Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/10338
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Demirtaş, Ali Murat | - |
dc.contributor.author | Seyfioğlu, Mehmet Saygın | - |
dc.contributor.author | Bor-Yalınız, İrem | - |
dc.contributor.author | Tavlı, Bülent | - |
dc.contributor.author | Yanikomeroğlu, Halim | - |
dc.date.accessioned | 2023-04-16T10:00:20Z | - |
dc.date.available | 2023-04-16T10:00:20Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 2162-2248 | - |
dc.identifier.issn | 2162-2256 | - |
dc.identifier.uri | https://doi.org/10.1109/MCE.2022.3201366 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/10338 | - |
dc.description.abstract | To address the ever-growing connectivity demand in communications, the adoption of ingenious solutions, such as utilization of unmanned aerial vehicles (UAVs) as mobile base stations, is imperative. In general, the location of a UAV base station (UAV-BS) is determined by optimization algorithms, which have high computationally complexities and are hard to run on UAVs due to energy consumption and time constraints. In this article, we overview the UAV-BS trajectory optimization problem for next generation wireless networks and show that a convolutional neural network (CNN) model can be trained to infer the location of a UAV-BS in real time. To this end, we create a framework to determine the UAV-BS locations considering the deployment of mobile users (MUs) to generate labels by using the data obtained from an optimization algorithm. Performance evaluations reveal that once the CNN model is trained with the given labels and locations of MUs, the proposed approach is, indeed, capable of approximating the results given by the adopted optimization algorithm with high fidelity, outperforming reinforcement learning-based approaches in resource-constrained settings. We also explore future research challenges and highlight key issues. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Consumer Electronics Magazine | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Quality of service | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Trajectory optimization | en_US |
dc.subject | Consumer electronics | en_US |
dc.subject | Training | en_US |
dc.subject | Memory management | en_US |
dc.subject | Energy dissipation | en_US |
dc.subject | Artificial-Intelligence | en_US |
dc.subject | Wireless Networks | en_US |
dc.subject | Model | en_US |
dc.title | Deep Learning-Based Autonomous Uav-Bss for Ngwns: Overview and a Novel Architecture | en_US |
dc.type | Article | en_US |
dc.department | TOBB ETÜ | en_US |
dc.identifier.volume | 12 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 32 | en_US |
dc.identifier.endpage | 42 | en_US |
dc.identifier.wos | WOS:000927796400009 | en_US |
dc.identifier.scopus | 2-s2.0-85137574535 | en_US |
dc.institutionauthor | … | - |
dc.identifier.doi | 10.1109/MCE.2022.3201366 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
local.message.claim | 2023-09-21T14:50:32.528+0300 | * |
local.message.claim | |rp00158 | * |
local.message.claim | |submit_approve | * |
local.message.claim | |dc_contributor_author | * |
local.message.claim | |None | * |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.5. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
1
checked on Dec 21, 2024
Page view(s)
78
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.