Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/10999
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Efe, M.O. | - |
dc.contributor.author | Kurkcu, B. | - |
dc.contributor.author | Kasnakoglu, C. | - |
dc.contributor.author | Mohamed, Z. | - |
dc.contributor.author | Liu, Z. | - |
dc.date.accessioned | 2024-01-21T09:24:31Z | - |
dc.date.available | 2024-01-21T09:24:31Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1549-7747 | - |
dc.identifier.uri | https://doi.org/10.1109/TCSII.2023.3335140 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/10999 | - |
dc.description.abstract | Levenberg-Marquardt (LM) algorithm is a powerful approach to optimize the parameters of a neural network (NN). Given a training dataset, the algorithm synthesizes the best path toward the optimum. This paper demonstrates the use of LM optimization algorithm when there are more than one dataset and on/off type switching of NN parameters is allowed. For each dataset a pre-selected set of parameters are allowed for modification and the proposed scheme reformulates the Jacobian under the switching mechanism. The results show that a NN can store information available in different datasets by a simple modification to the original LM algorithm, which is the novelty introduced in this study. The results are verified on a regression problem. IEEE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IEEE Transactions on Circuits and Systems II: Express Briefs | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial neural networks; Biological neural networks; Jacobian matrices; Levenberg-Marquardt Algorithm; Masked Neural Networks; Multiple Dataset Learning; Neurons; Optimization; Training; Tuning | en_US |
dc.subject | Bioinformatics; DNA; Jacobian matrices; Learning algorithms; Parameter estimation; Best paths; Biological neural networks; Levenberg-Marquardt algorithm; Masked neural network; Multiple data sets; Multiple dataset learning; Neural-networks; Optimisations; Training dataset; Tuning; Neural networks | en_US |
dc.title | A Modified Levenberg Marquardt Algorithm for Simultaneous Learning of Multiple Datasets | en_US |
dc.type | Article | en_US |
dc.department | TOBB ETÜ | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 1 | en_US |
dc.identifier.wos | WOS:001193325900125 | en_US |
dc.identifier.scopus | 2-s2.0-85179098143 | en_US |
dc.institutionauthor | … | - |
dc.identifier.doi | 10.1109/TCSII.2023.3335140 | - |
dc.authorscopusid | 7004595398 | - |
dc.authorscopusid | 56062372800 | - |
dc.authorscopusid | 24802064500 | - |
dc.authorscopusid | 58752963600 | - |
dc.authorscopusid | 58752505600 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.5. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.