Skip navigation
GCRIS
  • Home
  • Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Reports
  • Explore by
    • Collections
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Help
  • Sign on to:
    • My GCRIS Repository
    • Receive email
      updates
    • Edit Account details
Network Lab Bibliometrics Email Alert
 Claim profile

  • Profile
  • Indicators
  • Other

Profile

Link to Google Profile
Google Scholar Profile
5 1 20 0 false Affiliations
End Date Organization Role Start Date
07.03. Department of Mathematics Prof. Dr.
Picture
Emrah Kılıç.jpg picture
Full Name
Kılıç, Emrah
Variants
Kilic, E.
Kiliç, E. M.R.A.H.
Kiliç, E.
Kılıç, E
Kılıç, E.
Emrah Kılıç
 
Main Affiliation
07.03. Department of Mathematics
 
Personal Site
Personal Web Site
 
Email
ekilic@etu.edu.tr
 
Link to YOK Profile
Link to YOK Profile
ORCID
0000-0003-0722-7382
Scopus Author ID
15757727500
Researcher ID
R-1717-2019
 
Biography
http://ekilic.etu.edu.tr/cv.htm
6 0 20 0 false
Country
Turkey
Status
Current Staff

Publications
(Articles)

Author

  • 2 Kiliç, E.
  • 2 Tan, Elif
  • 2 Yalçıner, Aynur
  • 1 Akkus, Ilker
  • 1 Alazemi, A.
  • 1 Andeli? M.
  • 1 Andelic, Milica
  • 1 Belbachir, Hacene
  • 1 Bozdağ, Hacer
  • 1 Campbell, J.M.
  • . < previous next >

Subject

  • 17 determinant
  • 14 LU-decomposition
  • 12 Determinant
  • 10 Fibonacci numbers
  • 10 Fibonomial coefficients
  • 9 Filbert matrix
  • 8 Gaussian q-binomial coefficients
  • 6 [No Keywords]
  • 6 Fibonacci and Lucas numbers
  • 6 inverse matrix
  • . next >

Date issued

  • 31 2020 - 2025
  • 90 2010 - 2019
  • 25 2000 - 2009

Type

  • 146 Article
  • 1 Article; Early Access

Fulltext

  • 117 No Fulltext
  • 29 With Fulltext


Results 61-80 of 146 (Search time: 0.008 seconds).

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Issue DateTitleAuthor(s)
61Sep-2017Generalized double binomial sums families by generating functionsKılıç, Emrah ; Belbachir, Hacene
622009Generating Matrices for Weighted Sums of Second Order Linear RecurrencesKılıç, Emrah ; Stanica, Pantelimon
632023Harmony of Asymmetric Variants of the Filbert and Lilbert Matrices in Q-FormKılıç, E. ; Erşanlı, D.
642016Identities With Squares of Binomial Coefficients: an Elementary and Explicit ApproachKılıç, Emrah ; Prodinger, Helmut
65Aug-2020The Interesting Spectral Interlacing Property for a Certain Tridiagonal Matrixda Fonseca, Carlos M.; Kılıç, Emrah ; Pereira, Antonio
62013The Inverse of Banded MatricesKılıç, Emrah ; Stanica, Pantelimon
72024Inverses and Determinants of Three Classes of Hankel MatricesChu, Wenchang; Kılıç, Emrah 
82024Left and Right Eigenvectors of a Variant of the Sylvester-Kac MatrixWenchang,C.H.U.; Kılıç, Emrah 
92010The Lehmer Matrix and Its Recursive AnalogueKılıç, E. ; Stanic, P.
102011A Matrix Approach for General Higher Order Linear RecurrencesKılıç, Emrah ; Stanica, Pantelimon
112012A Matrix Approach for Generalizing Two Curious Divisibility PropertiesKılıç, Emrah 
12Feb-2020A Matrix Approach To Some Second-Order Difference Equations With Sign-Alternating CoefficientsAndelic, Milica; Du, Zhibin; da Fonseca, Carlos M.; Kılıç, Emrah 
132017The Matrix of Super Patalan Numbers and Its FactorizationsKılıç, Emrah ; Prodinger, Helmut
142009Matrix Representation of the Second Order Recurrence {u(kn)}Kılıç, Emrah ; Ömür, Nese; Ulutaş, Yücel Türker
152009More General Identities Involving the Terms of {w-N(a,b;p,q)}Kılıç, Emrah ; Tan, Elif
162013More on the Infinite Sum of Reciprocal Fibonacci, Pell and Higher Order RecurrencesKılıç, Emrah ; Arıkan, Talha
172010Negatively Subscripted Fibonacci and Lucas Numbers and Their Complex FactorizationsKılıç, E. ; Taşcı, Dursun
182-Apr-2020New Analogues of the Filbert and Lilbert Matrices Via Products of Two K-Tuples Asymmetric EntriesKılıç, Emrah ; Ömür, Neşe; Koparal, Sibel
19Jun-2019New Asymmetric Generalizations of the Filbert and Lilbert MatricesKılıç, Emrah ; Koparal, Sibel; Ömür, Neşe
202019New Binomial Double Sums With Products of Fibonacci and Lucas NumbersKılıç, Emrah ; Taşdemir, Funda
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

 

Claim Researcher Page

Check the encrypted string of this email, put the correct string in the box below and click "Go" to validate the email and claim this profile.

Emails: e k i l * * @ * * * * * * u . t r

Go


Login via ORCID to claim this profile:


Contact via feedback form

If you want contact administrator site clicking the follow button 

Explore by

  • Collections
  • Publications
  • Researchers
  • Patents
  • Organizations
  • Projects
  • Journals


  • Events
  • Equipments
  • Awards
  • Reports
  • Language
  • Rights
  • Category

About

  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
Feedback
Powered by Research Ecosystems
Login to GCRIS Dashboard