Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDuman, Oktay-
dc.date.accessioned2023-10-24T07:01:45Z-
dc.date.available2023-10-24T07:01:45Z-
dc.date.issued2024-
dc.identifier.issn0377-0427-
dc.identifier.issn1879-1778-
dc.identifier.urihttps://doi.org/10.1016/j.cam.2023.115456-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10702-
dc.description.abstractIn this paper, by using multivariable Taylor polynomials and also the max-product operation, we give a nonlinear modification of the classical Shepard operators. This modification enables us to obtain better approximation behavior than the classical aspects studied by Shepard (1968) and Farwig (1986). We also discuss the effects of regular summability methods in the approximation. At the end of the paper, we give some applications and graphical simulations verifying our approximation results.& COPY; 2023 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Computational And Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectShepard operatorsen_US
dc.subjectMax-product operatorsen_US
dc.subjectMatrix summability methodsen_US
dc.subjectPower series methodsen_US
dc.subjectKorovkin-Type Approximationen_US
dc.subjectInterpolationen_US
dc.subjectConvergenceen_US
dc.subjectSummabilityen_US
dc.subjectSpacesen_US
dc.titleMax-Product Shepard Operators Based on Multivariable Taylor Polynomialsen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume437en_US
dc.authoridDuman, Oktay/0000-0001-7779-6877-
dc.identifier.wosWOS:001047267300001-
dc.identifier.scopus2-s2.0-85165675684-
dc.institutionauthor-
dc.identifier.doi10.1016/j.cam.2023.115456-
dc.authorscopusid9943532600-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

58
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.