Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10304
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaral, Bahattin Can-
dc.contributor.authorTan, Mehmet-
dc.date.accessioned2023-04-16T10:00:13Z-
dc.date.available2023-04-16T10:00:13Z-
dc.date.issued2022-
dc.identifier.isbn978-3-031-08337-2-
dc.identifier.isbn978-3-031-08336-5-
dc.identifier.issn1868-4238-
dc.identifier.issn1868-422X-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-08337-2_34-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10304-
dc.description18th International Conference on Artificial Intelligence Applications and Innovations (AIAI) -- JUN 17-20, 2022 -- Hersonissos, GREECEen_US
dc.description.abstractAmong the recent developments in bioinformatics and chemogenomics, various deep learning methods have been the most prevalent [4,5,9]. This resulted in an over-saturation of powerful models that easily pushed the limits of existing datasets. Subsequently, many novel advancements have been done with improvements to the datasets. Amidst these advancements, researchers of Deep Compound Profiler (DeepCOP) [10] set themselves apart with a novel method of introducing new features whilst keeping the deep learning model relatively basic. In this study, we propose to take this novel method one step further by applying transfer learning between cell lines. In order to better evaluate the benefits of transfer learning, we've introduced 2 drug-based data splits. The transfer learning method, as its core, utilizes the learned knowledge of source cell lines to give a head start to target cell lines. Taking advantage of prior knowledge from source cell lines not only boosts existing compounds' effect prediction, but it can also be used as a premonition for the compounds' (explicit to the source), effects on target cell lines before they are tested in real life. Our experiments showed improvements up to 22.81% improvement on area under ROC curve (AUC) on the split closest to a wet lab experiment.en_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofArtificial Intelligence Applications and Innovations, Aiai 2022, Part Iien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTransfer learningen_US
dc.subjectChemogenomicsen_US
dc.subjectDomain adaptationen_US
dc.titleTransfer Learning for Predicting Gene Regulatory Effects of Chemicalsen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume647en_US
dc.identifier.startpage414en_US
dc.identifier.endpage425en_US
dc.identifier.wosWOS:000927893200034-
dc.identifier.scopus2-s2.0-85133284931-
dc.institutionauthorTan, Mehmet-
dc.identifier.doi10.1007/978-3-031-08337-2_34-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Yapay Zeka Mühendisliği Bölümü / Department of Artificial Intelligence Engineering
Show simple item record



CORE Recommender

Page view(s)

78
checked on Jan 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.