decrease for all models

because of the increased flexibility to move up more menu items in the tree

hierarchy. However, the rate of decrease gets lower as child count increases due to

the diminishing marginal utilities principle. Here only SOM(100) model is

presented for simplicity as we recognized there is no direct relation between

SOM model’s size and menu node’s child size.

5 Conclusion and Future Research

In this study, we investigate GUI menu optimization problem in ATMs. We propose

an MIP model (i.e., FOM) for the optimization of the menu structure which

guarantees the optimal solution. However, the scalability of FOM is limited,

therefore, we construct a scalable suboptimal algorithm (i.e., SOM) by decomposing

the problem. We also proposed a greedy heuristic algorithm (i.e., QOM). Since the

Node count

50 100 150 200 250 300 350 400
Q

ua
lit

y
of

 m
od

el
s

w
.r

.t.
 F

O
M

 (
%

)

20

40

60

80

100

SOM (50)
SOM (100)
 SOM (150)
QOM

Fig. 8 Dependency of quality of
SOM and QOM models w.r.t.
optimum (FOM) with increasing
number of nodes

Maximum child size of nodes

0 20 40 60 80 100 120

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

400

800

1200

1600

2000
FOM
SOM (100)
QOM

Fig. 9 Effect of changing
number of child nodes on
objective function. Overall node
count is 400

123

238 J. Karimov et al.

motivation for this paper is provided in the form of a series of research questions in

Section I, we present conclusions in reply to these questions itemized as follows:

1. We used the utilization frequency of each menu item in constructing the MIP

framework. Furthermore, we grouped the users into clusters for better

optimization of cluster specific menus.

2. We transformed an ATM menu structure into an equivalent graph representation

where menu items are the vertices and links between menu items are the edges

of the graph. Furthermore, we used the menu item utilization as the source flows

which are terminating at the Main Screen. Two novel node types are introduced

to restructure the menu. Optimizer nodes and combiner nodes are used to enable

the repositioning of the menu items upwards and downwards, respectively.

3. Ergonomics and usability factors are embedded into the MIP model in the form

of constraints. To account for the maximum number of menu items that can be

displayed in an ATM screen we limit the maximum number of children of each

node. Moreover, with the constraints we ensure that user will not get ambiguous

menu items related with parent menu.

4. We designed two suboptimal heuristic solutions for the reduction of the

computational complexity of MIP model (FOM). SOM model is obtained by

decomposition of the FOM model.

5. QOM model is a greedy local search algorithm which actually relocates the

more accessed items upwards. Computational complexity of QOM is much

lower than FOM, however, its performance is also significantly lower than

FOM.

Our menu optimization solution is not applicable to ATM menus only. Indeed,

many other menu types can also be optimized by using our framework with minor

modifications. Interactive web pages and mobile device menus are among the

possible application areas for our menu optimization framework as presented in

Fig. 10.

In our application scenario, the number of menu items is not very high (i.e., at
most 400), therefore, we can obtain the optimal solution in reasonable time.

Furthermore, menu optimization in our case is not done in real-time because there is

no such requirement (i.e., ATM menus are not frequently updated). However, for

other menu optimization domains, much larger sets of menu items should be

optimized (e.g., web pages) where the use of SOM model is very much needed. In

(a) (b) (c) (d)

Fig. 10 Some possible application domains of the proposed model

123

Menu Optimization for Multi-Profile Customer... 239

case of real-time menu optimization, QOM model can be used due to its lower

computational complexity.

As mentioned, this paper concentrates mainly on the optimization part of

generating optimal profile based user menus and the modules related with data

mining are described in Karimov and Ozbayoglu (2015), Karimov et al. (2015a).

Converting this system to incremental framework is an open direction for research.

That is, currently we support optimization of profile based user menus with periodic

batch jobs which computes all the data from scratch once the job fires. However, the

data between different periodic jobs can be overlapped with some degree. Making

use of it and supporting incremental computation with intermediate results is an

open area for research. Depending on latency prerequisites and throughput of user

click stream, one can select streaming or batch processing system.

Acknowledgements We would like to thank our project partner Provus Inc. (now part of MasterCard) for
providing requirements, insight, and data for this study.

References

Al-Saleh, K., & Bendak, S. (2013). An Ergonomics Evaluation of Certain ATM Dimensions.

International Journal of Occupational Safety and Ergonomics (JOSE), 19(3), 347–353.
Amant, R. S., Horton, T. E., & Ritter, F. E. (2007). Model-based evaluation of expert cell phone menu

interaction. ACM Transactions on Computer-Human Interaction (TOCHI), 14(1), 1:1-1:24.
Apari, T.G., Molu, F., Findik, N., & Dalci, M. (2013). User Experience approach in financial services. In:

Proc. International Conference on Technological Advances in Electrical, Electronics and Computer
Engineering (TAEECE), pp 400–403

Bailly, G., Oulasvirta, A., Kotzing, T., & Hoppe, S. (2013). MenuOptimizer: Interactive Optimization of

Menu Systems. In: Proc. annual ACM symposium on User interface software and technology
(UIST), pp 331–341

Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive
Psychology, 22, 225–271.

Chanco, C., Moquillaza, A., & Paz, F. (2019). Development and validation of usability heuristics for

evaluation of interfaces in atms. In A. Marcus & W. Wang (Eds.), Design, User Experience, and
Usability (pp. 3–18). Berline: Springer.

Cooharojananone, N., Taohai, K., & Phimoltares, S. (2010). A new design of ATM interface for banking

services in Thailand. In: Proc. Annual International Symposium on Applications and the Internet
(SAINT), pp 312–315

Cremers, A. H. M., de Jong, J. G. M., & Van Balken, J. S. (2008). User-centered design with illiterate

persons: The case of the ATM user interface. Lecture Notes in Computer Science, 5105, 713–720.
Curran, K., & King, D. (2008). Investigating the human computer interaction problems with automated

teller machine navigation menus. Interactive Technology and Smart Education, 5(1), 59–79.
Danilenko, A. I., & Goubko, M. V. (2013). Semantic-aware optimization of user interface menus.

Automation and Remote Control, 74(8), 1399–1411.
Dawe. M. (2007). Understanding mobile phone requirements for young adults with cognitive disabilities.

In: Proc. International ACM SIGACCESS conference on Computers and accessibility, pp 179–186

Francis, G. (2000). Designing multifunction displays: An optimization approach. International Journal of
Cognitive Ergonomics, 4(2), 107–124.

Fukazawa, Y., Hara, M., & Ueno, H. (2010). Automatic cell phone menu customization based on user

operation history. Information and Media Technologies, 5(1), 206–215.
Ghiani, G., Manca, M., Paternò, F., Rett, J., & Vaibhav, A. (2015). Adaptive multimodal web user

interfaces for smart work environments. Journal of Ambient Intelligence and Smart Environments,
7(6), 701–717.

Goubko, M.V., & Danilenko, A.I. (2010). An Automated Routine for Menu Structure Optimization. In:
Proc. ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS), pp 67–76

123

240 J. Karimov et al.

Hollink, V., van Someren, M., & Wielinga, B. J. (2007). Navigation behavior models for link structure

optimization. User Modeling and User-Adapted Interaction, 17(4), 339–377.
Huang, H., Yang, M., Yang, C., & Lv, T. (2019). User performance effects with graphical icons and

training for elderly novice users: A case study on automatic teller machines. Applied Ergonomics,
78, 62–69.

Jain, A. (2012). Optimizing feature-access time through dynamic updates to application menu layout.

ACM SIGSOFT Software Engineering Notes, 37(5), 1–14.
Karimov, J., & Ozbayoglu, M. (2015). High quality clustering of big data and solving empty-clustering

problem with an evolutionary hybrid algorithm. In: Proc. IEEE International Conference on Big
Data

Karimov, J., Ozbayoglu, M., & Dogdu, E. (2015a). k-means performance improvements with centroid

calculation heuristics both for serial and parallel environments. In: Proc. IEEE International
Congress on Big Data, pp 444–451

Karimov, J., Ozbayoglu, M., Tavli, B., & Dogdu, E. (2015b). Generic menu optimization for multi-profile

customer systems. In: Proc. IEEE International Symposium on Systems Engineering (ISSE),
pp 163–169

Knuth, D. E. (1985). Dynamic huffman coding. Journal of algorithms, 6(2), 163–180.
Kobayashi, H. (1986). Automatic Teller Machine. US Patent No. D283,746

Krishnan, G., Kumar, S., Jithin, C.R., Panicker, V.V., & Sridharan, R. (2011). Service innovation for the

user interface of an ATM catering to the needs of the student community. In: Proc. IEEE
International Conference on Industrial Engineering and Engineering Management (IEEM),
pp 1180–1184

Lee, E., & MacGregor, J. (1985). Minimizing user search time in menu retrieval systems. Human
Factors: The Journal of the Human Factors and Ergonomics Society, 27(2), 157–162.

Liu, B., Francis, G., & Salvendy, G. (2002). Applying models of visual search to menu design.

International Journal of Human Computer Studies, 56(3), 307–330.
Matsui, S., & Yamada, S. (2008). A genetic algorithm for optimizing hierarchical menus. In: Proc. IEEE

Congress on Evolutionary Computation, pp 2851–2858

Mayer, C., Zimmermann, G., Grguric, A., Alexandersson, J., Sili, M., & Strobbe, C. (2016). A

comparative study of systems for the design of flexible user interfaces. Journal of Ambient
Intelligence and Smart Environments, 8(2), 125–148.

McCall, J.A., Richards, P.K., & Walters, G.F. (1977). Factors in Software Quality. Tech. Rep. RADC-

TR-77-369, Rome Air Development Center, Air Force System Command, Griffiss Air Force Base,

NY

Medhi, I., Patnaik, S., Brunskill, E., Gautama, S. N. N., Thies, W., & Toyama, K. (2011). Designing

mobile interfaces for novice and low-literacy users. ACM Transactions on Computer-Human
Interaction, 18(1), 1–28.

Miller, D.P. (1981). The depth/breadth tradeoff in hierarchical computer menus. In: Proc. Human Factors
and Ergonomics Society Annual Meeting, 25, pp 296–300

Nielsen, J. (1994). Usability engineering. London: Elsevier.
Norman, K.L. (1991). The Psychology of Menu Selection: Designing Cognitive Control at the Human/

Computer Interface. Ablex Publishing Corporation

Norman, K. L. (2008). Better design of menu selection systems through cognitive psychology and human

factors. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(3),
556–559.

Norman, K. L., & Chin, J. P. (1988). The effect of tree structure on search in a hierarchical menu

selection system. Behaviour Information Technology, 7(1), 51–65.
Sears, A., & Shneiderman, B. (1994). Split menus: effectively using selection frequency to organize

menus. ACM Transactions on Computer-Human Interaction (TOCHI), 1(1), 27–51.
Smyth, B., & Cotter, P. (2003). Intelligent navigation for mobile internet portals. In: Proc. International

Joint Conference on Artificial Intelligence Workshop on Artificial Intelligence, Information Access,

and Mobile Computing, pp 1–8

Taohai, K., Phimoltares, S., & Cooharojananone, N. (2010). Usability comparisons of seven main

functions for automated teller machine (ATM) banking service of five banks in thailand. In: Proc.
International Conference on Computational Science and Its Applications (ICCSA), pp 176–182

Thatcher, A., Shaik, F., & Zimmerman, C. (2005). Attitudes of semi-literate and literate bank account

holders to the use of automatic teller machines (ATMs). International Journal of Industrial
Ergonomics, 35(2), 115–130.

123

Menu Optimization for Multi-Profile Customer... 241

Thimbleby, H. (2000). Analysis and simulation of user interfaces. In: McDonald, S., Waern, Y., Cockton,

G. (eds) People and Computers XIV – Usability or Else!, pp 221–237

Troiano, L., & Birtolo, C. (2014). Genetic algorithms supporting generative design of user interfaces:

Examples. Information Sciences, 259, 433–451.
Troiano, L., Birtolo, C., & Armenise, R. (2016). Searching optimal menu layouts by linear genetic

programming. Journal of Ambient Intelligence and Humanized Computing, 7(2), 239–256.
Witten, I. H., Cleary, J. G., & Greenberg, S. (1984). On frequency-based menu-splitting algorithms.

International Journal of Man-Machine Studies, 21(2), 135–148.
Wolsey, L. A. (1998). Integer Programming. NewYork: Wiley.

Wolsey, L. A. (2008). Mixed integer programming. In B. Wah (Ed.), Encyclopedia of Computer Science
and Engineering. NewYork: Wiley.

Zhang, M., Wang, F., Deng, H., & Yin, J. (2012). A survey on human-computer interaction technology

for financial terminals. In: Proc. International Conference on Intelligent Networks and Intelligent
Systems (ICINIS), pp 174–177

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Authors and Affiliations

Jeyhun Karimov1 • Murat Ozbayoglu2 • Bulent Tavli2 • Erdogan Dogdu3

& Erdogan Dogdu

erdogandogdu@gmail.com

Jeyhun Karimov

jeyhun.karimov@dfki.de

Murat Ozbayoglu

mozbayoglu@etu.edu.tr

Bulent Tavli

btavli@etu.edu.tr

1 TU Berlin, Berlin, Germany

2 TOBB University of Economics and Technology, Ankara, Turkey

3 Angelo State University, Texas, USA

123

242 J. Karimov et al.

http://orcid.org/0000-0001-5987-0164

	Menu Optimization for Multi-Profile Customer Systems on Large Scale Data
	Abstract
	Introduction
	Related Work
	Hierarchical Menus
	Heuristic Approaches
	ATM Menu Optimization

	System Model
	Problem Definition
	Optimization Framework
	FOM
	SOM
	QOM
	Completixy Analysis

	Experiments
	Conclusion and Future Research
	Acknowledgements
	References

