Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10372
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜnal, P.-
dc.contributor.authorAlbayrak, O.-
dc.contributor.authorKubatova, M.-
dc.contributor.authorDeveci, B.U.-
dc.contributor.authorÇırakman, E.-
dc.contributor.authorKoçal, C.I.-
dc.contributor.authorÖzbayoğlu, A. Murat-
dc.date.accessioned2023-04-16T10:01:19Z-
dc.date.available2023-04-16T10:01:19Z-
dc.date.issued2022-
dc.identifier.isbn9781665480451-
dc.identifier.urihttps://doi.org/10.1109/BigData55660.2022.10020608-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10372-
dc.descriptionAnkura;et al.;Hitachi;KPMG Consulting Co., Ltd.;NTT Data Intellilink Corporation;Think in Data Initiative, Association Incen_US
dc.description2022 IEEE International Conference on Big Data, Big Data 2022 -- 17 December 2022 through 20 December 2022 -- 186390en_US
dc.description.abstractIn the contemporary rotating machinery, bearings are critical and indispensable parts. Early detection of rolling bearing defects carries crucial importance, because undetected defects on the rolling bearings may end in loss of time, resources, money and even lives. In parallel to the accelerated utilization of deep learning applications in the manufacturing industry, different studies have been conducted to determine and evaluate defects on the surfaces of rolling bearings. In this study, a new system, that contains a hardware platform and software components in order to detect surface defects of the metal rolling bearings has been developed. To detect defects, optic image data of the bearings were used, and then computer vision and artificial intelligence techniques were applied to them. In the system, TC-VISION, the source of big data is the platform designed and developed using the optical camera. The results of the applied CNN algorithms performed better than the targeted values with respect to several metrics. The F1 score obtained is close to 100%. The developed system is aimed to be enhanced further in order to develop a fully automated inspection and quality control system for metal rolling bearing systems appropriate for serial production in real industrial environments. © 2022 IEEE.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 3201195en_US
dc.description.sponsorshipACKNOWLEDGMENT This study was conducted by TEKNOPAR and supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey) TC-VISION project, with project number 3201195.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial intelligenceen_US
dc.subjectbig dataen_US
dc.subjectcomputer visionen_US
dc.subjectdefect detectionen_US
dc.subjectimage classification with localizationen_US
dc.subjectrolling bearingsen_US
dc.subjectBig dataen_US
dc.subjectComputer visionen_US
dc.subjectDeep learningen_US
dc.subjectInspectionen_US
dc.subjectRoller bearingsen_US
dc.subjectSurface defectsen_US
dc.subjectBearing defecten_US
dc.subjectBig data applicationsen_US
dc.subjectDefect detectionen_US
dc.subjectHardware platformen_US
dc.subjectImage classification with localizationen_US
dc.subjectImages classificationen_US
dc.subjectLocalisationen_US
dc.subjectLoss of timeen_US
dc.subjectManufacturing industriesen_US
dc.subjectRolling bearingsen_US
dc.subjectImage classificationen_US
dc.titleA Big Data Application in Manufacturing Industry-Computer Vision To Detect Defects on Bearingsen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.startpage6074en_US
dc.identifier.endpage6083en_US
dc.identifier.scopus2-s2.0-85147911227en_US
dc.institutionauthor-
dc.identifier.doi10.1109/BigData55660.2022.10020608-
dc.authorscopusid56396952700-
dc.authorscopusid57226393431-
dc.authorscopusid58101098800-
dc.authorscopusid57350944900-
dc.authorscopusid58101982000-
dc.authorscopusid58101633500-
dc.authorscopusid57276609200-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

66
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.