Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11033
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNassehi, F.-
dc.contributor.authorUnlu, B.-
dc.contributor.authorKahveci, Y.-
dc.contributor.authorYetkin, S.-
dc.contributor.authorErogul, O.-
dc.date.accessioned2024-02-11T17:17:36Z-
dc.date.available2024-02-11T17:17:36Z-
dc.date.issued2023-
dc.identifier.isbn9798350328967-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO59875.2023.10359173-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11033-
dc.description2023 Medical Technologies Congress, TIPTEKNO 2023 -- 10 November 2023 through 12 November 2023 -- 195703en_US
dc.description.abstractPanic Disorder (PD) is a debilitating condition marked by sudden, intense fear episodes with physical symptoms. Swift and accurate PD detection is crucial for effective intervention. This study aimed to propose an optimal combination of spectral features of the Alpha band to detect PD. For this purpose, 21 PD-diagnosed individuals and 26 healthy controls attended a 5-minute eyes-closed resting state Electroencephalography (EEG) recording session. Welch method was applied to calculate the power spectral density of EEG signals and then the sum, average, maximum, relative power of alpha band, and individual alpha frequency (IAF) were extracted. Relief and nearest component analysis (NCA) methods were performed to select highly relevant features. The maximum average accuracy was reached when commonly selected features between two selection methods were used as inputs of classifiers. Adaboost classifier reached the highest average accuracy with $89.03 ±6.73% rate. © 2023 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2023 - Medical Technologies Congress, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlpha Band.en_US
dc.subjectElectroencephalogram (EEG)en_US
dc.subjectFeature Selectionen_US
dc.subjectMachine Learningen_US
dc.subjectPanic Disorder (PD)en_US
dc.subjectAdaptive boostingen_US
dc.subjectBiomedical signal processingen_US
dc.subjectElectrophysiologyen_US
dc.subjectFeature Selectionen_US
dc.subjectSpectral densityen_US
dc.subjectAlpha band.en_US
dc.subjectConditionen_US
dc.subjectElectroencephalogramen_US
dc.subjectFeatures selectionen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectMachine-learningen_US
dc.subjectOptimal combinationen_US
dc.subjectPanic disorderen_US
dc.subjectPhysical symptomsen_US
dc.subjectSpectral featureen_US
dc.subjectElectroencephalographyen_US
dc.titleIdentifying the Spectral-Based Neurophysiological Biomarkers To Detect Panic Disorder From Alpha Band Using Machine Learning Algorithmsen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.scopus2-s2.0-85182730006en_US
dc.institutionauthor-
dc.identifier.doi10.1109/TIPTEKNO59875.2023.10359173-
dc.authorscopusid57210944631-
dc.authorscopusid57448741700-
dc.authorscopusid58821626600-
dc.authorscopusid56211425100-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

48
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.