Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11216
Title: Kuş Çarpmasına Karşı Uçak Kanopisinin Tasarım Optimizasyonu
Authors: Tezel, Muhammed Cihan
Özkan, Özlem
Acar, Erdem
Keywords: Kuş Çarpması
Uçak Ön Camı
Ağırlık Optimizasyonu
Vekil Model
SPH Yöntemi
Polikarbonat
Sonlu Elemanlar Yöntemi
Bird Strike
Aircraft Canopy
Weight Optimization
Surrogate Model
SPH Method
Polycarbonate
Finite Element Method
LS-DYNA
Publisher: SAVTEK
Abstract: Bu çalışmada, yüksek hızlı kuş çarpmasına maruz kalan basitleştirilmiş bir uçak ön camının ağırlık optimizasyonu ele alınmıştır. Ön cam plakası 1 m x 1 m ölçülerinde ve 5 katmandan oluşmaktadır. Katman malzemeleri polikarbonat ve PVB'den (polivinil butiral) oluşmaktadır. Çarpışma koşulları ise, kuşun 1.8 kg ve çarpışma hızının 130 m/s olduğu durumdur. Çarpışmalar, bir sonlu elemanlar yazılımı olan LS-DYNA’da gerçekleştirilmiştir. Polikarbonat malzemesinin ve SPH yöntemi ile modellenen kuşun sonlu elemanlar modelleri literatür verileri ile doğrulandıktan sonra optimizasyon çalışmalarına başlanmıştır. Optimizasyon probleminde tasarım değişkenleri katman kalınlıkları ve kısıt olarak ise plakanın merkez deformasyon değerinin başlangıç tasarımın merkez deformasyonunu geçmemesi durumu ele alınmıştır. Deformasyon kısıtının tahmini için farklı vekil modeller oluşturulmuştur. Bu vekil modeller kullanılarak ağırlık optimizasyonu genetik algoritma ile çözülmüş ve ağırlıkta %3.2’lik bir azalma elde edilmiştir.
In this study, weight optimization of a simplified aircraft windshield subjected to high velocity bird strike is considered. The windshield plate measures 1 m x 1 m and consists of 5 layers. Layer materials consist of polycarbonate and PVB (polyvinyl butyral). The impact conditions are when the bird is 1.8 kg and the impact velocity is 130 m/s. The impacts were performed in LS-DYNA, a finite element software. After the finite element models of the polycarbonate material and the bird modeled by the SPH method were validated with the literature data, optimization studies were started. In the optimization problem, the design variables are considered as layer thicknesses and the constraint is taken as the central deformation of the plate not exceeding the central deformation of the initial design. Different surrogate models were constructed to predict the plate deformation. By using these surrogate models, weight optimization was solved by genetic algorithm and a 3.2% weight reduction was achieved.
URI: https://drive.google.com/file/d/1kgREHR1thmyU-ratMSIO2JpDL-f4XH3Z/view?usp=sharing
https://hdl.handle.net/20.500.11851/11216
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering

Show full item record



CORE Recommender

Page view(s)

100
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.