Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/10339
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arın, Efe | - |
dc.contributor.author | Kutlu, Mucahid | - |
dc.date.accessioned | 2023-04-16T10:01:14Z | - |
dc.date.available | 2023-04-16T10:01:14Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1556-6013 | - |
dc.identifier.issn | 1556-6021 | - |
dc.identifier.uri | https://doi.org/10.1109/TIFS.2023.3254429 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/10339 | - |
dc.description.abstract | While social bots can be used for various good causes, they can also be utilized to manipulate people and spread malware. Therefore, it is crucial to detect bots running on social media platforms. However, social bots are increasingly successful in creating human-like messages with the recent developments in artificial intelligence. Thus, we need more sophisticated solutions to detect them. In this study, we propose a novel deep learning architecture in which three long short-term memory (LSTM) models and a fully connected layer are utilized to capture complex social media activity of humans and bots. Since our architecture involves many components connected at different levels, we explore three learning schemes to train each component effectively. In our extensive experiments, we analyze the impact of each component of our architecture on classification accuracy using four different datasets. Furthermore, we show that our proposed architecture outperforms all baselines used in our experiments. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK); ARDEB 3501 [120E514] | en_US |
dc.description.sponsorship | This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), ARDEB 3501, under Grant 120E514. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Chia-Mu Yu. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Transactions on Information Forensics and Security | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Social bot detection | en_US |
dc.subject | online account classification | en_US |
dc.subject | Networks | en_US |
dc.title | Deep Learning Based Social Bot Detection on Twitter | en_US |
dc.type | Article | en_US |
dc.department | TOBB ETÜ | en_US |
dc.identifier.volume | 18 | en_US |
dc.identifier.startpage | 1763 | en_US |
dc.identifier.endpage | 1772 | en_US |
dc.identifier.wos | WOS:000954026700001 | en_US |
dc.identifier.scopus | 2-s2.0-85149895404 | en_US |
dc.institutionauthor | … | - |
dc.identifier.doi | 10.1109/TIFS.2023.3254429 | - |
dc.authorscopusid | 57205421446 | - |
dc.authorscopusid | 35299304300 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
15
checked on Oct 5, 2024
Page view(s)
114
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.