Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10383
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKahya, M.-
dc.contributor.authorSöyleyici, C.-
dc.contributor.authorBakır, M.-
dc.contributor.authorÜnver, H.Ö.-
dc.date.accessioned2023-04-16T10:02:11Z-
dc.date.available2023-04-16T10:02:11Z-
dc.date.issued2022-
dc.identifier.isbn9780791886656-
dc.identifier.urihttps://doi.org/10.1115/IMECE2022-94680-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10383-
dc.descriptionASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 -- 30 October 2022 through 3 November 2022 -- 186577en_US
dc.description.abstractThe aviation industry demands innovation in new materials and processes which can demonstrate high performance with minimum weight. Strength-to-weight ratio (STR) is the key metric that drives the value justification in this demand stream. However, aviation's test and certification procedures are time-consuming, expensive, and heavily regulated. This study proposes a Digital Twin (DT) framework to address the time and high costs of mechanical testing procedures in the aviation industry. The proposed DT utilizes new Machine Learning (ML) techniques such as Transfer Learning (TL). Hence, a proof-of-concept study using TL in the Aluminum material group has been demonstrated. The promising results revealed that it was possible to reduce the test load of new material to 40% without any significant error. Copyright © 2022 by ASME.en_US
dc.description.sponsorshipThe authors are thankful for the valuable advice of Assoc.Prof. Ersin Bahceci throughout this study.en_US
dc.language.isoenen_US
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_US
dc.relation.ispartofASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDigital twinen_US
dc.subjectfatigue estimationen_US
dc.subjectmachine learning transfer learningen_US
dc.subjectFatigue of materialsen_US
dc.subjectMachine learningen_US
dc.subjectMechanical testingen_US
dc.subjectAviation industryen_US
dc.subjectFatigue estimationen_US
dc.subjectLearning Transferen_US
dc.subjectMachine learning transfer learningen_US
dc.subjectMachine-learningen_US
dc.subjectMaterials and processen_US
dc.subjectMinimum weighten_US
dc.subjectPerformanceen_US
dc.subjectStrength to weight ratioen_US
dc.subjectTransfer learningen_US
dc.subjectE-learningen_US
dc.titleA Digital Twin Framework for Mechanical Testing Powered by Machine Learningen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume3en_US
dc.identifier.scopus2-s2.0-85148431479en_US
dc.institutionauthor-
dc.identifier.doi10.1115/IMECE2022-94680-
dc.authorscopusid57191607438-
dc.authorscopusid58109448700-
dc.authorscopusid58109145600-
dc.authorscopusid6603873269-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

76
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.