Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10982
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVerdi, Elvan Burak-
dc.contributor.authorYılmaz, Muhammed-
dc.contributor.authorMulazimoglu, Deniz Dogan-
dc.contributor.authorTürker, Abdüssamet-
dc.contributor.authorGürün Kaya, Aslıhan-
dc.contributor.authorIşık, Özlem-
dc.contributor.authorBostanoğlu Karacin, Aslı-
dc.date.accessioned2024-01-21T09:24:26Z-
dc.date.available2024-01-21T09:24:26Z-
dc.date.issued2024-
dc.identifier.issn1081-5589-
dc.identifier.issn1708-8267-
dc.identifier.urihttps://doi.org/10.1177/10815589231208479-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10982-
dc.description.abstractThe generalizability of artificial intelligence (AI) models is a major issue in the field of AI applications. Therefore, we aimed to overcome the generalizability problem of an AI model developed for a particular center for pneumothorax detection using a small dataset for external validation. Chest radiographs of patients diagnosed with pneumothorax (n = 648) and those without pneumothorax (n = 650) who visited the Ankara University Faculty of Medicine (AUFM; center 1) were obtained. A deep learning-based pneumothorax detection algorithm (PDA-Alpha) was developed using the AUFM dataset. For implementation at the Health Sciences University (HSU; center 2), PDA-Beta was developed through external validation of PDA-Alpha using 50 radiographs with pneumothorax obtained from HSU. Both PDA algorithms were assessed using the HSU test dataset (n = 200) containing 50 pneumothorax and 150 non-pneumothorax radiographs. We compared the results generated by the algorithms with those of physicians to demonstrate the reliability of the results. The areas under the curve for PDA-Alpha and PDA-Beta were 0.993 (95% confidence interval (CI): 0.985-1.000) and 0.986 (95% CI: 0.962-1.000), respectively. Both algorithms successfully detected the presence of pneumothorax on 49/50 radiographs; however, PDA-Alpha had seven false-positive predictions, whereas PDA-Beta had one. The positive predictive value increased from 0.525 to 0.886 after external validation (p = 0.041). The physicians' sensitivity and specificity for detecting pneumothorax were 0.585 and 0.988, respectively. The performance scores of the algorithms were increased with a small dataset; however, further studies are required to determine the optimal amount of external validation data to fully address the generalizability issue.en_US
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofJournal of Investigative Medicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectchest radiographen_US
dc.subjectchest X-rayen_US
dc.subjectgeneralizabilityen_US
dc.subjectpneumothoraxen_US
dc.titleCan the Generalizability Issue of Artificial Intelligence Be Overcome? Pneumothorax Detection Algorithmen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume72en_US
dc.identifier.issue1en_US
dc.identifier.startpage88en_US
dc.identifier.endpage99en_US
dc.authoridElhan, Atilla Halil/0000-0003-3324-248X-
dc.authoridGurun Kaya, Aslihan/0000-0001-6072-8587-
dc.identifier.wosWOS:001124918600002en_US
dc.identifier.scopus2-s2.0-85179727887en_US
dc.institutionauthor-
dc.identifier.pmid37840192en_US
dc.identifier.doi10.1177/10815589231208479-
dc.authorwosidElhan, Atilla Halil/D-5519-2015-
dc.authorscopusid57387322600-
dc.authorscopusid57221948826-
dc.authorscopusid57196034653-
dc.authorscopusid58686048200-
dc.authorscopusid57056493900-
dc.authorscopusid57322854900-
dc.authorscopusid58761936000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

44
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.