Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/10671
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dergi, Halil Berk | - |
dc.contributor.author | Akgun, Mehmet Burak | - |
dc.date.accessioned | 2023-10-24T06:59:08Z | - |
dc.date.available | 2023-10-24T06:59:08Z | - |
dc.date.issued | 2023 | - |
dc.identifier.isbn | 979-8-3503-4355-7 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU59756.2023.10223958 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/10671 | - |
dc.description | 31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEY | en_US |
dc.description.abstract | Social recommendation systems that use graph neural network (GNN) models are effective in addressing the data sparsity issue present in collaborative filtering models. Social homophily and item similarities are critical factors that affect users' preferences, and GNN models must capture these factors while incorporating users' interaction behaviors. In this work, we propose SCCL, a recommendation model that jointly captures social influence and item similarity signals with cross-view contrastive learning. We constructed a user-user social graph from social networks and item-item graphs from common tags. In our model, user-user relations are represented as a homogeneous graph, and item-item relations are represented as hypergraphs. We demonstrate the effectiveness of our model on two real-world datasets. | en_US |
dc.description.sponsorship | IEEE,TUBITAK BILGEM,Turkcell | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2023 31st Signal Processing And Communications Applications Conference, Siu | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Information Systems | en_US |
dc.subject | Recommender Systems | en_US |
dc.subject | Social Recomendation | en_US |
dc.subject | Graph Neural Network | en_US |
dc.title | Social and Categorical Signals in Contrastive Learning for Recommendation Systems | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB ETÜ | en_US |
dc.identifier.wos | WOS:001062571000184 | - |
dc.identifier.scopus | 2-s2.0-85173549156 | - |
dc.institutionauthor | … | - |
dc.identifier.doi | 10.1109/SIU59756.2023.10223958 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | tr | - |
item.grantfulltext | none | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.