Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10674
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTürkmen, Mehmet Deniz-
dc.contributor.authorDoğan, Dilara-
dc.contributor.authorAbul, Osman-
dc.contributor.authorKutlu, Mucahid-
dc.date.accessioned2023-10-24T06:59:09Z-
dc.date.available2023-10-24T06:59:09Z-
dc.date.issued2023-
dc.identifier.isbn979-8-3503-4355-7-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU59756.2023.10223816-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10674-
dc.description31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEYen_US
dc.description.abstractTwitter offers users an environment where they can express their opinions on any subject. As a result, user activities have become an important resource for various sociological studies. In this study, we proposed machine learning methods that utilize text-based and interaction-based features to predict the opinions of users who post messages in Turkish. We also performed zero-shot classification using ChatGPT. We labeled 4,502 accounts that posted during the Turkey Presidential election in 2018 according to the candidates they supported. In our experiments with the dataset we created, we achieved a classification accuracy of 0.831 for users.en_US
dc.description.sponsorshipIEEE,TUBITAK BILGEM,Turkcellen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 31st Signal Processing And Communications Applications Conference, Siuen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSocial mediaen_US
dc.subjectauthor profilingen_US
dc.subjectUsersen_US
dc.titleStance Detection of Turkish Twitter Accountsen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.wosWOS:001062571000064en_US
dc.identifier.scopus2-s2.0-85173484040en_US
dc.institutionauthor-
dc.identifier.doi10.1109/SIU59756.2023.10223816-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

82
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.