Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10387
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGörgülüarslan, R.M.-
dc.contributor.authorAteş, G.C.-
dc.date.accessioned2023-04-16T10:02:12Z-
dc.date.available2023-04-16T10:02:12Z-
dc.date.issued2022-
dc.identifier.isbn9780791886656-
dc.identifier.urihttps://doi.org/10.1115/IMECE2022-95870-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10387-
dc.descriptionASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 -- 30 October 2022 through 3 November 2022 -- 186577en_US
dc.description.abstractThe applicability of artificial neural networks (ANNs) on the prediction of the structural optimization results of a truss structure is investigated. Two different ANN architectures are employed and the effect of using various optimizers and activation functions on their prediction performance is evaluated. Unlike the traditional machine learning network strategies where usually a physical response of the truss optimization (such as compliance, stress, etc.) is predicted, in this study, a new way of prediction is utilized for the truss-like structures; particularly predicting the optimized thickness values of the strut members by the ANNs. Thus, the input data used in these networks are the thickness values of the strut members at a certain initial iteration while the optimized thickness values are predicted as the outputs. A cantilever beam example is presented for the truss optimization to show the efficacy of the presented ANNs. The results indicate that using the thickness values at a certain initial iteration as inputs and final iteration thicknesses as outputs in ANNs are promising for the structural optimization prediction of the presented truss problem with the appropriate selection of the architecture, optimizer, activation function, and the input-output data formation. Copyright © 2022 by ASME.en_US
dc.language.isoenen_US
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_US
dc.relation.ispartofASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjecttopology optimizationen_US
dc.subjecttruss structureen_US
dc.subjectChemical activationen_US
dc.subjectDeep learningen_US
dc.subjectForecastingen_US
dc.subjectLearning systemsen_US
dc.subjectNetwork architectureen_US
dc.subjectShape optimizationen_US
dc.subjectStructural optimizationen_US
dc.subjectStrutsen_US
dc.subjectTopologyen_US
dc.subjectTrussesen_US
dc.subjectActivation functionsen_US
dc.subjectLearning networken_US
dc.subjectNeural network architectureen_US
dc.subjectOptimizersen_US
dc.subjectStructural optimisationsen_US
dc.subjectThickness valueen_US
dc.subjectTopology optimisationen_US
dc.subjectTruss optimizationen_US
dc.subjectTruss structureen_US
dc.subjectTruss topology optimizationen_US
dc.subjectNeural networksen_US
dc.titleEvaluation of Deep Learning Networks for Predicting Truss Topology Optimization Resultsen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume3en_US
dc.identifier.scopus2-s2.0-85148415466en_US
dc.institutionauthor-
dc.identifier.doi10.1115/IMECE2022-95870-
dc.authorscopusid56076567200-
dc.authorscopusid57221393471-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

62
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.