Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/10982
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Verdi, Elvan Burak | - |
dc.contributor.author | Yılmaz, Muhammed | - |
dc.contributor.author | Mulazimoglu, Deniz Dogan | - |
dc.contributor.author | Türker, Abdüssamet | - |
dc.contributor.author | Gürün Kaya, Aslıhan | - |
dc.contributor.author | Işık, Özlem | - |
dc.contributor.author | Bostanoğlu Karacin, Aslı | - |
dc.date.accessioned | 2024-01-21T09:24:26Z | - |
dc.date.available | 2024-01-21T09:24:26Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1081-5589 | - |
dc.identifier.issn | 1708-8267 | - |
dc.identifier.uri | https://doi.org/10.1177/10815589231208479 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/10982 | - |
dc.description.abstract | The generalizability of artificial intelligence (AI) models is a major issue in the field of AI applications. Therefore, we aimed to overcome the generalizability problem of an AI model developed for a particular center for pneumothorax detection using a small dataset for external validation. Chest radiographs of patients diagnosed with pneumothorax (n = 648) and those without pneumothorax (n = 650) who visited the Ankara University Faculty of Medicine (AUFM; center 1) were obtained. A deep learning-based pneumothorax detection algorithm (PDA-Alpha) was developed using the AUFM dataset. For implementation at the Health Sciences University (HSU; center 2), PDA-Beta was developed through external validation of PDA-Alpha using 50 radiographs with pneumothorax obtained from HSU. Both PDA algorithms were assessed using the HSU test dataset (n = 200) containing 50 pneumothorax and 150 non-pneumothorax radiographs. We compared the results generated by the algorithms with those of physicians to demonstrate the reliability of the results. The areas under the curve for PDA-Alpha and PDA-Beta were 0.993 (95% confidence interval (CI): 0.985-1.000) and 0.986 (95% CI: 0.962-1.000), respectively. Both algorithms successfully detected the presence of pneumothorax on 49/50 radiographs; however, PDA-Alpha had seven false-positive predictions, whereas PDA-Beta had one. The positive predictive value increased from 0.525 to 0.886 after external validation (p = 0.041). The physicians' sensitivity and specificity for detecting pneumothorax were 0.585 and 0.988, respectively. The performance scores of the algorithms were increased with a small dataset; however, further studies are required to determine the optimal amount of external validation data to fully address the generalizability issue. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Sage Publications Ltd | en_US |
dc.relation.ispartof | Journal of Investigative Medicine | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | chest radiograph | en_US |
dc.subject | chest X-ray | en_US |
dc.subject | generalizability | en_US |
dc.subject | pneumothorax | en_US |
dc.title | Can the Generalizability Issue of Artificial Intelligence Be Overcome? Pneumothorax Detection Algorithm | en_US |
dc.type | Article | en_US |
dc.department | TOBB ETÜ | en_US |
dc.identifier.volume | 72 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 88 | en_US |
dc.identifier.endpage | 99 | en_US |
dc.authorid | Elhan, Atilla Halil/0000-0003-3324-248X | - |
dc.authorid | Gurun Kaya, Aslihan/0000-0001-6072-8587 | - |
dc.identifier.wos | WOS:001124918600002 | en_US |
dc.identifier.scopus | 2-s2.0-85179727887 | en_US |
dc.institutionauthor | … | - |
dc.identifier.pmid | 37840192 | en_US |
dc.identifier.doi | 10.1177/10815589231208479 | - |
dc.authorwosid | Elhan, Atilla Halil/D-5519-2015 | - |
dc.authorscopusid | 57387322600 | - |
dc.authorscopusid | 57221948826 | - |
dc.authorscopusid | 57196034653 | - |
dc.authorscopusid | 58686048200 | - |
dc.authorscopusid | 57056493900 | - |
dc.authorscopusid | 57322854900 | - |
dc.authorscopusid | 58761936000 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.