Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10853
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKamislik, Asli Bektas-
dc.contributor.authorBaghezze, Feyrouz-
dc.contributor.authorKesemen, Tulay-
dc.contributor.authorKhaniyev, Tahir-
dc.date.accessioned2023-12-23T06:06:31Z-
dc.date.available2023-12-23T06:06:31Z-
dc.date.issued2023-
dc.identifier.issn0361-0926-
dc.identifier.issn1532-415X-
dc.identifier.urihttps://doi.org/10.1080/03610926.2023.2268765-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10853-
dc.description.abstractIn this study, we propose an approximation for a renewal reward process that describes a stochastic control model of type (s, S) based on the first three moments of demand random variables. Various asymptotic expansions for this model exist in the literature. All these studies rely on the condition of knowing the distribution function of demand random variables and require obtaining the asymptotic expansion of the renewal function produced by them. However, obtaining a renewal function can be challenging for certain distribution families, and in some cases, the mathematical structure of the renewal function is difficult to apply. Therefore, in this study, simple and compact approximations are presented for the stochastic control model of type (s, S). The findings of this study rely on Kambo's method, through which we obtain approximations for the ergodic distribution, and the nth order ergodic moments of this process. To conclude the study, the accuracy of the proposed approximate formulas are examined through a specialized illustrative example. Moreover, it has been noted that the proposed approximation is more accurate than the approximations existing in the literature.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications In Statistics-Theory and Methodsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStochastic control model of type (s,S)en_US
dc.subjectmoment-based approximationen_US
dc.subjectrenewal reward processen_US
dc.subjectRenewal-Reward Processen_US
dc.subjectInventory Modelen_US
dc.subjectInterferenceen_US
dc.subjectTheoremen_US
dc.titleMoment-Based Approximations for Stochastic Control Model of Type (s, S)en_US
dc.typeArticleen_US
dc.typeArticle; Early Accessen_US
dc.departmentTOBB ETÜen_US
dc.identifier.wosWOS:001091037000001en_US
dc.identifier.scopus2-s2.0-85174312310en_US
dc.institutionauthor-
dc.identifier.doi10.1080/03610926.2023.2268765-
dc.authorscopusid57191412712-
dc.authorscopusid58650565200-
dc.authorscopusid15759447500-
dc.authorscopusid7801652544-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.openairetypeArticle; Early Access-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

52
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.