Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10918
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGümüşderelioğlu, Menemşe-
dc.contributor.authorEroğul, Osman-
dc.contributor.authorUyar, Tansel-
dc.contributor.authorErdamar, Aykut-
dc.contributor.authorAkşahin, Mehmet Fevzi-
dc.contributor.authorIrmak, Gülseren-
dc.date.accessioned2023-12-23T06:07:23Z-
dc.date.available2023-12-23T06:07:23Z-
dc.date.issued2023-
dc.identifier.issn1303-5002-
dc.identifier.issn2687-475X-
dc.identifier.urihttps://doi.org/10.15671/hjbc.868396-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1200426-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10918-
dc.description.abstractImage analysis of cell biology and tissue engineering is time-consuming and requires personal expertise. However, evalu - ation of the results may be subjective. Therefore, computer-based learning and detection applications have been rapidly developed in recent years. In this study, Confocal Laser Scanning Microscope (CLSM) images of the viable pre-osteoblastic mouse MC3T3-E1 cells in 3D bioprinted tissue scaffolds, captured from a bone tissue regeneration study, were analyzed by using image processing techniques. The aim of this study is to develop a reliable and fast algorithm for the automated analysis of live/dead assay CLSM images. Percentages of live and dead cell areas in the scaffolds were determined, and then, total cell viabilities were calculated. Furthermore, manual measurements of four different analysts were obtained to evaluate subjectivity in the analysis. The measurement variations of analysts, also known as the coefficient of variation, were determined from 13.18% to 98.34% for live cell images and from 9.75% to 126.02% for dead cell images. Therefore, an automated algorithm was developed to overcome this subjectivity. The other aim of this study is to determine the depth profile of viable cells in 3D tissue scaffolds. Consequently, cross-sectional image sets of three different types of tissue scaf - folds were analyzed.en_US
dc.language.isoengen_US
dc.relation.ispartofHacettepe Journal of Biology and Chemistryen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleAutomated Cell Viability Analysis in Tissue Scaffoldsen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume51en_US
dc.identifier.issue1en_US
dc.identifier.startpage37en_US
dc.identifier.endpage50en_US
dc.institutionauthor-
dc.identifier.doi10.15671/hjbc.868396-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1200426en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

118
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.