Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10687
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDam, Paulami-
dc.contributor.authorÇelik, Merve-
dc.contributor.authorÜstün, Merve-
dc.contributor.authorSaha, Sayantan-
dc.contributor.authorSaha, Chirantan-
dc.contributor.authorKacar, Elif Ayşe-
dc.contributor.authorKuğu, Senanur-
dc.date.accessioned2023-10-24T06:59:12Z-
dc.date.available2023-10-24T06:59:12Z-
dc.date.issued2023-
dc.identifier.issn2046-2069-
dc.identifier.urihttps://doi.org/10.1039/d3ra03477a-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10687-
dc.description.abstractThe intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.en_US
dc.description.sponsorshipUGC-JRF [201610181190]; DST-INSPIRE PhD Fellowship (DST-INSPIRE-SRF) [IF190457]; DST-SERB [E. Q./2021/000058]; Conselho Nacional de Desenvolvimento e Tecnologico (CNPq); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Universidade Federal de Mato Grosso do Sul (UFMS); Fundacao de Apoio a Pesquisa do Distrito Federal (FAPDF); Fundacao de Apoio ao Desenvolvimento do Ensino, Ciencia e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), Brazilen_US
dc.description.sponsorshipP. D. was provided with an independent PhD fellowship for financial assistance (UGC-JRF; NTA Ref. No. 201610181190). R. M. was provided DST-INSPIRE PhD Fellowship (DST-INSPIRE-SRF; INSPIRE Code-IF190457). A. K. M. would like to acknowledge DST-SERB (E. E. Q./2021/000058) for financial assistance. This work was supported by grants from Conselho Nacional de Desenvolvimento e Tecnologico (CNPq), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Universidade Federal de Mato Grosso do Sul (UFMS), Fundacao de Apoio a Pesquisa do Distrito Federal (FAPDF) and Fundacao de Apoio ao Desenvolvimento do Ensino, Ciencia e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), Brazil.en_US
dc.language.isoenen_US
dc.publisherRoyal Soc Chemistryen_US
dc.relation.ispartofRsc Advancesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGold Nanoparticlesen_US
dc.subjectPolymeric Nanoparticlesen_US
dc.subjectSilver Nanoparticlesen_US
dc.subjectAntibacterial Activityen_US
dc.subjectAntimicrobial Activityen_US
dc.subjectGlass Nanoparticlesen_US
dc.subjectBone Regenerationen_US
dc.subjectTissue-Repairen_US
dc.subjectDrugen_US
dc.subjectBacteriaen_US
dc.titleWound Healing Strategies Based on Nanoparticles Incorporated in Hydrogel Wound Patchesen_US
dc.typeReviewen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume13en_US
dc.identifier.issue31en_US
dc.identifier.startpage21345en_US
dc.identifier.endpage21364en_US
dc.authoridTasoglu, Savas/0000-0003-4604-217X-
dc.authoridMandal, Amit/0000-0001-9249-5052-
dc.authoridKugu, Senanur/0000-0001-7624-2880-
dc.identifier.wosWOS:001029565600001en_US
dc.identifier.scopus2-s2.0-85166313648en_US
dc.institutionauthor-
dc.identifier.pmid37465579en_US
dc.identifier.doi10.1039/d3ra03477a-
dc.authorwosidTasoglu, Savas/HLH-6613-2023-
dc.authorwosidMandal, Amit/AAP-3437-2020-
dc.authorscopusid57217226464-
dc.authorscopusid57195939264-
dc.authorscopusid57221830981-
dc.authorscopusid58514916400-
dc.authorscopusid58514916500-
dc.authorscopusid58515374400-
dc.authorscopusid58318610400-
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopusqualityQ2-
item.openairetypeReview-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

32
checked on Dec 21, 2024

Page view(s)

52
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.