Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/10345
Title: | Differentiation of Benign and Malignant Thyroid Nodules with ANFIS by Using Genetic Algorithm and Proposing a Novel CAD-Based Risk Stratification System of Thyroid Nodules | Authors: | Öztürk, Ahmet Cankat Haznedar, Hilal Haznedar, Bulent Ilgan, Seyfettin Eroğul, Osman Kalınlı, Adem |
Keywords: | thyroid thyroid nodule classification ANFIS deep neural network guideline Association Guidelines White Paper Management Diagnosis |
Publisher: | MDPI | Abstract: | The thyroid nodule risk stratification guidelines used in the literature are based on certain well-known sonographic features of nodules and are still subjective since the application of these characteristics strictly depends on the reading physician. These guidelines classify nodules according to the sub-features of limited sonographic signs. This study aims to overcome these limitations by examining the relationships of a wide range of ultrasound (US) signs in the differential diagnosis of nodules by using artificial intelligence methods. An innovative method based on training Adaptive-Network Based Fuzzy Inference Systems (ANFIS) by using Genetic Algorithm (GA) is used to differentiate malignant from benign thyroid nodules. The comparison of the results from the proposed method to the results from the commonly used derivative-based algorithms and Deep Neural Network (DNN) methods yielded that the proposed method is more successful in differentiating malignant from benign thyroid nodules. Furthermore, a novel computer aided diagnosis (CAD) based risk stratification system for the thyroid nodule's US classification that is not present in the literature is proposed. | URI: | https://doi.org/10.3390/diagnostics13040740 https://hdl.handle.net/20.500.11851/10345 |
ISSN: | 2075-4418 |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
WEB OF SCIENCETM
Citations
3
checked on Oct 5, 2024
Page view(s)
134
checked on Nov 4, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.