Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10378
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTürkmen, M.D.-
dc.contributor.authorLease, M.-
dc.contributor.authorKutlu, M.-
dc.date.accessioned2023-04-16T10:02:10Z-
dc.date.available2023-04-16T10:02:10Z-
dc.date.issued2023-
dc.identifier.isbn9783031282379-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-28238-6_16-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10378-
dc.description45th European Conference on Information Retrieval, ECIR 2023 -- 2 April 2023 through 6 April 2023 -- 292029en_US
dc.description.abstractIn evaluation campaigns, participants often explore variations of popular, state-of-the-art baselines as a low-risk strategy to achieve competitive results. While effective, this can lead to local “hill climbing” rather than a more radical and innovative departure from standard methods. Moreover, if many participants build on similar baselines, the overall diversity of approaches considered may be limited. In this work, we propose a new class of IR evaluation metrics intended to promote greater diversity of approaches in evaluation campaigns. Whereas traditional IR metrics focus on user experience, our two “innovation” metrics instead reward exploration of more divergent, higher-risk strategies finding relevant documents missed by other systems. Experiments on four TREC collections show that our metrics do change system rankings by rewarding systems that find such rare, relevant documents. This result is further supported by a controlled, synthetic data experiment, and a qualitative analysis. In addition, we show that our metrics achieve higher evaluation stability and discriminative power than the standard metrics we modify. To support reproducibility, we share our source code. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 120E514en_US
dc.description.sponsorshipAcknowledgments. We thank the reviewers for their valuable feedback. This research was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) ARDEB 3501 (Grant No 120E514) and by Good Systems (https://goodsystems.utexas.edu), a UT Austin Grand Challenge to develop responsible AI technologies. Our opinions are our own.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEvaluationen_US
dc.subjectInformation retrievalen_US
dc.subjectMetricsen_US
dc.subjectDivergentsen_US
dc.subjectEvaluationen_US
dc.subjectEvaluation metricsen_US
dc.subjectHill climbingen_US
dc.subjectInformation retrieval approachen_US
dc.subjectMetricen_US
dc.subjectRelevant documentsen_US
dc.subjectRisk strategiesen_US
dc.subjectState of the arten_US
dc.subjectUsers' experiencesen_US
dc.subjectInformation retrievalen_US
dc.titleNew Metrics To Encourage Innovation and Diversity in Information Retrieval Approachesen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume13981 LNCSen_US
dc.identifier.startpage239en_US
dc.identifier.endpage254en_US
dc.identifier.wosWOS:000995489700016en_US
dc.identifier.scopus2-s2.0-85150948020en_US
dc.institutionauthor-
dc.identifier.doi10.1007/978-3-031-28238-6_16-
dc.authorscopusid58090468500-
dc.authorscopusid13005498000-
dc.authorscopusid35299304300-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

98
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.