Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11039
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu,B.-
dc.contributor.authorDemir,B.-
dc.contributor.authorGultakti,C.A.-
dc.contributor.authorMarrs,J.-
dc.contributor.authorGong,Y.-
dc.contributor.authorLi,R.-
dc.contributor.authorHihath,J.-
dc.date.accessioned2024-02-11T17:17:38Z-
dc.date.available2024-02-11T17:17:38Z-
dc.date.issued2024-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://doi.org/10.1021/acsnano.3c10844-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11039-
dc.description.abstractRobust, high-yield integration of nanoscale components such as graphene nanoribbons, nanoparticles, or single-molecules with conventional electronic circuits has proven to be challenging. This difficulty arises because the contacts to these nanoscale devices must be precisely fabricated with angstrom-level resolution to make reliable connections, and at manufacturing scales this cannot be achieved with even the highest-resolution lithographic tools. Here we introduce an approach that circumvents this issue by precisely creating nanometer-scale gaps between metallic carbon electrodes by using a self-aligning, solution-phase process, which allows facile integration with conventional electronic systems with yields approaching 50%. The electrode separation is controlled by covalently binding metallic single-walled carbon nanotube (mCNT) electrodes to individual DNA duplexes to create mCNT-DNA-mCNT nanojunctions, where the gap is precisely matched to the DNA length. These junctions are then integrated with top-down lithographic techniques to create single-molecule circuits that have electronic properties dominated by the DNA in the junction, have reproducible conductance values with low dispersion, and are stable and robust enough to be utilized as active, high-specificity electronic biosensors for dynamic single-molecule detection of specific oligonucleotides, such as those related to the SARS-CoV-2 genome. This scalable approach for high-yield integration of nanometer-scale devices will enable opportunities for manufacturing of hybrid electronic systems for a wide range of applications. © 2024 American Chemical Society.en_US
dc.description.sponsorshipNational Science Foundation Future Manufacturing Program, (NSF-2036865/2328217); W. M. Keck Foundation, WMKFen_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofACS Nanoen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbiosensorsen_US
dc.subjectcarbon nanotubesen_US
dc.subjectmolecular devicesen_US
dc.subjectnanoelectronicsen_US
dc.subjectnanojunctionen_US
dc.subjectself-alignmenten_US
dc.subjectsingle-molecule electronicsen_US
dc.titleSelf-Aligning Nanojunctions for Integrated Single-Molecule Circuitsen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume18en_US
dc.identifier.issue6en_US
dc.identifier.startpage4972en_US
dc.identifier.endpage4980en_US
dc.identifier.wosWOS:001162335400001en_US
dc.identifier.scopus2-s2.0-85182559775en_US
dc.identifier.pmidPubMed:38214957-
dc.identifier.doi10.1021/acsnano.3c10844-
dc.authorscopusid57218153967-
dc.authorscopusid57204554850-
dc.authorscopusid58075821500-
dc.authorscopusid57221419146-
dc.authorscopusid58816898200-
dc.authorscopusid57195615007-
dc.authorscopusid35846321000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

36
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.