Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/10338
Title: | Deep Learning-Based Autonomous Uav-Bss for Ngwns: Overview and a Novel Architecture | Authors: | Demirtaş, Ali Murat Seyfioğlu, Mehmet Saygın Bor-Yalınız, İrem Tavlı, Bülent Yanikomeroğlu, Halim |
Keywords: | Quality of service Convolutional neural networks Trajectory optimization Consumer electronics Training Memory management Energy dissipation Artificial-Intelligence Wireless Networks Model |
Publisher: | Ieee-Inst Electrical Electronics Engineers Inc | Abstract: | To address the ever-growing connectivity demand in communications, the adoption of ingenious solutions, such as utilization of unmanned aerial vehicles (UAVs) as mobile base stations, is imperative. In general, the location of a UAV base station (UAV-BS) is determined by optimization algorithms, which have high computationally complexities and are hard to run on UAVs due to energy consumption and time constraints. In this article, we overview the UAV-BS trajectory optimization problem for next generation wireless networks and show that a convolutional neural network (CNN) model can be trained to infer the location of a UAV-BS in real time. To this end, we create a framework to determine the UAV-BS locations considering the deployment of mobile users (MUs) to generate labels by using the data obtained from an optimization algorithm. Performance evaluations reveal that once the CNN model is trained with the given labels and locations of MUs, the proposed approach is, indeed, capable of approximating the results given by the adopted optimization algorithm with high fidelity, outperforming reinforcement learning-based approaches in resource-constrained settings. We also explore future research challenges and highlight key issues. | URI: | https://doi.org/10.1109/MCE.2022.3201366 https://hdl.handle.net/20.500.11851/10338 |
ISSN: | 2162-2248 2162-2256 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
WEB OF SCIENCETM
Citations
1
checked on Dec 21, 2024
Page view(s)
82
checked on Jan 20, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.