Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10986
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOğurtanı, Tarık Ömer-
dc.contributor.authorCaylan, Ömer Refet-
dc.contributor.authorCambaz Büke, Göknur-
dc.date.accessioned2024-01-21T09:24:28Z-
dc.date.available2024-01-21T09:24:28Z-
dc.date.issued2023-
dc.identifier.issn2158-3226-
dc.identifier.urihttps://doi.org/10.1063/5.0168063-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10986-
dc.description.abstractIn this work, the chemical vapor deposition synthesis of the Mo2C/graphene heterostructure above the melting temperature of Cu bias (1356 K) is studied. Two sets of Mo2C growth experiments at high CH4 flow rates (5 SCCM >= 3 SCCM) are performed, either using prior-graphene synthesis or having in situ graphitization, for three different Cu bias thicknesses. Raman mappings taken from all six-test samples show graphene covers not only over the Mo2C pillars but also over their untransformed Cu bias substrate regions. The only difference is that the Mo2C pillar grows over the prior graphene bias; on the other hand, the in situ graphene grown Mo2C pillar nucleates and grows over the fresh Cu bias surfaces. A steady-state laminate model for flows of Mo and C species with phase transformations is developed for the radial and vertical growth kinetics of synthesized Mo2C/graphene heterostructure. The computer simulation reproduces those experimental observations performed recently in our laboratories on the prior or no-prior graphitized (G) test modules with Cu/G bias, having three different thicknesses at 1363 K. AFM-topography and SEM photos for a prior graphitized test module of 25 mu m thick Cu and 4.72 angstrom graphene bias show a three layered Mo2C/graphene heterostructure; the first layer is almost perfect hexagonal flat, and the other two circular shaped layers constitute the whole pillar of 140 nm height. This may be compared to a 250 mu m thick Cu/4.7 angstrom graphene bias sample, which furnishes an ultra-thin single flat layer of 10-13 nm thick Mo2C crystallites having a perfect planar hexagonal structure. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.description.sponsorshipAir Force Office of Scientific Researchhttps://doi.org/10.13039/100000181 [FA9550-19-1-7048, FA9550-22-1-0358]; Air Force Office of Scientific Researchen_US
dc.description.sponsorshipThe authors acknowledge Professor Ali Sayir from the Air Force Office of Scientific Research for his valuable comments. This material is based on the work supported by the Air Force Office of Scientific Research (Award Nos. FA9550-19-1-7048 and FA9550-22-1-0358).en_US
dc.language.isoenen_US
dc.publisherAip Publishingen_US
dc.relation.ispartofAip Advancesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTransition-Metal Carbidesen_US
dc.subjectMax-Phaseen_US
dc.subjectDiffusionen_US
dc.subjectNitrideen_US
dc.subjectUniqueen_US
dc.subjectCarbonen_US
dc.subjectCopperen_US
dc.titleSteady State Thermokinetic of Ultra-Thin Mo2c/G Heterostructures Grown on the Prior-Graphitized Cu/Graphene Biasingen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume13en_US
dc.identifier.issue12en_US
dc.identifier.wosWOS:001127426400001en_US
dc.identifier.scopus2-s2.0-85180147891en_US
dc.institutionauthor-
dc.identifier.doi10.1063/5.0168063-
dc.authorscopusid6701329251-
dc.authorscopusid57217485587-
dc.authorscopusid58763321000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

36
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.